JDEP 284H
Foundations of Computer Systems

Machine-Level Programming I:
Introduction

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Topics
mAssembly Programmer’s Execution
Model

mAccessing Information
®Registers
eMemory

mArithmetic operations

IA32 Processors

Totally Dominate Computer Market

Evolutionary Design
= Starting in 1978 with 8086
=» Added more features as time goes on
m Still support old features, although obsolete

Complex Instruction Set Computer (CISC)

= Many different instructions with many different formats
® But, only small subset encountered with Linux programs

= Hard to match performance of Reduced Instruction Set
Computers (RISC)

= But, Intel has done just that!

X86 Evolution: Programmer’s View

Name Date Transistors

8086 1978 29K
= 16-bit processor. Basis for IBM PC & DOS
= Limited to 1MB address space. DOS only gives you 640K

80286 1982 134K

= Added elaborate, but not very useful, addressing scheme
= Basis for IBM PC-AT and Windows

386 1985 275K
= Extended to 32 bits. Added “flat addressing”
= Capable of running Unix
m Linux/gcc uses no instructions introduced in later models

X86 Evolution: Programmer’s View

Name Date Transistors
486 1989 1.9M
Pentium 1993 3.1M
Pentium/MMX 1997 4.5M

= Added special collection of instructions for operating on 64-
bit vectors of 1, 2, or 4 byte integer data

PentiumPro 1995 6.5M
= Added conditional move instructions
= Big change in underlying microarchitecture

Page 1

X86 Evolution: Programmer’s View

Date Transistors

Pentium Il 1999 8.2M

= Added “streaming SIMD” instructions for operating on 128-bit
vectors of 1, 2, or 4 byte integer or floating point data

m Our fish machines

Name

Pentium 4 2001 42M
= Added 8-byte formats and 144 new instructions for streaming
SIMD mode

X86 Evolution: Clones

Transmeta

m Recent start-up
eEmployer of Linus Torvalds

= Radically different approach to implementation
eTranslates x86 code into “Very Long Instruction Word” (VLIW)

code

eoHigh degree of parallelism

= Shooting for low-power market

X86 Evolution: Clones

Advanced Micro Devices (AMD)

= Historically
®AMD has followed just behind Intel
@A little bit slower, a lot cheaper

= Recently
®Recruited top circuit designers from Digital Equipment Corp.
eExploited fact that Intel distracted by 1A64
eNow are close competitors to Intel

= Developing own extension to 64 bits

New Species: |IA64

Name Date Transistors

Itanium 2001 10M
= Extends to IA64, a 64-bit architecture
= Radically new instruction set designed for high performance
= Will be able to run existing IA32 programs
eOn-board “x86 engine”
= Joint project with Hewlett-Packard
Itanium 2 2002 221M
= Big performance boost

10

Assembly Programmer’s View

CPU Memory
Addresses
Registers Object Code
Data Program Data
i OS Data
Instructions
Stack
Programmer-Visible State
= EIP Program Counter
® Address of next instruction
m Register File = Memory

® Heavily used program data
= Condition Codes
e Store status information about
most recent arithmetic operation
e Used for conditional branching

e Byte addressable array

e Code, user data, (some) OS
data

® Includes stack used to
support procedures

11

Turning C into Object Code

m Codeinfiles pl.c p2.c

= Compile with command: gece -0 pl.c p2.c -o p
eUse optimizations (-0)
e®Put resulting binary in file p

text | C program (pl.c p2.c) |
l Compiler (gecec -8)
text | Asm program (pl.s p2.s) |
l Assembler (gecc or as)
binary | Object program (pl.o p2.0) | Static libraries
Linker (gcc or 14) I S
binary | Executable program (p) |

Page 2

Compiling Into Assembly

Assembly Characteristics

Minimal Data Types

= “Integer” data of 1, 2,

® Data values

or 4 bytes

® Addresses (untyped pointers)

= Floating point data of 4, 8, or 10 bytes

= No aggregate types such as arrays or structures
® Just contiguously allocated bytes in memory

Primitive Operations

= Perform arithmetic function on register or memory data
= Transfer data between memory and register

® Load data from memory into register

® Store register data into memory

= Transfer control

e Unconditional jumps to/from procedures
® Conditional branches

14

C Code Generated Assembly
int sum(int x, int y) _sum:
pushl %ebp
int t = x+y; movl %esp,%ebp
return t; movl 12 (%ebp) , %eax
addl 8 (%ebp),%eax
movl %ebp,%esp
popl %ebp
ret
Obtain with command
gcc -0 -S code.c
Produces file code.s
13
Object Code
Code for sum Assembler

= Translates .sinto .o

0x401040 <sum>:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
Oxec
0x5d
0xc3

= Binary encoding of each instruction

Total of 13 .

b;J[:SO = Nearly-complete image of executable
Each code

instruction 1, m Missing linkages between code in

2, 0r 3 bytes different files

Starts at X

address Linker

0x401040

= Resolves references between files
m Combines with static run-time
libraries
® E.g., code for malloc, printf
m Some libraries are dynamically linked

e Linking occurs when program begins
execution

15

Machine Instruction Example

C Code

‘int t = X+Y;

‘ = Add two signed integers

Assembly

[addl 8(vebp),%eax

‘ = Add 2 4-byte integers

e“Long” words in GCC parlance

Similar to e®Same instruction whether
expression signed or unsigned
xr=y = Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

»Return function value in %eax
0401046 03 45 08 | Object Code

= 3-byte instruction
= Stored at address 0x401046

16

Disassembling Object Code

Disassembled

AT VWA WROo

00401040 <_sum>:

55 push %ebp

89 e5 mov %esp, $ebp

8b 45 Oc mov 0xc (%ebp) , Seax
03 45 08 add 0x8 (%ebp) , seax
89 ec mov %ebp, sesp

5d pop %ebp

c3 ret

8d 76 00 lea 0x0 (%esi) , %esi

Disassembler
objdump -d p

m Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code

= Can be run on either a.out (complete executable) or .o file

17

Alternate Disassembly

Disassembled

Object

0x401040: 0x401040 <sum>: push %ebp
0x55 0x401041 <sum+1>: mov %esp, $ebp
0x89 0x401043 <sum+3>: mov 0xc (%ebp) , Seax
0xe5 0x401046 <sum+6>: add 0x8 (%ebp) , Seax
0x8b 0x401049 <sum+9>: mov %ebp, $esp
0x45 0x40104b <sum+ll>: pop %ebp
0x0c 0x40104c <sum+12>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) , sesi
0x45
0x08
0x89 Within gdb Debugger
Oxec
0x5d gdb p

0xc3

disassemble sum

= Disassemble procedure

x/13b sum

= Examine the 13 bytes starting at sum

N

Page 3

What Can be Disassembled?

WINWORD.EXE:

% objdump -d WINWORD.EXE

30001000 <.text>:

No symbols in "WINWORD.EXE".
Disassembly of section .text:

file format pei-i386

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOXEEEFFEEF
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

= Anything that can be interpreted as executable code

= Disassembler examines bytes and reconstructs assembly
source

19

Moving Data

%edx
Moving Data secx
movl Source,Dest: Sebx
= Move 4-byte (llong .) word Py
= Lots of these in typical code
%edi
rand T
Operand ypes ‘ =
= Immediate: Constant integer data
® Like C constant, but prefixed with ‘¢’ %ebp

® E.g., $0x400, $-533

® Encoded with 1, 2, or 4 bytes
= Register: One of 8 integer registers

® But sesp and %ebp reserved for special use

® Others have special uses for particular instructions
= Memory: 4 consecutive bytes of memory

® Various “address modes”

20

movl Operand Combinations

Source Destination

Reg movl $0x4,%eax
Imm Mem movl $-147, (%eax) *p = -147;

C Analog

temp = 0x4;

movl %eax,%edx temp2 = templ;
movl Reg Reg
Mem movl %eax, (%edx) *p = temp;

Mem Reg movl (%eax),%edx temp = *p;

= Cannot do memory-memory transfers with single

Simple Addressing Modes

Normal (R) Mem[Reg[R]]
= Register R specifies memory address
movl (%ecx),%eax
Displacement D(R) Mem[Reg[R]+D]
m Register R specifies start of memory region
= Constant displacement D specifies offset
movl 8 (%ebp),%edx

22

instruction
21
Example
Address |Value Register |Value
0x100 |OxFF Y%eax 0x100
0x104 | 0x00 %ecx Ox1
0x108 |0x13
0x10C |Ox11
Operand Value
%ecx 0x1
(Yoeax) OxFF
8(%eax) 0x13
263(%ecx) 0x13

23

Exercise
Address | Value Register |Value
0x100 |0x0 %eax |Ox104
0x104 |Ox1 %ecx | 0x100
0x108 0x2
0x10C |0x3
Operand Value
Y%eax 0x104
(%ecx) 0x0
4(%eax) 0x2
0xC(%ecx) 0x3

Using Simple Addressing Modes

Understanding Swap

swap:
pushl %ebp
movl %esp,%ebp Set
pushl %ebx Up
void swap(int *xp, int *yp)
. N movl 12 (%ebp) ,%ecx
1ot B0l mxpy movl 8 (%ebp) ,%edx
:“t tl = *yp; movl (%ecx),%eax Bod
«xp = tl; movl (%edx),%ebx ody
YP = t0; movl %eax, (%edx)
} movl %ebx, (%ecx)
movl -4 (%ebp) ,%ebx
movl %ebp,%esp Finish
popl %ebp
ret
25
Address
Understanding Swap 123 | oxa2s
456 0x120
0xllc
beax 0x118
%edx Offset 0x114
P— ¥p 12 [0x120 | gx110
%ebx *» 8 [0x124 | gy10c
4 | Rtnadr | gx108
o . -
%ebp — 0x104
%edi -4
0x100
%esp
movl 12 (%ebp),%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
27
Address
Understanding Swap 125 | oxaze
456 0x120
0x1llc
0x118
%edx| 0x124 Offset 0x114
%ecx| 0x120 P 12 | 0x120 | ox110
%ebx *® 8 | 0x124 | ox10c
- 4 | Rtnadr | gx108
%esi 0
%ebp — 0x104
%edi -4
0x100
%esp
movl 12 (%ebp),%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

29

void swap (int *xp, int *yp) * S
. tack
{ .
int t0 = *xp; Offset
int tl = *yp;
*xp = tl; 12 vp
*yp = tO0; 8 xp
}
4 | Rtn adr
0 [Old %ebp—— %ebp
- - -4 |0ld %ebx
Register Variable
%ecx YP movl 12 (%ebp),%ecx # ecx = yp
%edx Xp movl 8 (%ebp),%edx # edx = xp
%eax tl movl (%ecx),%eax # eax = *yp (tl1)
%ebx t0 movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
26
Address
Understanding Swap 123 | oxa2s
456 0x120
0x1llc
seax 0x118
%edx Offset 0x114
%ecx| 0x120 ¥P 12 | 0x120 | ox110
%ebx *» 8 [0x124 | gy10c
4 | Rtnadr | gx108
%ebp 0x104
%edi -4
0x100
%esp
movl 12 (%ebp),%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
28
Address
Understanding Swap 123 | ox124
456 0x120
0x1llc
0x118
Offset 0x114
secx| 0x120 YpP 12 | 0x120 | ox110
%ebx *® 8 | 0x124 | ox10c
4 | Rtnadr | gx108
%esi °
%ebp — 0x104
%edi _a
0x100
%esp
movl 12 (%ebp),%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

30

Page 5

Address

Address
Understanding Swap 455 | oxiza
456 0x120
0xllc
%eax 456 0x118
%edx| 0x124 Offset ox114
%ecx| 0x120 ¥P 12 | 0x120 | ox110
X] 8 0x124
%ebx| 123 ? x 0x10¢c
4 | Rtnadr | gx108
%ebp 0x104
%edi -4
0x100
%esp
movl 12 (%ebp),%ecx # ecx = yp
0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

32

Understanding Swap 123 | oxa2s
456 0x120
0xllc
%eax 456 0x118
%edx| 0x124 Offset 0x114
secx| 0x120 ¥P 12 | 0x120 | ox110
X] 8
%ebx 123 ? 0x124 | ox10c
4 | Rtnadr | gx108
-%esi -
%ebp — 0 0x104
%edi -4
0x100
%es;
2 movl 12 (%ebp),%ecx # ecx = yp
0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
31
Address
Understanding Swap 455 | oxiza
123 0x120
0xllc
%eax 456 0x118
%edx| 0x124 Offset 0x114
secx| 0x120 P 12 | 0x120 | ox110
X] 8 0x124
%ebx 123 ? x 0x10c¢
%ebp — 0 0x104
%edi -4
0x100
%es;
2 movl 12 (%ebp),%ecx # ecx = yp
0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

33

Indexed Addressing Modes
Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

m D: Constant “displacement” 1, 2, or 4 bytes

m Rb: Base register: Any of 8 integer registers

= Ri: Index register: Any, except for $esp
eUnlikely you'd use %ebp, either

mS: Scale:1,2,4,0r8

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

34

Address Computation Examples

%edx| 0x£000

%ecx| 0x100

Expression Computation Address

0x8 (%edx) 0xf000 + 0x8 0xf008
(%edx, %ecx) 0x£000 + 0x100 0x£100
(%edx, Secx, 4) 0x£f000 + 4*0x100 0x£f400
0x80 (, %edx, 2) 2*0x£f000 + 0x80 0x1e080

35

Another Example

Address |Value Register |Value
0x100 |OxFF Y%eax 0x100
0x104 | 0x00 %ecx Ox1
0x108 |0x13 Y%edx 0x3
0x10C |0x11

Operand Value

9(%eax,%edx) 0x11

0x100(,%ecx,4) |0x00

(Yeax, %edx, 4) |0x11

252(%ecx,%edx) | OxFF

36

Page 6

Exercise
Address | Value Register | Value
0x100 |OxFF Y%eax 0x100
0x104 | 0x00 %ecx 0x104
0x108 |0x13 %edx 0x1
0x10C |0x11 %ebx 0x8
Operand Value
3(%eax,%edx) 0x00
254(,%edx,2) OxFF
(Yoeax, %edx, 4) 0x00
(Yecx,%ebx) Ox11

37

More on Data Movement
MOVB and MOVW

More on Data Movement

MOVSBL and MOVZBL

= MOVSBL sign-extends a single byte, and copies it into a
double-word destination

= MOVZBL expands a single byte to 32 bits with 24 leading
zeros, and copies it into a double-word destination

Example:
Y%eax = 0x12345678
%edx = 0XAAAABBBB

MOVB %dh, %al Y%eax = 0x123456BB
MOVSBL %dh, %eax %eax = OxFFFFFFBB
MOVZBL %dh, %eax %eax = 0x000000BB

39

Address Computation Instruction

leal Src,Dest
= Src is address mode expression
= Set Dest to address denoted by expression

Uses
= Computing address without doing memory reference
® E.g, translation of p = &x[i];
= Computing arithmetic expressions of the form x + k*y
ek=1,24 or8.

41

MOVW moves two bytes, when one YoedX | %dh | %dl
of its operands is a register, it %ecx | %ch | %cl
must be one of the 8 two-byte
registers %esi
e.g. MOVW %ax, %dx %edi
. %esp
MOVB moves a single byte, when one
. . . . %ebp
of its operands is a register, it
must be one of the 8 single-byte
registers
e.g. MOVB %al, %ah
38
Exercise
Y%eax = 0x12345678
%edx = 0xAAAA22CC
MOVB %dh, %ah Y%eax = #2
MOVSBL %dh, %eax Y%eax = #3
MOVZBL %dh, %eax Y%eax = #3
MOVSBL %dl, %eax %eax = #5
1. 0x12345622
2. 0x12342278
3. 0x00000022
4. OXFFFFFF22
5. OxFFFFFFCC
Example

Assume register %eax holds value X

%ecx holds value Y

Expression Result in %edx
leal 8(%eax), %edx X+8

leal (%eax,%ecx), %edx X+Y

leal 8(%eax,%ecx), %edx |X+Y+8

leal 8(%eax,%eax,4), %edx |5X+8

leal 8(%eax,%ecx,2), %edx | X+2Y+8

42

Page 7

Some Arithmetic Operations

Format Computation
Two Operand Instructions
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
sall Src,Dest Dest = Dest << Src Also called shll
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest * Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

43

Some Arithmetic Operations

Format Computation
One Operand Instructions

incl Dest Dest = Dest + 1

decl Dest Dest = Dest - 1

negl Dest Dest = - Dest

notl Dest Dest = ~ Dest

44

Using leal for Arithmetic
Expressions

arith:
pushl %ebp } Set
int arith movl %esp,%ebp Up
(int x, int y, int z)
movl 8 (%ebp),%eax
int t1 = x+y; movl 12 (%ebp),%edx
int t2 = z+tl; leal (%edx,%eax),%ecx
int t3 = x+4; leal (%edx,%edx,2),%edx
int t4 = y * 48; sall $4,%edx Body
int t5 = t3 + t4; addl 16 (%ebp) , ecx
int rval = t2 * t5; leal 4 (%edx,%eax),%eax
return rval; imull %ecx, %eax
L movl %ebp, %esp
popl %ebp }Finish
ret

45

Understanding arith

Understanding arith

eax = x
movl 8(%ebp),%eax

int arith # edx = y
(int x, int y, int z) movl 12 (%ebp),%edx
{ # ecx = x+y (tl1)
int tl = x+y; —— T leal (%edx,%eax),%ecx
int t2 = z+tl; # edx = 3*y
int t3 = x+4; | _— leal (%edx,%edx,2),%edx
int t4 = y * 48) # edx = 48*y (t4)
int £5 = t3 + t4; ?sall $4,%edx
int rval = t2 * :N # ecx = z+tl (t2)
return rval; addl 16 (%ebp),%ecx
} \# eax = 4+t4+x (t5)
leal 4 (%edx,%eax),%eax
eax = t5*t2 (rval)

imull %ecx,%eax

47

int arith .
(int x, int y, int z) . Stack
Offset .
int tl = x+y;
int t2 = z+tl; 16 z
int t3 = x+4; 12 y
int t4 = y * 48;
int €5 = £3 + t4; 8l =
int rval = t2 * t5; Rtn adr
. return rval; 0 [old %ebpl— %ebp
movl 8 (%ebp),%eax # eax = x
movl 12 (%ebp),%edx # edx = y
leal (%edx,%eax),%ecx # ecx = x+y (tl)
leal (%edx,%edx,2),%edx # edx = 3*y
sall $4,%edx # edx = 48*y (t4)
addl 16 (%ebp) , secx # ecx = z+tl (t2)
leal 4 (%edx,%eax),%eax # eax = 4+td4+x (t5)
imull %ecx,%eax # eax = t5*t2 (rval)
46
Another Example
logical:
int logical(int x, int y) pushl %ebp Set
movl %esp,%ebp Up
int t1 = x“y;
int t2 = t1 >> 17; movl 8(%ebp),%eax
int mask = (1<<13) - 7; xorl 12 (%ebp), %eax
int rval = t2 & mask; sarl $17,%eax
return rval; andl $8185, %eax
} Body
movl %ebp,%sesp
popl %ebp } Finish
e
movl 8 (%ebp),%eax eax = x
xorl 12 (%ebp) ,%eax eax = x'y (t1)
sarl $17,%eax eax = tl1>>17 (t2)
andl $8185, %eax eax = t2 & 8185

48

Page 8

PUSHL takes a single operand: the data source, and
store it to the top of stack.

For example,
PUSHL

subl $4, %esp
movl %eax, (%esp)

POPL takes the data destination, and pop the top
element of stack onto the destination.

POPL %eax has equivalent behavior as
movl (%esp), %eax
addl $4, %esp

Push and Pop

%eax has equivalent behavior as
; stack grows downward

49

CISC Properties

Instruction can reference different operand types
= Immediate, register, memory

Arithmetic operations can read/write memory

Memory reference can involve complex computation
m Rb + S*Ri + D
m Useful for arithmetic expressions, too

Instructions can have varying lengths
m |A32 instructions can range from 1 to 15 bytes

50

Summary: Abstract Machines

Data Control

1) char 1) loops

2) int, float 2) conditionals
3) double 3) switch

4) struct, array 4) Proc. call

5) pointer 5) Proc. return

Assembly
1) byte 3) branch/jump
2) 2-byte word 4) call
mem [— [regs 3) 4-byte long word ~ 5) ret
kracd Cond 4) contiguous byte allocation
Codesl processor [5) address of initial byte

51

Pentium Pro (P6)

History
= Announced in Feb. ‘95
= Basis for Pentium Il, Pentium Ill, and Celeron processors
= Pentium 4 similar idea, but different details

Features
= Dynamically translates instructions to more regular format
® Very wide, but simple instructions
= Executes operations in parallel
® Up to 5at once
= Very deep pipeline
® 12-18 cycle latency

52

PentiumPro Block Diagram

. —{Garn pococe]-- “
reto
Foen .v] WORDER | Lup Socpooraen [EDES

m-.

SECTION amrl. |

P Report
2/16/95

J=iF

System Bus bderlace:

12 ¥
FET T

PentiumPro Operation

Translates instructions dynamically into “Uops”
= 118 bits wide
= Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
= Uop executed when
® Operands available
® Functional unit available
= Execution controlled by “Reservation Stations”
@ Keeps track of data dependencies between uops
® Allocates resources

Consequences

= Indirect relationship between IA32 code & what actually gets
executed

= Tricky to predict / optimize performance at assembly level

Page 9

Whose Assembler?

Intel/Microsoft Format GAS/Gnu Format

lea eax, [ecx+ecx*2] leal (%ecx,%ecx,2),%eax
sub esp,8 subl $8,%esp

cmp dword ptr [ebp-81,0 cmpl $0,-8(%ebp)

mov eax,dword ptr [eax*4+100h] movl $0x100(,%eax,4),%eax

Intel/Microsoft Differs from GAS
= Operands listed in opposite order

mov Dest, Src movl Src, Dest

= Constants not preceded by ‘$’, Denote hex with ‘h’ at end
100h $0x100

= Operand size indicated by operands rather than operator suffix
sub subl

= Addressing format shows effective address computation
[eax*4+100h] $0x100 (, %eax, 4)

55

Page 10

