JDEP 284H
Foundations of Computer Systems

Integers

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Topics

sNumeric Encodings
eUnsigned & Two’s complement
mProgramming Implications
oC promotion rules
mBasic operations
e Addition, negation, multiplication
mProgramming Implications
eConsequences of overflow

eoUsing shifts to perform power-of-2
multiply/divide

Giving credit where credit is due

m Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

u | have modified them and added new
slides.

C Puzzles

m Taken from old exams
= Assume machine with 32 bit word size, two’s complement
integers
m For each of the following C expressions, either:
©® Argue that is true for all argument values
o Give example where not true
*c x<0 = ((x*2) < 0)

¢ ux >= 0

Initialization
- x &7 ==17 = (x<<30) < 0
int x = foo(); © ux > -1
int y = bar(); x>y = -x < -y
unsigned ux = Xx; e x * x >= 0
unsigned uy = y; * x>0&& Yy >0 = x+y>0

X
v
n

= -x <=0

»®
A
[
o o

= -x >= 0

Encoding Integers

Unsigned Two’s Complement
w-1) w-2
B2U(X) = x;-2' B2T(X) = —X,12" "+ XX+
i=0 i=0
short int x = 15213;
short int y = -15213;
m C short 2 bytes long
Decimal Hex Binary
x 15213| 3B 6D| 00111011 01101101
v -15213[C4 93] 11000100 10010011
Sign Bit

= For 2’s complement, most significant bit indicates sign
e 0 for nonnegative
o 1 for negative

2l

Sign
Bit

Encoding Example (Cont.)

X = 15213: 00111011 01101101
Yy = -15213: 11000100 10010011
Weight 15213 15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8| 1 8 0 0
16 0 0 1 16]
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128|
256| 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048| 1 2048 0 0
4096| 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768] 0 0 1 -32768]
Sum 15213 15213

Page 1

Numeric Ranges

Unsigned Values Two’s Complement Values

= UMin = 0 s TMin = 2w
000...0 100...0
m UMax = 2%-1 m TMax = 2%t —1
111..1 011..1
Other Values
= Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768[80 00 10000000 00000000
-1 1] FF FF| 11111111 11111111
0 0] 00 00] 00000000 00000000

Values for Different Word Sizes

w
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808

C Programming

m #include <limits.h>

Observations

= [TMin| = TMax+1
® Asymmetric range ® K&R App. B11
s UMax = 2*TMax+1 = Declares constants, e.g.,

® ULONG MAX
® LONG_MAX
® LONG MIN

= Values platform-specific

Unsigned & Signed Numeric Values

X__ | B2U(X) | B2T(X) Equivalence
0000 0 0
0001 1 1 = Same encodings for
0010 2 2 nonnegative values
goéé i 2 Uniqueness
1
0101 5 5 n Every bit pattern represents
0110 5 5 unique integer value
0111 7 7 = Each representable integer
1000 8 -8 has unique bit encoding
1001 9 -7 .
To1o 10 oy = Can Invert Mappings
1011 11 -5 = U2B(x) = B2U"(x)
1100 12 —4 e Bit pattern for unsigned
1101 13 -3 integer
1110 14 -2 = T2B(x) = B2T-(x)
2111 15 -1 Bit pattern for two’s comp

integer

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;

unsigned short int uy (unsigned short) y;

Resulting Value
= No change in bit representation
= Nonnegative values unchanged
o ux =15213
= Negative values change into (large) positive values
o uy = 50323

Relation between Signed & Unsigned

Two’s Complement T2U Unsigned
x —{T2B}—{[B2U}——— ux
X

Maintain Same Bit Pattern

w-1 0

ux GLET e e e T

- x [~ L=
+2WL_ el = 25wl = o X x20
W {x+2w x<0

Relation Between Signed & Unsigned

Weight -15213 50323
1 1 1 1 1
2 1 2| 1 2|
4 0 0| 0 0f
8| 0 0| 0 0|
16| 1 16} 1 16|
32 0 0| 0 0]
64| 0 0| 0 0]
128 1 128 1 128
256 0 0 0 0|
512 0 0| 0 0
1024 1 1024 1 1024
2048| 0 0| 0 0
4096 0 0| 0 0
8192 0 0 0 0]
16384 1 16384 1 16384
32768| 1 -32768 1 32768
Sum -15213 50323

muy = y+2%*32768 = y+65536

Page 2

Signed vs. Unsigned in C

Constants
n By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U
Casting
= Explicit casting between signed & unsigned same as U2T and

int tx, ty:
unsigned ux, uy;

tx = (int) ux;
uy = (unsigned) ty:

= Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Casting Surprises

Expression Evaluation
= If mix unsigned and signed in single expression, signed values
implicitly cast to unsigned
u Including comparison operations <, >, ==, <=,
= Examples for W = 32

Constant, Constant, Relation Evaluation
0 0y == unsigned
=1 0 < signed
=1 (-] > unsigned
2147483647 =2147483648 > signed
2147483647Y =2147483648 < unsigned
=1 =2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648Y < unsigned
2147483647 (int) 2147483648Y > signed

14

Explanation of Casting Surprises

2’s Comp. — Unsigned

Sign Extension

Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value
Rule:
= Make k copies of sign bit:
BXT= Xyqreees Xyt Xt s Xz aeees Xo
_

COIT——=+"TTT]

k copies of MSB
X

DS KN I

e o TTT1
k o

. . UMax
rdering Inversion
=0) 9 e_s . UMax -1
= Negative — Big Positive
TMax +1 :
~ = /—. Unsigned
® ®
TMax | @ ®| TMax Range
2's Comp.
Range 0 |@—f —®| o |
> .J
-2
LTMin
15
Sign Extension Example
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
Decimal Hex Binary
x 15213 3B 67 00111011 01101101
ix 15213[00 00 3B 6D 00000000 00000000 00111011 01101101
v -15213 c4 93 11000100 10010011
iy -15213] FF FF C4 93] 11111111 11111111 11000100 10010011

= Converting from smaller to larger integer data type
= C automatically performs sign extension

Justification For Sign Extension

Prove Correctness by Induction on k
= Induction Step: extending by single bit maintains value

—fw——
X EIT =<« TTT]
X' EEIIT =<+ 1117
w1
= Key observation: =21 = 2w 4wt

m Look at weight of upper bits:
X =291 Xy

X7 =2 Xyq 29T X = 2% X,

Page 3

Why Should | Use Unsigned?

Don’t Use Just Because Number Nonzero

= C compilers on some machines generate less efficient code
unsigned i;
for (i = 1; i < ent; i++)
ali] += ali-1];
m Easy to make mistakes
for (i = cnt-2; i >= 0; i--)
ali] += ali+l];

Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic
m Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range
n Working right up to limit of word size

Negating with Complement &
Increment

Claim: Following Holds for 2’s Complement

~X + 1 == -x
Complement
= Observation: ~x + x == 1111..11, == -1
x [1]o]o[1]a]x]o[1]
+ ~x [0]1]1]o[o]o]1]o]
-1
Increment
I~x+/+(7f+l) ==—/1/+(—x+/)
m~x + 1 == -xX

Warning: Be cautious treating int’s as integers
= OK here

20

Comp. & Incr. Examples

x =15213
[Decimal] Hex | Binary
% | 15213] 3B 6D| 00111011 01101101
v [-15213] C4 93] 11000100 10010011
0
Decimal Hex Binary
0 0] 00 00[00000000 00000000
-0 | FF FF| 11111111 11111111
~0+1 0] 00 00] 00000000 00000000

What is the complement and increment of 0?

21

Visualizing Integer Addition

Integer Addition Add,(u, v)

m 4-bit integers u, v

= Compute true sum
Add,(u,v)

= Values increase
linearly with u and v

= Forms planar
surface

Integer Addition

23

Page 4

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits UAdd,(u , v) I —---"T1TT1

Standard Addition Function
= Ignores carry output

Implements Modular Arithmetic
s = UAdd(u,v) = u+v mod2"

u+v utv<2?
UAdd,, (u,v) =
w(uv) {u+v—2“" ut+v=2"

22

Visualizing Unsigned Addition

Wraps Around Overflow
u If true sum 2 2% \

UAdd,(u , v)

= At most once

True Sum

w+1
2 Overflow

1N

Modular Sum

24

Mathematical Properties

Modular Addition Forms an Abelian Group
m Closed under addition
0 <UAdd,(u,v) < 2%
= Commutative
UAdd,(u, V) = UAdd,(v, u)
= Associative
UAdd,(t, UAdd,(u,v)) = UAdd,(UAdd,(t, u), v)
= 0 is additive identity
UAdd,(u,0) = u
= Every element has additive inverse
® Let UComp,, (u) =2¥-u
UAdd, (u, UComp,(u)) = 0

25

Two’s Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits TAdd,(u,v) I —---"T1TT1

TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

n Will give s ==

26

Characterizing TAdd

Functionality True Sum
u True sum requires 01111 Jw_1q
w+1 bits B TAdd Result
= Drop off MSB 0100..0 ow-1 011..1
m Treat remaining
bits as 2’s comp. 0000..0 ¢ 000...0
integer
PosOver 1100..0 _pw-1 100...0
TAdd(u,v) |
>0 T 1000...0 —2W NegOver
v
<0 JUHHZWA u+v <TMin,, (NegOver)
TAdd, (u,v) = Ju+v TMin,, <u+v<TMax,,
[<0 >0 w1
u {u+v—2 TMaxy <U+V (PosOver)
NegOver

27

Visualizing 2’s Comp. Addition

NegOver
Values \
m 4-bit two’s comp. TAdd,(u, v)
= Range from -8 to +7

Wraps Around
= If sum 22+
® Becomes negative
® At most once
u If sum <-2v1
® Becomes positive
® At most once

u 6 PosOver

28

Detecting 2’s Comp. Overflow

Task ow_q
= Given's = TAdd,(u, V) PosOver
= Determine if s = Add,(u, v) 2wt
n Example
int s, u, v; 0

8 =u + v;

Claim
u Overflow iff either:
u,v<0,s20 (NegOver)
u,v20,s<0 (PosOver)
ovf = (u<0 == v<0) && (u<0 != s<0);

NegOver

29

Page 5

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd
= TAdd,(u, v) = U2T(UAdd,(T2U(u), T2U(v)))
® Since both have identical bit patterns
Two’s Complement Under TAdd Forms a Group
= Closed, Commutative, Associative, 0 is additive identity
n Every element has additive inverse

Let TComp,, (u) = U2T(UComp,(T2U(u))
TAdd,(u, TComp,, (u)) = 0

-u u#TMin,

TCompy () = {TMinw u=TMin,,

30

Multiplication

Computing Exact Product of w-bit numbers x, y
n Either signed or unsigned

Ranges
m Unsigned: 0 sx*y<(2W—1)2 = 22w _ 2w + 1
o Up to 2w bits
= Two’s complement min: x *y 2 (=2%1)*(2%-1-1) = —22w-24 Jw-1
o Up to 2w-1 bits
= Two’s complement max: x *y < (-2%1) 2 = 22w-2
® Up to 2w bits, but only for (TMin,)2
Maintaining Exact Results
= Would need to keep expanding word size with each product
computed
= Done in software by “arbitrary precision” arithmetic
packages

31

Unsigned Multiplication in C
TN i o

* y * o o

Operands: w bits

True Product: 2*'w bits u-v [T e e e TTTTJ]] e TTT]

UMt u,v) CITT =< TTT]

Discard w bits: w bits

Standard Multiplication Function
= Ignores high order w bits

Implements Modular Arithmetic
UMult,(u,v) = u -v mod 2%

32

Unsigned vs. Signed Multiplication

Unsigned Multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up =
= Truncates product to w-bit number up = UMult,(ux, uy)

= Modular arithmetic: up =ux - uy mod 2"

ux * uy

Two’s Complement Multiplication
int x, y;
int p = x * y;

= Compute exact product of two w-bit numbers x, y

= Truncate result to w-bit number p = TMult,(x, y)

33

Unsigned vs. Signed Multiplication

Unsigned Multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;

unsigned up = ux * uy

Two’s Complement Multiplication
int x, y;

int p = x * y;

Relation
= Signed multiplication gives same bit-level result as unsigned

m up == (unsigned) p

Power-of-2 Multiply with Shift
Operation
mu << kgivesu * 2

= Both signed and unsigned

Operands: w bits

* 2k [0 eee JOJIJO] eee JoJ0]
True Product: w+k bits u - 2« [0] e« JO]0]
Discard k bits: w bits UMult,(u, 29 [o] ==+ [o[o]
TMult,(u, 2¢
Examples WU 29
mu << 3 == u * 8
mu << 5 -u=<<3 == u * 24

= Most machines shift and add much faster than multiply
o Compiler generates this code automatically
35

Unsigned Power-of-2 Divide with
Shift

Quotient of Unsigned by Power of 2
= u >> kgives Lu /7 2]
= Uses logical shift
k

u [TTe-TTRNSSSNNN Binary Point

Operands:
/ 2 [0 eee Jo[Z]0] *e* [0]0
Division: u/2k [TeeeTTTTTeeeT]
Result: Lu/2e] [TeeeTTTTTeeeTT]
Division Computed Hex Binary
x 15213 15213| 3B 6D| 00111011 01101101
x >> 1 7606.5 7606 1D B6| 00011101 10110110
X >> 4 950.8125 950 03 B6[00000011 10110110
X >> 8 59.4257813 59 00 3B| 00000000 00111011

36

Page 6

Signed Power-of-2 Divide with Shift Correct Power-of-2 Divide

Quotient of Signed by Power of 2 Quotient of Negative Number by Power of 2
mx >> kgives [x / 2¢] = Want [x / 2] (Round Toward 0)
= Uses arithmetic shift = Compute as | (x+2¢-1)/ 2]

®InC: (x + (1<<k)-1) >> k

= Rounds wrong direction when u < 0
® Biases dividend toward 0

x [IT===TTNSSSNNN Binary Point

Operands: .
/ 2 [o[e Jo[aJo] eee Jo]0 / Case 1: No rounding K
Division: X/ 2k .mlll.ml Dividend: u [I[I eee o[*ee J0]0]

+2k4-1 0 eee |O|O]1] eee [1[1

Result: RoundDown(x / 2¢) [CISe&T T T [eee]] - -
[[[Teee [[l eee i[] BinaryPoint

Division Computed Hex Binary N
y -15213 -15213|__Ca 93] 11000100 10010011 Divisor: /o lillilmmm
y >> 1 -7606.5 7607 E2 49[11100010 01001001 Tu/2¢] [Oess OOl Te=s 1=
vy >> 4 -950.8125 -951| FC 49| 11111100 01001001
vy >> 8 |-59.4257813 -60] FF c4] 11111111 11000100 Biasing has no effect
37
Correct Power-of-2 Divide (Cont.) Properties of Unsigned Arithmetic
Case 2: Roundin . S . i
9 k Unsigned Multiplication with Addition Forms
Dividend: x [A[TeeeT] Commutative Ring
+2¢+-1 [0 eee JOJOJI] eee i1 = Addition is commutative group
[Tees [[Tees 1] m Closed under multiplication
[— 0 < UMult,(u,v) < 2v -1
Incremented by 1 Binary Point = Multiplication Commutative
Divisor: / 2« [0 eeeToJiJo] eee J0OTO / UMult,(u, v) = UMult,(v, u)
~ = Multiplication is Associative
Mx/2¢1 e AA[Teee T UMult, (t, UMult,(u, v)) = UMult,(UMult,(t, u), v)
Biasing adds 1 to final result ® 1is multiplicative identity
Incremented by 1 UMult,(u,1) = u

= Multiplication distributes over addtion
UMult,(t, UAdd,(u , v)) = UAdd,(UMult,(t, u), UMult,(t, v))

39

Properties of Two’s Comp. Arithmetic C Puzzle Answers
Isomorphic Algebras = Assume machine with 32 bit word size, two’s comp. integers
= Unsigned multiplication and addition = TMin makes a good counterexample in many cases

o Truncating to w bits

» Two’s complement multiplication and addition 0x<0 = ((x*2) < 0) False: TMin
e Truncating to w bits 0 ux >= 0 True: 0 =UMin
Both Form Rings Ox&7==7 = (x<<30) < 0 True: x,=1
» Isomorphic to ring of integers mod 2+ O oux > -1 False: 0
. . . ax > = -x < - False: -1, TMin
Comparison to Integer Arithmetic Y Y
. Ox *x>=0 False: 30426
= Both are rings
» Integers obey ordering properties, e.g., Ox>0&&y>0 = x+y>0 False: TMax, TMax
u>0 = u+v>v Qx>0 = -x<=0 True: -TMax<0
u>0,v>0 = u-v>0 O x <=0 = -x>=0 False: TMin
m These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words) “

Page 7

