JDEP 284H

Foundations of Computer Systems

Integers

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

2

Topics

- ■Numeric Encodings
 - Unsigned & Two's complement
- ■Programming Implications
 - ●C promotion rules
- ■Basic operations
 - •Addition, negation, multiplication
- ■Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Initialization

int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y; $x < 0 \Rightarrow ((x*2) < 0)$ $x < 7 == 7 \Rightarrow (x<<30) < 0$ $x < 7 == 7 \Rightarrow (x<<30) < 0$ $x > y \Rightarrow -x < -y$ x * x >= 0 $x > 0 & x < 0 \Rightarrow x + y > 0$ $x >= 0 \Rightarrow -x <= 0$ $x <= 0 \Rightarrow -x >= 0$

Encoding Integers Unsigned Two's Complement $B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$ $\text{short int } x = 15213; \qquad \text{Sign Bit}$ $\blacksquare \ \text{C short 2 bytes long}$ $\frac{\text{Decimal Hex}}{\text{15213 3B 6D 00111011 01101101}}$ Sign Bit $\blacksquare \ \text{For 2's complement, most significant bit indicates sign}$ $\bullet \ \text{0 for nonnegative}$ $\bullet \ \text{1 for negative}$

Signed vs. Unsigned in C Constants By default are considered to be signed integers Unsigned if have "U" as suffix 01, 42949672590 Casting Explicit casting between signed & unsigned same as U2T and T2U int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty; Implicit casting also occurs via assignments and procedure calls tx = ux; uy = ty;

Why Should I Use Unsigned?

Don't Use Just Because Number Nonzero

■ C compilers on some machines generate less efficient code unsigned i;

■ Easy to make mistakes

for (i = cnt-2; i >= 0; i--) a[i] += a[i+1];

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit's Worth of Range

■ Working right up to limit of word size

19

Negating with Complement & Increment Claim: Following Holds for 2's Complement -x + 1 == -x Complement ■ Observation: -x + x == 1111...11₂ == -1 x 100111101 + -x 0111010110 -1 111111111 Increment ■ -x + x + (-x + 1) == -x + (-x + 1) ■ -x + 1 == -x Warning: Be cautious treating int's as integers

Comp. & Incr. Examples

10210								
	Decimal	Hex	Binary					
x	15213	3B 6D	00111011 01101101					
У	-15213	C4 93	11000100 10010011					

•							
		Decimal	Hex		Binary		
	0	0	0.0	0	00000000	00000000	
	~0	-1	FF	${\tt FF}$	11111111	11111111	
	~0+1	0	0.0	0	00000000	00000000	

What is the complement and increment of 0?

Unsigned Addition

OK here

Operands: w bits	и	
·	+ v	•••
True Sum: w+1 bits	u + v	••••
Discard Carry: w bits	UAdd (u . v)	•••

Standard Addition Function

■ Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

 $UAdd_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \ge 2^w \end{cases}$

Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum Add₄(u, v)
- Values increase linearly with *u* and *v*
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum ≥ 2^w
- At most once

Overflow UAdd₄(u, v)

Mathematical Properties

Modular Addition Forms an Abelian Group

- Closed under addition
 - $0 \le \mathsf{UAdd}_{\mathsf{w}}(u, v) \le 2^{\mathsf{w}} 1$
- Commutative
- $UAdd_{w}(u, v) = UAdd_{w}(v, u)$
- Associative
- $UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$
- 0 is additive identity UAdd_w(u, 0) = u
- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$
 - $\mathsf{UAdd}_{\mathsf{w}}(u\,,\,\mathsf{UComp}_{\mathsf{w}}(u\,)) = 0$

25

Operands: w bits True Sum: w+1 bits Discard Carry: w bits TAdd and UAdd have Identical Bit-Level Behavior Signed vs. unsigned addition in C: int s, t, u, v; s = (int) ((unsigned) u + (unsigned) v); t = u + v Will give s == t

Characterizing TAdd Functionality True Sum 0 111...1 2w-1 T ■ True sum requires w+1 bits TAdd Result ■ Drop off MSB 0 100...0 2w-■ Treat remaining 0 000...0 bits as 2's comp. integer 1 100...0 -2w-TAdd(u, v) NegOver 1 000...0 -2w $u+v+2^{w-1}$ $u+v < TMin_w$ (NegOver) $\begin{cases} u+v \end{cases}$ $TMin_w \le u + v \le TMax_w$ $TAdd_w(u,v) =$ $u+v-2^{w-1}$ $TMax_w < u+v$ (PosOver

Detecting 2's Comp. Overflow Task Given $s = TAdd_w(u, v)$ Determine if $s = Add_w(u, v)$ Example int s, u, v; s = u + v; Claim Overflow iff either: $u, v < 0, s \ge 0$ (NegOver) $u, v \ge 0, s < 0$ (PosOver) ovf = (u < 0 == v < 0) && (u < 0 != s < 0);

Mathematical Properties of TAdd Isomorphic Algebra to UAdd In TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))) Since both have identical bit patterns Two's Complement Under TAdd Forms a Group Closed, Commutative, Associative, 0 is additive identity Every element has additive inverse Let $TComp_w(u) = U2T(UComp_w(T2U(u)))$ $TAdd_w(u, TComp_w(u)) = 0$ $TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$

Unsigned vs. Signed Multiplication Unsigned Multiplication unsigned ux = (unsigned) x; unsigned uy = (unsigned) y; unsigned up = ux * uy Truncates product to w-bit number up = UMult_w(ux, uy) Modular arithmetic: up = ux · uy mod 2** Two's Complement Multiplication int x, y; int p = x * y; Compute exact product of two w-bit numbers x, y Truncate result to w-bit number p = TMult_w(x, y)

Properties of Unsigned Arithmetic Unsigned Multiplication with Addition Forms Commutative Ring ■ Addition is commutative group ■ Closed under multiplication 0 ≤ UMult_w(u, v) ≤ 2"-1 ■ Multiplication Commutative UMult_w(u, v) = UMult_w(v, u) ■ Multiplication is Associative UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v) ■ 1 is multiplicative identity UMult_w(u, 1) = u ■ Multiplication distributes over addtion UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))

Properties of Two's Comp. Arithmetic Isomorphic Algebras ■ Unsigned multiplication and addition ● Truncating to w bits ■ Two's complement multiplication and addition ● Truncating to w bits Both Form Rings ■ Isomorphic to ring of integers mod 2^w Comparison to Integer Arithmetic ■ Both are rings ■ Integers obey ordering properties, e.g., u > 0 ⇒ u + v > v u > 0, v > 0 ⇒ u · v > 0 ■ These properties are not obeyed by two's comp. arithmetic TMax + 1 == TMin 15213 * 30426 == -10030 (16-bit words)

