
Page 1

System-Level I/O

Dr. Steve Goddard
goddard@cse.unl.edu

JDEP 284H 
Foundations of Computer Systems

http://cse.unl.edu/~goddard/Courses/JDEP284

2

Giving credit where credit is due
Most of slides for this lecture are based on 
slides created by Drs. Bryant and 
O’Hallaron, Carnegie Mellon University.
I have modified them and added new 
slides.

3

Topics

Unix I/O
Robust reading and writing
Reading file metadata
Sharing files
I/O redirection
Standard I/O

4

A Typical Hardware System

main
memory

I/O 
bridgebus interface

ALU

register file

CPU chip

system bus memory bus

disk 
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

5

Reading a Disk Sector: Step 1

main
memory

ALU

register file

CPU chip

disk 
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller.

6

Reading a Disk Sector: Step 2

main
memory

ALU

register file

CPU chip

disk 
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and 
performs a direct memory access (DMA) 
transfer into main memory.



Page 2

7

Reading a Disk Sector: Step 3

main
memory

ALU

register file

CPU chip

disk 
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the 
disk controller notifies the CPU with an 
interrupt (i.e., asserts a special “interrupt” 
pin on the CPU)

8

Unix Files
A Unix A Unix filefile is a sequence of is a sequence of mm bytes:bytes:

B0, B1, .... , Bk , .... , Bm-1

All I/O devices are represented as files:All I/O devices are represented as files:
/dev/sda2 (/usr disk partition)
/dev/tty2 (terminal)

Even the kernel is represented as a file:Even the kernel is represented as a file:
/dev/kmem (kernel memory image) 
/proc (kernel data structures)

9

Unix File Types
Regular fileRegular file

Binary or text file. 
Unix does not know the difference!

Directory fileDirectory file
A file that contains the names and locations of other files.

Character special and block special filesCharacter special and block special files
Terminals (character special) and disks ( block special)

FIFO (named pipe)FIFO (named pipe)
A file type used for interprocess comunication

SocketSocket
A file type used for network communication between 
processes

10

Unix I/O

The elegant mapping of files to devices allows kernel to The elegant mapping of files to devices allows kernel to 
export simple interface called Unix I/O.export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a Key Unix idea: All input and output is handled in a 
consistent and uniform way.consistent and uniform way.

Basic Unix I/O operations (system calls):  Basic Unix I/O operations (system calls):  
Opening and closing files

open()and close()

Changing the current file position (seek)
lseek (not discussed)

Reading and writing a file
read() and write()

11

Opening Files
Opening a file informs the kernel that you are getting Opening a file informs the kernel that you are getting 

ready to access that file.ready to access that file.

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with Each process created by a Unix shell begins life with 
three open files associated with a terminal:three open files associated with a terminal:

0: standard input
1: standard output
2: standard error

int fd;   /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
perror(“open”);
exit(1);

}

12

Closing Files
Closing a file informs the kernel that you are finished Closing a file informs the kernel that you are finished 

accessing that file.accessing that file.

Closing an already closed file is a recipe for disaster in Closing an already closed file is a recipe for disaster in 
threaded programs (more on this later)threaded programs (more on this later)

Moral: Always check return codes, even for seemingly Moral: Always check return codes, even for seemingly 
benign functions such as benign functions such as close()close()

int fd;     /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(“close”);
exit(1);

}



Page 3

13

Reading Files
Reading a file copies bytes from the current file Reading a file copies bytes from the current file 

position to memory, and then updates file position.position to memory, and then updates file position.

Returns number of bytes read from file Returns number of bytes read from file fdfd into into bufbuf
nbytes < 0 indicates that an error occurred.
short counts (nbytes < sizeof(buf) ) are possible and 
are not errors!

char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open file fd ...  */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror(“read”);
exit(1);

}

14

Writing Files
Writing a file copies bytes from memory to the current file Writing a file copies bytes from memory to the current file 

position, and then updates current file position.position, and then updates current file position.

Returns number of bytes written from Returns number of bytes written from bufbuf to file to file fdfd..
nbytes < 0 indicates that an error occurred.
As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address Transfers up to 512 bytes from address bufbuf to file to file fdfd

char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror(“write”);
exit(1);

}

15

Unix I/O Example

Copying standard input to standard output one byte at a Copying standard input to standard output one byte at a 
time.time.

Note the use of error handling wrappers for read and Note the use of error handling wrappers for read and 
write (Appendix B).write (Appendix B).

#include "csapp.h"

int main(void) 
{

char c;

while(Read(STDIN_FILENO, &c, 1) != 0) 
Write(STDOUT_FILENO, &c, 1);

exit(0);
}

16

Dealing with Short Counts
Short counts can occur in these situations:Short counts can occur in these situations:

Encountering (end-of-file) EOF on reads.
Reading text lines from a terminal.
Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:Short counts never occur in these situations:
Reading from disk files (except for EOF)
Writing to disk files.

How should you deal with short counts in your code?How should you deal with short counts in your code?
Use the RIO (Robust I/O) package from your textbook’s 
csapp.c file (Appendix B).

17

The RIO Package
RIO is a set of wrappers that provide efficient and robust I/O iRIO is a set of wrappers that provide efficient and robust I/O in n 

applications such as network programs that are subject to short applications such as network programs that are subject to short 
counts.counts.

RIO provides two different kinds of functionsRIO provides two different kinds of functions
Unbuffered input and output of binary data

rio_readn and rio_writen
Buffered input of binary data and text lines

rio_readlineb and rio_readnb
Cleans up some problems with Stevens’s readline and readn
functions.
Unlike the Stevens routines, the buffered RIO routines are thread-
safe and can be interleaved arbitrarily on the same descriptor.

Download fromDownload from
http://http://csapp.cs.cmu.edu/public/code.htmlcsapp.cs.cmu.edu/public/code.html
http://http://csapp.cs.cmu.edu/public/ics/code/include/csapp.hcsapp.cs.cmu.edu/public/ics/code/include/csapp.h
http://http://csapp.cs.cmu.edu/public/ics/code/src/csapp.ccsapp.cs.cmu.edu/public/ics/code/src/csapp.c

18

Unbuffered RIO Input and Output
Same interface as Unix Same interface as Unix readread and and writewrite

Especially useful for transferring data on network Especially useful for transferring data on network 
socketssockets

rio_readn returns short count only it encounters EOF.
rio_writen never returns a short count.
Calls to rio_readn and rio_writen can be interleaved 
arbitrarily on the same descriptor.

#include “csapp.h”

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(nt fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error



Page 4

19

Implementation of rio_readn
/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n) 
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0;      /* and call read() again */
else

return -1;      /* errno set by read() */ 
} 
else if (nread == 0)

break;              /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft);         /* return >= 0 */

}

20

Buffered RIO Input Functions
Efficiently read text lines and binary data from a file Efficiently read text lines and binary data from a file 

partially cached in an internal memory bufferpartially cached in an internal memory buffer

rio_readlineb reads a text line of up to maxlen bytes from 
file fd and stores the line in usrbuf.

Especially useful for reading text lines from network sockets.
rio_readnb reads up to n bytes from file fd.
Calls to rio_readlineb and rio_readnb can be interleaved 
arbitrarily on the same descriptor.

Warning: Don’t interleave with calls to rio_readn
Note: your text has a typo on this topic, pg 784.

#include “csapp.h”

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

21

RIO Example
Copying the lines of a text file from standard input to Copying the lines of a text file from standard input to 

standard output.standard output.

#include "csapp.h"

int main(int argc, char **argv) 
{

int n;
rio_t rio;
char buf[MAXLINE];

rio_readinitb(&rio, STDIN_FILENO);
while((n = rio_readlineb(&rio, buf, MAXLINE)) != 0) 

rio_writen(STDOUT_FILENO, buf, n);
exit(0);

}

22

File Metadata
MetadataMetadata is data about data, in this case file data.is data about data, in this case file data.
Maintained by kernel, accessed by users with the Maintained by kernel, accessed by users with the stat stat 

and and fstatfstat functions.functions.
/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t         st_dev;      /* device */
ino_t st_ino;      /* inode */
mode_t        st_mode;     /* protection and file type */
nlink_t st_nlink;    /* number of hard links */
uid_t st_uid;      /* user ID of owner */
gid_t st_gid;      /* group ID of owner */
dev_t         st_rdev;     /* device type (if inode device) */
off_t         st_size;     /* total size, in bytes */
unsigned long st_blksize;  /* blocksize for filesystem I/O */
unsigned long st_blocks;   /* number of blocks allocated */
time_t        st_atime;    /* time of last access */
time_t        st_mtime;    /* time of last modification */
time_t        st_ctime;    /* time of last change */

};

23

Example of Accessing File Metadata
/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

int main (int argc, char **argv) 
{

struct stat stat;
char *type, *readok;

stat(argv[1], &stat);
if (S_ISREG(stat.st_mode)) /* file type*/

type = "regular";
else if (S_ISDIR(stat.st_mode))

type = "directory";
else 

type = "other";
if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
else

readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no

24

How the Unix Kernel Represents 
Open Files
Two descriptors referencing two distinct open disk Two descriptors referencing two distinct open disk 

files. Descriptor 1 (files. Descriptor 1 (stdoutstdout) points to terminal, and ) points to terminal, and 
descriptor 4 points to open disk file.descriptor 4 points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in 
stat
struct



Page 5

25

File Sharing
Two distinct descriptors sharing the same disk file Two distinct descriptors sharing the same disk file 

through two distinct open file table entriesthrough two distinct open file table entries
E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

v-node table
(shared by 

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size
File type

File A

File B

26

How Processes Share Files
A child process inherits its parent’s open files. Here is A child process inherits its parent’s open files. Here is 

the situation immediately after a the situation immediately after a forkfork

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor 
tables

Open file table 
(shared by 

all processes)

v-node table
(shared by 

all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...
Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

File access

...

File size
File type

File A

File B

27

I/O Redirection
Question: How does a shell implement I/O redirection?Question: How does a shell implement I/O redirection?

unix> ls > foo.txt

Answer: By calling the Answer: By calling the dup2(oldfd, dup2(oldfd, newfdnewfd)) functionfunction
Copies (per-process) descriptor table entry oldfd to entry 
newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

28

I/O Redirection Example
Before calling Before calling dup2(4,1)dup2(4,1), , stdoutstdout (descriptor 1) points (descriptor 1) points 

to a terminal and descriptor 4 points to an open disk to a terminal and descriptor 4 points to an open disk 
file.file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

v-node table
(shared by 

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

29

I/O Redirection Example (cont)
After calling After calling dup2(4,1)dup2(4,1), , stdoutstdout is now redirected to the is now redirected to the 

disk file pointed at by descriptor 4.disk file pointed at by descriptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table 

per process)

Open file table 
(shared by 

all processes)

v-node table
(shared by 

all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A

File B

30

Standard I/O Functions
The C standard library (The C standard library (libc.alibc.a) contains a collection of ) contains a collection of 

higherhigher--level level standard I/O standard I/O functionsfunctions
Documented in Appendix B of K&R.

Examples of standard I/O functions:Examples of standard I/O functions:
Opening and closing files (fopen and fclose)
Reading and writing bytes (fread and fwrite)
Reading and writing text lines (fgets and fputs)
Formatted reading and writing (fscanf and fprintf)



Page 6

31

Standard I/O Streams
Standard I/O models open files as Standard I/O models open files as streamsstreams

Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (defined C programs begin life with three open streams (defined 
in in stdio.hstdio.h))

stdin (standard input)
stdout (standard output)
stderr (standard error)

#include <stdio.h>
extern FILE *stdin;  /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, “Hello, world\n”);

}

32

Buffering in Standard I/O
Standard I/O functions use buffered I/OStandard I/O functions use buffered I/O

printf(“h”);

h e l l o \n . .

printf(“e”);
printf(“l”);

printf(“l”);

printf(“o”);
printf(“\n”);

fflush(stdout);

buf

write(1, buf, 6);

33

Standard I/O Buffering in Action
You can see this buffering in action for yourself, using You can see this buffering in action for yourself, using 

the always fascinating Unix the always fascinating Unix stracestrace program:program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...)               = 6
...
_exit(0)                                = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

34

Unix I/O vs. Standard I/O vs. RIO
Standard I/O and RIO are implemented using lowStandard I/O and RIO are implemented using low--level level 

Unix I/O.Unix I/O.

Which ones should you use in your programs?Which ones should you use in your programs?

Unix I/O functions 
(accessed via system calls)

Standard I/O 
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open   read
write  lseek
stat   close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

35

Pros and Cons of Unix I/O
ProsPros

Unix I/O is the most general and lowest overhead form of I/O.
All other I/O packages are implemented using Unix I/O 
functions.

Unix I/O provides functions for accessing file metadata.

ConsCons
Dealing with short counts is tricky and error prone.
Efficient reading of text lines requires some form of 
buffering, also tricky and error prone.
Both of these issues are addressed by the standard I/O and 
RIO packages.

36

Pros and Cons of Standard I/O
Pros:Pros:

Buffering increases efficiency by decreasing the number of 
read and write system calls.
Short counts are handled automatically.

Cons:Cons:
Provides no function for accessing file metadata
Standard I/O is not appropriate for input and output on 
network sockets
There are poorly documented restrictions on streams that 
interact badly with restrictions on sockets



Page 7

37

Pros and Cons of Standard I/O (cont)
Restrictions on streams:Restrictions on streams:

Restriction 1: input function cannot follow output function 
without intervening call to fflush, fseek, fsetpos, or 
rewind. 

Latter three functions all use lseek to change file position.
Restriction 2: output function cannot follow an input 
function with intervening call to fseek, fsetpos, or rewind.

Restriction on sockets:Restriction on sockets:
You are not allowed to change the file position of a socket.

38

Pros and Cons of Standard I/O (cont)
Workaround for restriction 1:Workaround for restriction 1:

Flush stream after every output.

Workaround for restriction 2:Workaround for restriction 2:
Open two streams on the same descriptor, one for reading 
and one for writing:

However, this requires you to close the same descriptor 
twice:

Creates a deadly race in concurrent threaded programs!

FILE *fpin, *fpout;

fpin = fdopen(sockfd, “r”);
fpout = fdopen(sockfd, “w”);

fclose(fpin);
fclose(fpout);

39

Choosing I/O Functions
General rule: Use the highestGeneral rule: Use the highest--level I/O functions you level I/O functions you 

can.can.
Many C programmers are able to do all of their work using 
the standard I/O functions.

When to use standard I/O?When to use standard I/O?
When working with disk or terminal files.

When to use raw Unix I/O When to use raw Unix I/O 
When you need to fetch file metadata.
In rare cases when you need absolute highest performance. 

When to use RIO?When to use RIO?
When you are reading and writing network sockets or pipes.
Never use standard I/O or raw Unix I/O on sockets or pipes.

40

For Further Information
The Unix bible:The Unix bible:

W. Richard  Stevens, Advanced Programming in the Unix 
Environment, Addison Wesley, 1993.
Somewhat dated, but still useful.

Stevens is arguably the best technical writer ever.Stevens is arguably the best technical writer ever.
Produced authoritative works in:

Unix programming
TCP/IP (the protocol that makes the Internet work)
Unix network programming

Unix IPC programming.

Tragically, Stevens died Sept 1, 1999. Tragically, Stevens died Sept 1, 1999. 


