JDEP 284H

Foundations of Computer Systems

Floating Point

Dr. Steve Goddard goddard @cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

2

Topics

- ■IEEE Floating Point Standard
- ■Rounding
- **■Floating Point Operations**
- ■Mathematical properties

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NaN

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

x == (int)(float) x
 x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 \Rightarrow ((d*2) < 0.0)

• d * d >= 0.0

• (d+f)-d == f

IEEE Floating Point

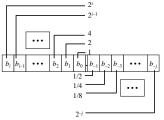
IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

 $\sum_{k=-j}^{l} b_k \cdot 2^k$

6

Frac. Binary Number Examples

Representation Value 5 3/4 101.11, 2 7/8 10.111 63/64 0.111111,

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 just below 1.0 •1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0

■Use notation 1.0 – ε

Representable Numbers

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

Representation 0.0101010101[01]...2 1/5 0.001100110011[0011]...2 1/10 0.0001100110011[0011]...2

Floating Point Representation

Numerical Form

- -1° M 2^E
- •Sign bit s determines whether number is negative or positive

frac

- Significand *M* normally a fractional value in range [1.0,2.0). Exponent *E* weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

s

■ MSB is sign bit

■ exp field encodes E

■ frac field encodes M

- Sizes
 - Single precision: 8 exp bits, 23 frac bits
 - •32 bits total
 - Double precision: 11 exp bits, 52 frac bits
 - Extended precision: 15 exp bits, 63 frac bits Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

■ exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as biased value

- E = Exp Bias
- Exp: unsigned value denoted by exp Bias: Bias value
- - » Single precision: 127 (Exp: 1...254, E: -126...127)
 - » Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - » in general: Bias = 2e-1 1, where e is number of exponent bits

Significand coded with implied leading 1

- ●Minimum when 000...0 (*M* = 1.0)
- •Maximum when 111...1 (*M* = 2.0 − ε) •Get extra leading bit for "free"

Normalized Encoding Example

Value

Float F = 15213.0;

■ 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ X 2¹³

Significand

M = 1.<u>1101101101101</u>₂

1101101101101 frac=

Exponent

Bias = 127

140 = 10001100₂ Exp =

Floating Point Representation (from Lecture 2):

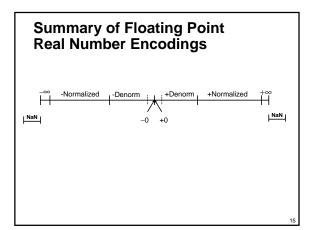
100 0110 0

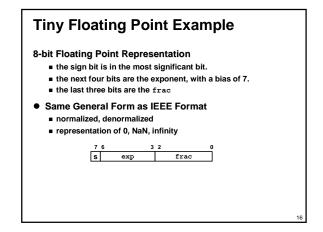
15213: *1*110 1101 1011 01

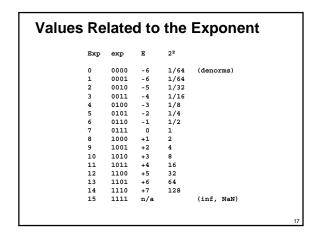
Denormalized Values Condition ■ exp = 000...0 Value ■ Exponent value E = -Bias + 1 ■ Significand value M = 0.xxx...x₂ • xxx...x: bits of frac Cases ■ exp = 000...0, frac = 000...0 • Represents value 0 • Note that have distinct values +0 and -0 ■ exp = 000...0, frac ≠ 000...0 • Numbers very close to 0.0

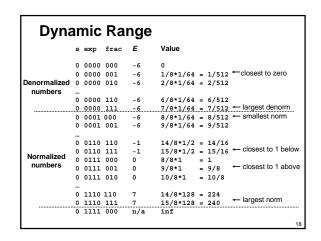
Lose precision as get smaller"Gradual underflow"

Special Values Condition ■ exp = 111...1 Cases ■ exp = 111...1, frac = 000...0 • Represents value ∞ (infinity) • Operation that overflows • Both positive and negative • E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞ ■ exp = 111...1, frac ≠ 000...0 • Not-a-Number (NaN) • Represents case when no numeric value can be determined • E.g., sqrt(-1), ∞ -∞

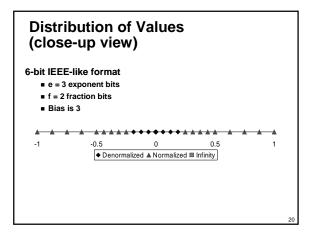








Distribution of Values 6-bit IEEE-like format ■ e = 3 exponent bits ■ f = 2 fraction bits ■ Bias is 3 Notice how the distribution gets denser toward zero. 15 -10 -5 0 5 10 15 Denormalized ▲ Normalized ■ Infinity



Interesting Numbers Description exp 00...00 00...00 0.0 Smallest Pos. Denorm. 00...00 00...01 2- {23,52} X 2- {126,1022} ■ Single ≈ 1.4 X 10⁻⁴⁵ ■ Double $\approx 4.9 \text{ X } 10^{-324}$ Largest Denormalized 00...00 11...11 (1.0 - ε) X 2- (126,1022) ■ Single ≈ 1.18 X 10⁻³⁸ ■ Double $\approx 2.2 \text{ X } 10^{-308}$ Smallest Pos. Normalized 00...01 00...00 1.0 X 2- {126,1022} ■ Just larger than largest denormalized 01...11 00...00 1.0 Largest Normalized 11...10 11...11 (2.0 - ε) X 2^{127,1023} ■ Single ≈ 3.4 X 10³⁸ ■ Double ≈ 1.8 X 10³⁰⁸

Special Properties of Encoding FP Zero Same as Integer Zero All bits = 0 Can (Almost) Use Unsigned Integer Comparison Must first compare sign bits Must consider -0 = 0 NaNs problematic Will be greater than any other values What should comparison yield? Otherwise OK Denorm vs. normalized Normalized vs. infinity

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- •Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	ψ1.40	ψ1.00	ψ1.50	Ψ2.50	-φ1.50
■ Zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - •Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- •Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way) 1.2350000 1.24 (Greater than half way) 1.2350000 1.24 (Half way—round up) 1.2450000 1.24 (Half way—round down)

24

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100....

Examples

■ Round to nearest 1/4 (2 bits right of binary point)

 Value
 Binary
 Rounded 2 Action
 Rounded Value

 2 3/32
 10 .000112
 10 .002
 (-1/2—down)
 2

 2 3/16
 10 .001102
 10 .012
 (>1/2—up)
 2 1/4

 2 7/8
 10 .111002
 11 .002
 (1/2—up)
 3

 2 5/8
 10 .101002
 10 .102
 (1/2—down)
 2 1/2

25

FP Multiplication

Operands

(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}

Exact Result

 $(-1)^s M 2^E$

- Sign s: s1 ^ s2
- Significand M: M1 * M2
- Exponent *E*: *E*1 + *E*2

Fixing

- If M 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

■ Biggest chore is multiplying significands

200

FP Addition Operands $(-1)^{s_1}M1 \ 2^{E_1}$ $(-1)^{s_2}M2 \ 2^{E_2}$ Assume E1 > E2Exact Result $(-1)^s M \ 2^E$ Sign s, significand M: Result of signed align & add Exponent E: If $M \ 2$, shift M right, increment EIf $M \ 2$, shift M left k positions, decrement E by k

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? YES
- ●But may generate infinity or NaN
- Commutative? YES
 Associative? NO
- Overflow and inexactness of rounding
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
- Except for infinities & NaNs

Monotonicity

- a $b \Rightarrow a+c$ b+c? ALMOST
 - Except for infinities & NaNs

28

Math. Properties of FP Mult

Compare to Commutative Ring

■ Overflow if *E* out of range ■ Round *M* to fit frac precision

- Closed under multiplication?
 - But may generate infinity or NaN
- Multiplication Commutative? YES
- Multiplication is Associative? NO
- Possibility of overflow, inexactness of rounding
 1 is multiplicative identity?
 YES
- Multiplication distributes over addition? NO
- Possibility of overflow, inexactness of rounding

Monotonicity

- a b & c 0 ⇒ a * c b * c?

 •Except for infinities & NaNs
- ALMOST

- 1

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has 53 bit word size
- int to float
 - Will round according to rounding mode

30

Answers to Floating Point Puzzles

int x = ...; float f = ...; double d = ...;

Assume neither d nor f is NAN

 x == (int)(float) x • x == (int)(double) x • f == (float)(double) f

• d == (float) d • f == -(-f);

• 2/3 == 2/3.0 • $d < 0.0 \Rightarrow ((d*2) < 0.0)$ • d > f ⇒-f < -d

• (d+f)-d == f

• d * d >= 0.0

Yes! No: Not associative

No: 24 bit significand

Yes: 53 bit significand

No: loses precision

No: 2/3 == 0

Yes!

Yes!

Yes: increases precision

Yes: Just change sign bit

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic

 - Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical applications programmers