
Page 1

Network Programming

Dr. Steve Goddard
goddard@cse.unl.edu

JDEP 284H
Foundations of Computer Systems

http://cse.unl.edu/~goddard/Courses/JDEP284

2

Giving credit where credit is due
Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.
I have modified them and added new
slides.

3

Topics
Programmer’s view of the Internet
(review)
Sockets interface
Writing clients and servers

4

A Client-Server Transaction

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response4. Client
handles

response

Resource

Every network application is based on the clientEvery network application is based on the client--server server
model:model:

A server process and one or more client processes
Server manages some resource.
Server provides service by manipulating resource for clients.

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

5

A Programmer’s View of the Internet
1. Hosts are mapped to a set of 321. Hosts are mapped to a set of 32--bit bit IP addressesIP addresses..

128.2.203.179

2. The set of IP addresses is mapped to a set of 2. The set of IP addresses is mapped to a set of
identifiers called Internet identifiers called Internet domain namesdomain names..

128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate 3. A process on one Internet host can communicate
with a process on another Internet host over a with a process on another Internet host over a
connectionconnection..

6

1. IP Addresses
3232--bit IP addresses are stored in an bit IP addresses are stored in an IP address IP address structstruct

IP addresses are always stored in memory in network byte
order (big-endian byte order)
True in general for any integer transferred in a packet header
from one machine to another.

E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {

unsigned int s_addr; /* network byte order (big-endian) */
};

Handy network byte-order conversion functions:
htonl: convert long int from host to network byte order.
htons: convert short int from host to network byte order.
ntohl: convert long int from network to host byte order.
ntohs: convert short int from network to host byte order.

Page 2

7

2. Domain Naming System (DNS)
The Internet maintains a mapping between IP addresses The Internet maintains a mapping between IP addresses

and domain names in a huge worldwide distributed and domain names in a huge worldwide distributed
database called database called DNSDNS..

Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures:

Functions for retrieving host entries from DNS:Functions for retrieving host entries from DNS:
gethostbyname: query key is a DNS domain name.
gethostbyaddr: query key is an IP address.

/* DNS host entry structure */
struct hostent {

char *h_name; /* official domain name of host */
char **h_aliases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */
int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of in_addr structs */

};

8

3. Internet Connections

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

Clients and servers communicate by sending streams Clients and servers communicate by sending streams
of bytes over of bytes over connectionsconnections..

Connections are pointConnections are point--toto--point, fullpoint, full--duplex (2duplex (2--way way
communication), and reliable.communication), and reliable.

Note: 51213 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

9

Clients
Examples of client programsExamples of client programs

Web browsers, ftp, telnet, ssh

How does a client find the server?How does a client find the server?
The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)
The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server process
that performs that service.
Examples of well know ports

Port 7: Echo server
Port 23: Telnet server
Port 25: Mail server
Port 80: Web server

10

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

11

Servers
Servers are longServers are long--running processes (daemons).running processes (daemons).

Created at boot-time (typically) by the init process (process 1)
Run continuously until the machine is turned off.

Each server waits for requests to arrive on a wellEach server waits for requests to arrive on a well--known known
port associated with a particular service.port associated with a particular service.

Port 7: echo server
Port 23: telnet server
Port 25: mail server
Port 80: HTTP server

A machine that runs a server process is also often A machine that runs a server process is also often
referred to as a “server.”referred to as a “server.”

12

Server Examples
Web server (port 80)Web server (port 80)

Resource: files/compute cycles (CGI programs)
Service: retrieves files and runs CGI programs on behalf of
the client

FTP server (20, 21)FTP server (20, 21)
Resource: files
Service: stores and retrieve files

Telnet server (23)Telnet server (23)
Resource: terminal
Service: proxies a terminal on the server machine

Mail server (25)Mail server (25)
Resource: email “spool” file
Service: stores mail messages in spool file

See /etc/services for a
comprehensive list of the
services available on a
Linux machine.

Page 3

13

Sockets Interface
Created in the early 80’s as part of the original Berkeley Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of distribution of Unix that contained an early version of
the Internet protocols.the Internet protocols.

Provides a userProvides a user--level interface to the network.level interface to the network.

Underlying basis for all Internet applications.Underlying basis for all Internet applications.

Based on client/server programming model.Based on client/server programming model.

14

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

accept

rio_readlineb

rio_readlineb

rio_writen

close

rio_readlineb

connect

rio_writen

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

15

Sockets
What is a socket?What is a socket?

To the kernel, a socket is an endpoint of communication.
To an application, a socket is a file descriptor that lets the
application read/write from/to the network.

Remember: All Unix I/O devices, including networks, are
modeled as files.

Clients and servers communicate with each by reading Clients and servers communicate with each by reading
from and writing to socket descriptors.from and writing to socket descriptors.

The main distinction between regular file I/O and socket The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket I/O is how the application “opens” the socket
descriptors.descriptors.

16

Socket Address Structures
Generic socket address:Generic socket address:

For address arguments to connect, bind, and accept.
Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

InternetInternet--specific socket address:specific socket address:
Must cast (sockaddr_in *) to (sockaddr *) for connect,
bind, and accept.

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data[14]; /* address data. */

};

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

};

17

Echo Client Main Routine
#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{

int clientfd, port;
char *host, buf[MAXLINE];
rio_t rio;

host = argv[1];
port = atoi(argv[2]);

clientfd = open_clientfd(host, port);
rio_readinitb(&rio, clientfd);

while (fgets(buf, MAXLINE, stdin) != NULL) {
rio_writen(clientfd, buf, strlen(buf));
rio_readlineb(&rio, buf, MAXLINE);
fputs(buf, stdout);

}
close(clientfd);
exit(0);

}
18

Echo Client: open_clientfd
int open_clientfd(char *hostname, int port)
{

int clientfd;
struct hostent *hp;
struct sockaddr_in serveraddr;

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

/* Fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);
serveraddr.sin_port = htons(port);

/* Establish a connection with the server */
if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)

return -1;
return clientfd;

}

This function opens a
connection from the client to
the server at hostname:port

Page 4

19

Echo Client: open_clientfd
(socket)

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

... (more)

socketsocket creates a socket descriptor on the client.creates a socket descriptor on the client.
AF_INET: indicates that the socket is associated with Internet
protocols.
SOCK_STREAM: selects a reliable byte stream connection.

20

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server’s Internet address.The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

...

/* fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);
serveraddr.sin_port = htons(port);

21

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.Finally the client creates a connection with the server.
Client process suspends (blocks) until the connection is created.
After resuming, the client is ready to begin exchanging messages
with the server via Unix I/O calls on descriptor sockfd.

int clientfd; /* socket descriptor */
struct sockaddr_in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

...
/* Establish a connection with the server */
if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

return -1;
return clientfd;

}

22

Echo Server: Main Routine
int main(int argc, char **argv) {

int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddrp;

port = atoi(argv[1]); /* the server listens on a port passed
on the command line */

listenfd = open_listenfd(port);

while (1) {
clientlen = sizeof(clientaddr);
connfd = accept(listenfd, (SA *)&clientaddr, &clientlen);
hp = gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,

sizeof(clientaddr.sin_addr.s_addr), AF_INET);
haddrp = inet_ntoa(clientaddr.sin_addr);
printf("server connected to %s (%s)\n", hp->h_name, haddrp);
echo(connfd);
close(connfd);

}
}

23

Echo Server: open_listenfd
int open_listenfd(int port)
{

int listenfd, optval=1;
struct sockaddr_in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int)) < 0)
return -1;

... (more)

24

Echo Server: open_listenfd (cont)

...

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;
}

Page 5

25

socketsocket creates a socket descriptor on the server.creates a socket descriptor on the server.
AF_INET: indicates that the socket is associated with Internet
protocols.
SOCK_STREAM: selects a reliable byte stream connection.

Echo Server: open_listenfd
(socket)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

return -1;

26

Echo Server: open_listenfd
(setsockopt)

The socket can be given some attributes.The socket can be given some attributes.

Handy trick that allows us to rerun the server Handy trick that allows us to rerun the server
immediately after we kill it.immediately after we kill it.

Otherwise we would have to wait about 15 secs.
Eliminates “Address already in use” error from bind().

Strongly suggest you do this for all your servers to Strongly suggest you do this for all your servers to
simplify debugging.simplify debugging.

...
/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int)) < 0)
return -1;

27

Echo Server: open_listenfd
(initialize socket address)
Next, we initialize the socket with the server’s Internet Next, we initialize the socket with the server’s Internet

address (IP address and port)address (IP address and port)

IP IP addraddr and port stored in network (bigand port stored in network (big--endian) byte orderendian) byte order
htonl() converts longs from host byte order to network byte
order.
htons() convers shorts from host byte order to network byte
order.

struct sockaddr_in serveraddr; /* server's socket addr */
...

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);

28

Echo Server: open_listenfd
(bind)

bind bind associates the socket with the socket address we associates the socket with the socket address we
just created.just created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

...
/* listenfd will be an endpoint for all requests to port

on any IP address for this host */
if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

return -1;

29

Echo Server: open_listenfd
(listen)

listenlisten indicates that this socket will accept indicates that this socket will accept
connection (connection (connectconnect) requests from clients.) requests from clients.

We’re finally ready to enter the main server loop that We’re finally ready to enter the main server loop that
accepts and processes client connection requests.accepts and processes client connection requests.

int listenfd; /* listening socket */

...
/* Make it a listening socket ready to accept connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;
}

30

Echo Server: Main Loop
The server loops endlessly, waiting for connection The server loops endlessly, waiting for connection

requests, then reading input from the client, and requests, then reading input from the client, and
echoing the input back to the client. echoing the input back to the client.

main() {

/* create and configure the listening socket */

while(1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

}
}

Page 6

31

accept()accept() blocks waiting for a connection request.blocks waiting for a connection request.

acceptaccept returns a returns a connected descriptor connected descriptor ((connfdconnfd) with) with
the same properties as the the same properties as the listening descriptorlistening descriptor
((listenfdlistenfd))

Returns when the connection between client and server is
created and ready for I/O transfers.
All I/O with the client will be done via the connected socket.

accept accept also fills in client’s IP address. also fills in client’s IP address.

Echo Server: accept

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;
int clientlen;

clientlen = sizeof(clientaddr);
connfd = accept(listenfd, (SA *)&clientaddr, &clientlen);

32

Echo Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd.clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling and blocking in
connect.

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept. Client returns from
connect. Connection is now
established between clientfd
and connfd.

connfd(4)

33

Connected vs. Listening Descriptors
Listening descriptorListening descriptor

End point for client connection requests.
Created once and exists for lifetime of the server.

Connected descriptorConnected descriptor
End point of the connection between client and server.
A new descriptor is created each time the server accepts a
connection request from a client.
Exists only as long as it takes to service client.

Why the distinction?Why the distinction?
Allows for concurrent servers that can communicate over
many client connections simultaneously.

E.g., Each time we receive a new request, we fork a child to
handle the request.

34

Echo Server: Identifying the Client
The server can determine the domain name and IP The server can determine the domain name and IP

address of the client.address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */

hp = gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);
printf("server connected to %s (%s)\n", hp->h_name, haddrp);

35

Echo Server: echo

void echo(int connfd)
{

size_t n;
char buf[MAXLINE];
rio_t rio;

rio_readinitb(&rio, connfd);
while((n = rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", n);
rio_writen(connfd, buf, n);

}
}

The server uses RIO to read and echo text lines until The server uses RIO to read and echo text lines until
EOF (endEOF (end--ofof--file) is encountered.file) is encountered.

EOF notification caused by client calling
close(clientfd).

IMPORTANT: EOF is a condition, not a particular data byte.

36

Testing Servers Using telnet
The The telnet telnet program is invaluable for testing servers program is invaluable for testing servers

that transmit ASCII strings over Internet connectionsthat transmit ASCII strings over Internet connections
Our simple echo server
Web servers
Mail servers

Usage: Usage:
unix> telnet <host> <portnumber>

Creates a connection with a server running on <host> and
listening on port <portnumber>.

Page 7

37

Testing the Echo Server With telnet
bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
123
123
Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
456789
456789
Connection closed by foreign host.
kittyhawk>

38

Running the Echo Client and Server

bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789
...

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789
Echo from server: 456789
kittyhawk>

39

For More Information
W. Richard Stevens, “Unix Network Programming: W. Richard Stevens, “Unix Network Programming:

Networking APIs: Sockets and XTI”, Volume 1, Networking APIs: Sockets and XTI”, Volume 1,
Second Edition, Prentice Hall, 1998.Second Edition, Prentice Hall, 1998.

THE network programming bible.

Complete versions of the echo client and server are Complete versions of the echo client and server are
developed in the text.developed in the text.

Available from csapp.cs.cmu.edu
You should compile and run them for yourselves to see how
they work.
Feel free to borrow any of this code.

