
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:99-10a

Model predictive control for
max-plus-linear discrete-event systems:

Extended report & Addendum∗

B. De Schutter and T. van den Boom

November 2000

A short version of this report has been published in Automatica, vol. 37, no.
7, pp. 1049–1056, July 2001.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/99_10a

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/99_10a

Model predictive control for max-plus-linear

discrete-event systems:

Extended report & Addendum∗

Bart De Schutter and Ton van den Boom

Control Laboratory, Faculty of Information Technology and Systems
Delft University of Technology, P.O.Box 5031, 2600 GA Delft, The Netherlands

fax: +31-15-278.66.79, email: {b.deschutter,t.j.j.vandenboom}@its.tudelft.nl

Abstract

Model predictive control (MPC) is a very popular controller design method in the process
industry. A key advantage of MPC is that it can accommodate constraints on the inputs
and outputs. Usually MPC uses linear discrete-time models. In this report we extend
MPC to a class of discrete-event systems that can be described by models that are “linear”
in the max-plus algebra, which has maximization and addition as basic operations. In
general the resulting optimization problem are nonlinear and non-convex. However, if the
control objective and the constraints depend monotonically on the outputs of the system,
the model predictive control problem can be recast as problem with a convex feasible
set. If in addition the objective function is convex, this leads to a convex optimization
problem, which can be solved very efficiently.

1 Introduction

Process industry is characterized by always tighter product quality specifications, increasing
productivity demands, new environmental regulations and fast changes in the economical
market. In the last decades Model Predictive Control (MPC), has shown to respond in an
effective way to these demands in many practical process control applications and is therefore
widely accepted in the process industry. Control design techniques such as pole placement,
LQG, H2, H∞, etc. yield optimal controllers or control input sequences for the entire future
evolution of the system. However, extending these methods to include additional constraints
on the inputs and outputs is not easy. An important advantage of MPC is that the use of a
finite horizon allows the inclusion of such additional constraints.

Predictive control was pioneered simultaneously by Richalet et al. (Richalet et al., 1978),
and Cutler and Ramaker (Cutler and Ramaker, 1979). There are several reasons why currently
MPC is probably the most applied advanced control technique in the process industry:

∗This report is an extended version of the paper “Model predictive control for max-plus-linear discrete-
event systems” by B. De Schutter and T. van den Boom, Automatica, vol. 37, no. 7, pp. 1049–1056, July 2001.
Equation numbers and other labels that have an asterisk as a superscript or that are preceded by an A belong
to the extended report and the addendum respectively and do not appear in the published journal paper.

1

• MPC is a model based controller design procedure that can easily handle processes with
large time-delays, non-minimum phase processes and unstable processes.

• It is an easy-to-tune method: in principle there are only three parameters to be tuned.

• Industrial processes have their limitations due to technological requirements and are
supposed to deliver output products with some pre-specified quality specifications. Fur-
thermore, in many control applications signal constraints are present, caused by limited
capacity of liquid buffers, valves, saturation of actuators, etc. MPC can handle these
constraints in a systematic way during the design and implementation of the controller.

• Finally, MPC can handle structural changes, such as sensor or actuator failures and
changes in system parameters or system structure, by adapting the model.

Traditionally MPC uses linear discrete-time models for the process to be controlled. In this
report we extend and adapt the MPC framework to a class of discrete-event systems. Typical
examples of discrete-event systems are flexible manufacturing systems, telecommunication
networks, parallel processing systems, traffic control systems and logistic systems. The class
of discrete-event systems essentially consists of man-made systems that contain a finite num-
ber of resources (e.g. machines, communications channels, or processors) that are shared by
several users (e.g. product types, information packets, or jobs) all of which contribute to the
achievement of some common goal (e.g. the assembly of products, the end-to-end transmission
of a set of information packets, or a parallel computation) (Baccelli et al., 1992).

There are many modeling techniques for discrete-event systems, such as (extended) state
machines, max-plus algebra, formal languages, automata, temporal logic, generalized semi-
Markov processes, Petri nets, computer simulation models and so on (see (Baccelli et al., 1992;
Cassandras et al., 1995; Ho, 1989; Ho, 1992) and the references cited therein). In general,
models that describe the behavior of a discrete-event system are nonlinear in conventional
algebra. However, there is a class of discrete-event systems – the max-plus-linear discrete-
event systems – that can be described by a model that is “linear” in the max-plus algebra
(Baccelli et al., 1992; Cuninghame-Green, 1979). The max-plus-linear discrete-event systems
can be characterized as the class of discrete-event systems in which only synchronization and
no concurrency or choice occurs. So typical examples are serial production lines, production
systems with a fixed routing schedule, and railway networks.

In this report we will develop an MPC framework for max-plus-linear discrete-event sys-
tems. Several other authors have already developed methods to compute optimal control
sequences for max-plus-linear discrete-event systems (Baccelli et al., 1992; Boimond and Fer-
rier, 1996; Cuninghame-Green, 1979; Libeaut and Loiseau, 1995; Menguy et al., 1997; Menguy
et al., 1998a; Menguy et al., 1998b). The main advantage of our approach is that it allows to
include general linear inequality constraints on the inputs and outputs of the system.

The report is organized as follows. In Section 2 we give a brief introduction to conventional
MPC for linear discrete-time systems. In Section 3 we present the max-plus algebra and max-
plus-linear discrete-event systems. Next we extend the MPC framework to max-plus-linear
systems. In Section 5 we discuss some methods to solve the max-plus-algebraic MPC problem.
We conclude with an illustrative example.

2

2 Model predictive control

In this section we give a short introduction to MPC. Since we will only consider the determin-
istic, i.e. noiseless, case for max-plus-linear systems (cf. Remark 1), we will also omit the noise
terms in this brief introduction to MPC for linear systems. More extensive information on
MPC can be found in (Camacho and Bordons, 1995; Clarke et al., 1987; Garćıa et al., 1989).
and the references therein.

Consider a plant that can be modeled by a state space description of the form

x(k + 1) = Ax(k) +B u(k) (1)

y(k) = C x(k) . (2)

The vector x represents the state, u the input vector, and y the output vector. If the system
has m inputs and l outputs and if the dimension of the state is n, then we have A ∈ R

n×n,
B ∈ R

n×m, C ∈ R
l×n. In order to distinguish systems that can be described by a model of

the form (1) – (2) from the max-plus-linear systems that will be considered later on, a system
that can be modeled by (1) – (2) will be called a plus-times-linear (PTL) system.

In MPC a performance index or cost criterion J is formulated that reflects the reference
tracking error (Jout) and the control effort (Jin):

J = Jout + λJin

=

Np
∑

j=1

(

ŷ(k + j|k)− r(k + j)
)T (

ŷ(k + j|k)− r(k + j)
)

+

λ

Np
∑

j=1

uT (k + j − 1)u(k + j − 1) (3)

where ŷ(k + j|k) is the estimate of the output at time step k + j based on the information
available at time step k, r is a reference signal, λ is a nonnegative scalar, and Np is the
prediction horizon. Note that Jout and Jin depend on the output and the input of the system
respectively.

In MPC the input is taken to be constant from a certain point on: u(k+j) = u(k+Nc−1)
for j = Nc, . . . , Np − 1 where Nc is the control horizon. The use of a control horizon leads
to a reduction of the number of optimization variables. This results in a decrease of the
computational burden, a smoother controller signal (because of the emphasis on the average
behavior rather than on aggressive noise reduction), and a stabilizing effect (since the output
signal is forced to its steady-state value).

MPC uses a receding horizon principle. At time step k the future control sequence u(k),
. . . , u(k + Nc − 1) is determined such that the cost criterion is minimized subject to the
constraints. At time step k the first element of the optimal sequence (u(k)) is applied to
the process. At the next time instant the horizon is shifted, the model is updated with new
information of the measurements, and a new optimization at time step k + 1 is performed.

By successive substitution of (1) in (2), estimates of the future values of the state and the
output can be computed (Camacho and Bordons, 1995):

x̂(k + j|k) = Ajx(k) +

j−1
∑

i=0

Aj−iBu(k + i)

3

ŷ(k + j|k) = CAjx(k) +

j−1
∑

i=0

CAj−iBu(k + i)

for j = 1, 2, . . ., where x̂(k + j|k) is the estimate of the state at time step k + j based on the
information available at time step k. In matrix notation we obtain:

ỹ(k) = Hũ(k) + g(k)

for

ỹ(k) =











ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k +Np|k)











, r̃(k) =











r(k + 1)
r(k + 2)

...
r(k +Np)











, ũ(k) =











u(k)
u(k + 1)

...
u(k +Np − 1)











(4)

and

H =











CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CANp−1 CANp−2B . . . CB











, g(k) =











CA

CA2

...
CANp











x(k) ,

where H is called the predictor matrix and g(k) the free-run output signal. The cost criterion
is now equal to

J =
(

ỹ(k)− r̃(k)
)T (

ỹ(k)− r̃(k)
)

+ λũT (k)ũ(k)

= ũT (k)(HTH + λ I)ũ(k) + 2(g(k)− r̃(k))THũ(k)+

(g(k)− r̃(k))T (g(k)− r̃(k)) .

So J is a quadratic function of ũ(k).

The MPC problem at time step k for PTL systems is defined as follows:

Find the input sequence u(k), . . . , u(k +Nc − 1) that minimizes the performance
index J subject to the linear constraint

E(k)ũ(k) + F (k)ỹ 6 h(k) (5)

with E(k) ∈ R
p×mNp , F (k) ∈ R

p×lNp , h(k) ∈ R
p for some integer p, and where

the inequality holds componentwise, and subject to the control horizon constraint

u(k + j) = u(k +Nc − 1) for j = Nc, Nc + 1, . . . (6)

Note that minimizing J subject to the linear constraints (5) and (6), boils down to a convex
quadratic programming problem, which can be solved very efficiently.

The parametersNp, Nc and λ are the three basic tuning parameters of the MPC algorithm:

• The prediction horizon Np is related to the length of the step response of the process,
and the time interval (1, Np) should contain the crucial dynamics of the process.

4

• The control horizon Nc 6 Np is usually taken equal to the system order. An important
effect of a small control horizon is the smoothing of the control signal. The control
signal is then rapidly forced towards its steady-state value, which is important for
stability properties. Another important consequence of decreasing Nc is the reduction
in computational effort, because the number of optimization parameters is reduced.

• The parameter λ makes a trade-off between the tracking error and the control effort,
and is usually chosen as small as possible, 0 in most cases. In many cases (e.g. for
non-minimum phase systems), the choice λ = 0 will lead to stability problems and
so λ should be chosen as the smallest positive value that still results in a stabilizing
controller.

3 Max-plus algebra and max-plus-linear systems

3.1 Max-plus algebra

The basic operations of the max-plus algebra are maximization and addition, which will be
represented by ⊕ and ⊗ respectively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R∪{−∞}. Define ε = −∞. The structure (Rε,⊕,⊗) is called the max-plus al-

gebra (Baccelli et al., 1992; Cuninghame-Green, 1979). The operations ⊕ and ⊗ are called the
max-plus-algebraic addition and max-plus-algebraic multiplication respectively since many
properties and concepts from linear algebra can be translated to the max-plus algebra by
replacing + by ⊕ and × by ⊗ (see (Baccelli et al., 1992; Cuninghame-Green, 1979)). The
max-plus-algebraic summation of a finite sequence of numbers a1, a2, . . . , am ∈ Rε is defined
by

m
⊕

k=1

ak = a1 ⊕ a2 ⊕ . . .⊕ am = max
k=1,...,m

ak .

Let k ∈ N. The kth max-plus-algebraic power of x ∈ R is denoted by x⊗
k
and corresponds

to kx in conventional algebra. If k > 0 then ε⊗
k
= ε. We have ε⊗

0
= 0 by definition. The

rules for the order of evaluation of the max-plus-algebraic operators are similar to those of
conventional algebra. So max-plus-algebraic power has the highest priority, and max-plus-
algebraic multiplication has a higher priority than max-plus-algebraic addition.

The matrix εm×n is the m × n max-plus-algebraic zero matrix: (εm×n)ij = ε for all
i, j. The matrix En is the n× n max-plus-algebraic identity matrix: (En)ii = 0 for all i and
(En)ij = ε for all i, j with i 6= j. The basic max-plus-algebraic operations are extended to
matrices as follows. If A,B ∈ R

m×n
ε and C ∈ R

n×p
ε then

(A⊕B)ij = aij ⊕ bij = max(aij , bij)

(A⊗ C)ij =
n

⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

for all i, j. Note the analogy with the definitions of matrix sum and matrix product in
conventional linear algebra. The max-plus-algebraic matrix power of A ∈ R

n×n
ε is defined as

follows: A⊗
0
= En and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . .

5

3.2 Max-plus-linear systems

In (Baccelli et al., 1992; Cohen et al., 1985; Cuninghame-Green, 1979) it has been shown that
discrete-event systems with only synchronization and no concurrency can be modeled by a
max-plus-algebraic model of the following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (7)

y(k) = C ⊗ x(k) (8)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the number of inputs and l the number

of outputs. The vector x represents the state, u is the input vector and y is the output
vector of the system. Note the analogy of the description (7) – (8) with the state space model
(1) – (2) for PTL systems. This analogy is another reason why the symbols ⊕ and ⊗ are used
to denoted max and +. However, an important difference with the description (1) – (2) is
that now the components of the input, the output and the state are event times, and that
the counter k in (7) – (8) is an event counter (and event occurrence instants are in general not
equidistant), whereas in (1) – (2) k increases each clock cycle.

For a manufacturing system, u(k) would typically represent the time instants at which
raw material is fed to the system for the (k + 1)th time, x(k) the time instants at which the
machines start processing the kth batch of intermediate products, and y(k) the time instants
at which the kth batch of finished products leaves the system. A discrete-event system that
can be modeled by (7) – (8) will be called a max-plus-linear time-invariant discrete-event
system or max-plus-linear (MPL) system for short. For discrete event systems we usually do
not have a direct feed-through from input to output. That is why there is no term of the
form D ⊗ u(k) in (8).

Remark 1 For PTL systems the influence of noise is usually modeled by adding an extra
noise term to the state equation and/or the output equation. For MPL models the entries of
the system matrices correspond to production times, waiting times, transportation times, and
so on. So instead of modeling the noise or the nondeterministic effects, i.e. the variation in the
processing times, by adding an extra max-plus-algebraic term in (7) or (8), the variation in
the processing times should rather be modeled as an additive term to these system matrices.
However, this would not lead to a nice model structure. Moreover, for many manufacturing
or transportation systems, the processing times are usually rather constant over time (or
otherwise we could consider the nominal behavior of the system).
In the next section we will use the deterministic model (7) – (8) as an approximation of a
discrete-event system with uncertainty and/or modeling errors. Therefore, and since we do
not want to make our exposition on the extension of the MPC framework to MPL systems
overly complicated, we have not included any noise terms in the model (7) – (8). ✸

4 Model predictive control for MPL systems

In this section we extend and adapt the MPC framework from PTL systems to MPL systems.
If possible we use analog constraints and cost criteria for both types of systems. However, as
we shall see, in some cases different constraints and cost criteria are more appropriate. We
use the max-plus-linear model (7) – (8) as an approximation of a discrete-event system with
uncertainty and/or modeling errors. This also motivates the use of a receding horizon strategy

6

when we define MPC for MPL systems, since then we can regularly update our model of the
system as new information and measurements become available. Other reasons for using
a finite horizon in MPC for MPL systems are that it allows the inclusion of general linear
constraints on the inputs and outputs, and that it reduces the computational complexity.

4.1 Evolution of the system

We assume that x(k), the state at event step k, can be measured or estimated using previous
measurements1. If we know the state of the system x(k) at event step k then we can estimate
the evolution of the output of the system for a given input sequence u(k), . . . , u(k +Np − 1)
using the model (7) – (8) as follows:

x̂(k + j|k) = A⊗ x̂(k + j − 1|k)⊕B ⊗ u(k + j − 1) (8∗a)

ŷ(k + j|k) = C ⊗ x̂(k + j|k) (8∗b)

for j = 1, 2, . . . , Np. Note that x̂(k − 1|k) = x(k − 1). Just as in MPC for linear systems, we
can eliminate the state estimates from (8∗a) – (8∗b) in order to reduce the number of variables
in the resulting optimization problem, leading to faster computation of the optimal MPC
policy. We have

ŷ(k + j|k) = C ⊗A⊗
j
⊗ x(k) ⊕

j−1
⊕

i=0

C ⊗A⊗
j−i

⊗B ⊗ u(k + i) . (8∗c)

So if we define

H =











C ⊗B ε . . . ε
C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C ⊗A⊗
Np−1

⊗B C ⊗A⊗
Np−2

⊗B . . . C ⊗B











,

g(k) =













C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np













⊗ x(k) ,

then we obtain
ỹ(k) = H ⊗ ũ(k)⊕ g(k)

where ỹ(k) and ũ(k) are defined by (4). Note the analogy between these expressions and the
corresponding expressions for PTL systems.

4.2 Cost criterion

Recall that the MPC cost criterion for PTL systems can be written as J = Jout+λJin, where
Jout is related to the tracking error and Jin is related to the control effort. Now we discuss
some possible choices for Jout and Jin in MPC for MPL systems.

1Since the components of x(k) correspond to event times, they are in general easy to measure. Also note
that measuring occurrence times of events is in general not as susceptible to noise as measuring continuous-time
signals involving variables such as temperature, speed, pressure, etc.

7

4.2.1 Tracking error or output cost criterion Jout

A straightforward translation of the tracking error cost criterion used in MPC for PTL systems
would yield

Jout =
(

ỹ(k)− r̃(k)
)T

⊗
(

ỹ(k)− r̃(k)
)

=

Np
⊕

j=1

(

ŷ(k + j|k)− r(k + j)
)T

⊗
(

ŷ(k + j|k)− r(k + j)
)

=

Np
⊕

j=1

l
⊕

i=1

(

ŷi(k + j|k)− ri(k + j)
)

⊗
2

= 2

Np
⊕

j=1

l
⊕

i=1

(

ŷi(k + j|k)− ri(k + j)
)

. (8∗d)

This objective function does not force the difference between ŷ(k + j|k) and r(k + j) to be
small since there is no absolute value in (8∗d). Therefore, it is not very useful in practice.

If the due dates r for the finished products are known and if we have to pay a penalty for
every delay, a better suited cost criterion is the tardiness:

Jout,1 =

Np
∑

j=1

l
∑

i=1

max(ŷi(k + j|k)− ri(k + j), 0) . (9)

If we have perishable goods, then we could want to minimize the differences between the due
dates and the actual output time instants. This leads to

Jout,2 =

Np
∑

j=1

l
∑

i=1

|ŷi(k + j|k)− ri(k + j)| . (10)

If we want to balance the output rates, we could consider the following cost criterion:

Jout,3 =

Np
∑

j=2

l
∑

i=1

|∆2ŷi(k + j|k)| (11)

where ∆2s(k) = ∆s(k)−∆s(k − 1) = s(k)− 2s(k − 1) + s(k − 2) for a signal s(·).
The dynamics of the MPL system force all events to occur as soon as possible, i.e. as

soon as all prerequisite conditions are fulfilled. Furthermore, the max-plus-algebraic matrix
product is monotonically nondecreasing, i.e. if u 6 ū then A ⊗ u 6 A ⊗ ū. So we could say
that minimizing an expression of x̃(k) corresponds to minimizing a modified expression of
ũ(k). Therefore, a cost criterion based on x̃(k) is not as relevant as for MPL systems as it is
for PTL systems.

4.2.2 Input cost criterion Jin

A straightforward translation of the input cost criterion ũT (k)ũ(k) would lead to a minimiza-
tion of the input time instants. Since this could result in input buffer overflows, a better

8

objective is to maximize the input time instants. For a manufacturing system, this would
correspond to a scheme in which raw material is fed to the system as late as possible. As a
consequence, the internal buffer levels are kept as low as possible. Note that this also leads to
a notion of stability if we let instability for the manufacturing system correspond to internal
buffer overflows. So for MPL systems an appropriate cost criterion is

Jin,0 = −ũT (k)ũ(k) .

Note that this is exactly the opposite of the input effort cost criterion for PTL systems.
Another objective function that leads to a maximization of the input time instants is

Jin,1 = −

Np
∑

j=1

m
∑

i=1

ui(k + j − 1) . (12)

If we want to balance the input rates we could take

Jin,2 =

Np−1
∑

j=1

l
∑

i=1

|∆2ui(ik + j| . (13)

Note that for the input cost criteria defined above we could replace the upper summation
index Np by Nc (for Jin,1 and Jin,2) or redefine ũ(k) accordingly (for Jin,0).

We could replace also the summations in (9) – (13) by max-plus-algebraic summations:

Jout,11 =

Np
⊕

j=1

l
⊕

i=1

max(ŷi(k + j|k)− ri(k + j), 0)

Jout,21 =

Np
⊕

j=1

l
⊕

i=1

|ŷi(k + j|k)− ri(k + j)|

and so on. Moreover, we could also add some weight factors to the terms of the cost criterion,
or consider weighted mixtures of several cost criteria.

4.3 Constraints

Just as in MPC for PTL systems we can consider the linear constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) . (14)

Furthermore, it is easy to verify that typical constraints for discrete-event systems are mini-
mum or maximum separation between input and output events:

a1(k + j) 6 ∆u(k + j − 1) 6 b1(k + j) for j = 1, . . . , Nc (15)

a2(k + j) 6 ∆ŷ(k + j|k) 6 b2(k + j) for j = 1, . . . , Np , (16)

or maximum due dates for the output events:

ŷ(k + j|k) 6 r(k + j) for j = 1, . . . , Np , (17)

9

can also be recast as a linear constraint of the form (14).
Since for MPL systems the input and output sequences correspond to occurrence times

of consecutive events, they should be nondecreasing. Therefore, we should always add the
condition2

∆u(k + j) > 0 for j = 0, . . . , Np − 1

to guarantee that the input sequences are nondecreasing. If the input sequences are non-
decreasing and if the finite entries of the system matrices are nonnegative (which may be
assumed to be the case for physical systems since these entries correspond to execution or
transportation times), then it follows from (8∗c) that the output sequences are also nonde-
creasing.

4.4 The evolution of the input beyond the control horizon

Recall that in MPC for PTL systems we introduced a control horizon to reduce the number
of variables in the MPC optimization problem. For the same reason we also use a control
horizon in MPC for MPL systems.

A straightforward translation of the conventional control horizon constraint would imply
that the input should stay constant from event step k + Nc on, which is not very useful for
MPL systems since there the input sequences should normally be increasing. Therefore, we
change this condition as follows: the feeding rate should stay constant beyond event step
k +Nc, i.e.

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1 , (18)

or equivalently ∆2u(k + j) = 0 for j = Nc, . . . , Np − 1. Note that this condition introduces
regularity in the input sequence. Furthermore, it prevents the buffer overflow problems that
could arise when all resources are fed to the system at the same time instant as would be
implied by the conventional control horizon constraint (6).

Recall that MPC uses a receding horizon strategy. This implies that, although (18) will
hold for the optimal input sequence at each event step k, in closed loop the feeding rate will
not necessarily become constant after Nc steps.

4.5 The standard MPC problem for MPL systems

If we combine the material of previous subsections, we finally obtain the following problem:

min
ũ(k)

J = min
ũ(k)

Jout,p1 + λJin,p2 (19)

for some Jout,p1 , Jin,p2 subject to

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (20)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (21)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (22)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (23)

This problem will be called the MPL-MPC problem for event step k.

2Note that in fact the upper range limit Np − 1 can be replaced by Nc − 1 because of (18).

10

Recall that MPC uses a receding horizon principle. So after computation of the optimal
control sequence u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented,
subsequently the horizon is shifted and the model and the initial state estimate can be updated
if new measurements are available, then the new MPC problem is solved, etc.

Other design control design methods for MPL systems are discussed in (Baccelli et al.,
1992; Boimond and Ferrier, 1996; Cuninghame-Green, 1979; Libeaut and Loiseau, 1995; Men-
guy et al., 1997; Menguy et al., 1998a; Menguy et al., 1998b). Note that in contrast to the
MPL-MPC method, these methods do not allow the inclusion of general linear constraints of
the form (21) or even more simple constraints of the form (15) or (16).

5 Algorithms to solve the MPL-MPC problem

5.1 Nonlinear optimization

In general the problem (19) – (23) is a nonlinear non-convex optimization problem: although
the constraints (21) – (23) are convex in ũ and ỹ, the constraint (20) is in general not convex.
So we could use standard multi-start nonlinear non-convex local optimization methods to
compute the optimal control policy.

The feasibility of the MPC-MPL problem can be verified by solving the system of (in)equal-
ities (20) – (23)3. If the problem is found to be infeasible we can use the same techniques as in
conventional MPC and use constraint relaxation (Camacho and Bordons, 1995). Additional
information on these topics can be found in the Addendum.

5.2 The ELCP approach

Now we discuss an alternative approach which is based on the Extended Linear Complemen-
tarity problem (ELCP) (De Schutter and De Moor, 1995). Consider the ith row of (20) and
define Ji = { j |hij 6= ε}. We have

ỹi(k) = max
j∈Ji

(hij + ũj(k), gi(k))

or equivalently

ỹi(k) > hij + ũj(k) for j ∈ Ji

ỹi(k) > gi(k)

with the extra condition that at least one inequality should hold with equality (i.e. at least
one residue should be equal to 0)4:

(ỹi(k)− gi(k)) ·
∏

j∈Ji

(ỹi(k)− hij − ũj(k)) = 0 . (24)

Hence, equation (20) can be rewritten as a system of equations of the following form:

Aeỹ(k) +Beũ(k) + ce(k) > 0 (25)

3In general this is a nonlinear system of equations but if the constraints depend monotonically on the
output, the feasibility problem can be recast as a linear programming problem. (cf. Theorem 2).

4If gi(k) = ε then the inequality ỹi(k) > gi and the corresponding factor ỹi(k) − gi(k) in (24) may be
omitted. A similar remark holds if hij = ε.

11

∏

j∈φi

(Aeỹ(k) +Beũ(k) + ce(k))j = 0 for i = 1, . . . , lNp (26)

for appropriately defined matrices and vectors Ae, Be, ce and index sets φi. We can rewrite
the linear constraints (21) – (23) as

De(k)ỹ(k) + Ee(k)ũ(k) + fe(k) > 0 (27)

Geũ(k) + he = 0 . (28)

So the feasible set of the MPC problem (i.e. the set of feasible system trajectories) coincides
with the set of solutions of the system (25) – (28), which is a special case of an Extended
Linear Complementarity Problem (ELCP) (De Schutter and De Moor, 1995).

In order to determine the optimal MPC policy we have to minimize the objective function
J over the solution set of the ELCP (25) – (28) as follows. The solution set of the system
(25) – (28) is characterized by a set of vectors

V =

{

[

ũi(k)
ỹi(k)

]

∣

∣

∣

∣

∣

i = 1, . . . , r

}

and a set Λ = {ψj | j = 1, . . . , p} such that for any j any convex combination of the form

∑

i∈ψj

νi

[

ũi(k)
ỹi(k)

]

with νi > 0 and
∑

i∈φj
νi = 1, is a solution of (25) – (28). The vectors of V correspond

to vertices of the polyhedron P defined by the system (25) (27) (28), and each index set ψj
corresponds to a face of this polyhedron. Now we could use a nonlinear optimization algorithm
to determine for each index set ψj the combination of the νi’s for which the objective function
J reaches a global minimum and afterwards select the overall minimum.

The algorithm of (De Schutter and De Moor, 1995) to compute the solution set of a general
ELCP requires exponential execution times. This implies that the ELCP approach sketched
above is not feasible if Nc is large.

5.3 Monotonically nondecreasing objective functions

Now we consider the relaxed MPC problem which is also defined by (19) – (23) but with the
=-sign in (20) replaced by a >-sign. Note that whereas in the original problem ũ(k) is the only
independent variable since ỹ(k) can be eliminated using (20), the relaxed problem has both
ũ(k) and ỹ(k) as independent variables. It is easy to verify that the set of feasible solutions
of the relaxed problem coincides with the set of solutions of the system of linear inequalities
(25) (27) (28). So the set of feasible solutions of the relaxed MPC problem is convex. As a
consequence, the relaxed problem is much easier to solve numerically. Also note that due to
condition (26) the feasible set of the original problem consists of points lying on the border
of the feasible set of the relaxed problem.

We say that a function F : y → F (y) is a monotonically nondecreasing function of y if
ȳ 6 y̌ implies that F (ȳ) 6 F (y̌). Now we show that if the objective function J and the linear
constraints are monotonically nondecreasing as a function of ỹ (this is the case for J = Jout,1,

12

Jout,11, Jout,12, Jin,0, Jin,1, Jin,2, Jin,21 or Jin,22, and e.g. Fij > 0 for all i, j), then the optimal
solution of the relaxed problem can be transformed into an optimal solution of the original
MPC problem. So in that case the optimal MPC policy can be computed very efficiently. If
in addition the objective function is convex (e.g. J = Jout,1, Jout,11, Jout,12 or Jin,1), we finally
get a convex optimization problem. Note that Jin,1 is a linear function. So for J = Jin,1 the
problem even reduces to a linear programming problem, which can be solved very efficiently5.

Theorem 2 Let the objective function J and mapping ỹ → F (k)ỹ be monotonically nonde-
creasing functions of ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPC problem. If we
define ỹ♯ = H ⊗ ũ∗ ⊕ g(k) then (ũ∗, ỹ♯) is an optimal solution of the original MPC problem.

Proof : First we show that (ũ∗, ỹ♯) is a feasible solution of the original problem. Clearly,
(ũ∗, ỹ♯) satisfies the constraints (20), (22) and (23). Since ỹ∗ > H ⊗ ũ∗ ⊕ g(k) = ỹ♯ and since
the mapping ỹ → F (k)ỹ is monotonically nondecreasing, we have

E(k)ũ∗ + F (k)ỹ♯ 6 E(k)ũ∗ + F (k)ỹ∗ 6 h(k) .

So (ũ∗, ỹ♯) also satisfies the constraint (21). Hence, (ũ∗, ỹ♯) is a feasible solution of the original
problem. Since the set of feasible solutions of the original problem is a subset of the set of
feasible solutions of the relaxed problem, we have J(ũ, ỹ) > J(ũ∗, ỹ∗) for any feasible solution
(ũ, ỹ) of the original problem. Hence, J(ũ∗, ỹ♯) > J(ũ∗, ỹ∗). On the other hand, we have
J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗) since ỹ♯ 6 ỹ∗ and since J is a monotonically nondecreasing function of
ỹ. As a consequence, we have J(ũ∗, ỹ♯) = J(ũ∗, ỹ∗), which implies that (ũ∗, ỹ♯) is an optimal
solution of the original MPC problem. ✷

Note that we can always obtain an objective function that is a monotonically nondecreas-
ing function of ỹ(k) by eliminating ỹ(k) from the expression for J using (20) before relaxing
the problem. However, some of the properties (such as convexity or linearity) of the original
objective function may be lost in that way. Furthermore, if the objective function is not
monotonically nondecreasing as a function of ỹ(k), then it is still possible to use the solution
of the relaxed problem (with another objective function that is monotonically nondecreasing)
as an efficient way to determine a good initial solution for an iterative optimization algorithm
for the original (non-convex) MPC problem.

6 Example

Consider the production system of Figure 1. This manufacturing system consists of three
processing units: P1, P2 and P3, and works in batches (one batch for each finished product).
Raw material is fed to P1 and P2, processed and sent to P3 where assembly takes place. Note
that each input batch of raw material is split into two parts: one part of the batch goes to
P1 and the other part goes to P2.

The processing times for P1, P2 and P3 are respectively d1 = 11, d2 = 12 and d3 = 7
time units. We assume that it takes t1 = 2 time units for the raw material to get from the
input source to P1, and t3 = 1 time unit for a finished product of P1 to get to P3. The other
transportation times (t2, t4 and t5) and the set-up times are assumed to be negligible. At the

5It easy to verify that for J = Jout,1, Jout,11, Jout,12 the problem can also be reduced to a linear programming
problem by introducing some additional dummy variables.

13

P1

P2

✲

✲

P
P

P
P
P
P

P
P
P

PPq

✏
✏

✏
✏
✏
✏

✏
✏
✏

✏✏✶
P3

✲u(k) y(k)

t1 = 2

t2 = 0

t3 = 1

t4 = 0

t5 = 0

d1 = 11

d2 = 12

d3 = 7

Figure 1: A simple manufacturing system.

input of the system and between the processing units there are buffers with a capacity that
is large enough to ensure that no buffer overflow will occur. A processing unit can only start
working on a new product if it has finished processing the previous product. We assume that
each processing unit starts working as soon as all parts are available.

The evolution of the manufacturing system is described by the following state space model
(see Addendum):

x(k + 1) =





11 ε ε

ε 12 ε

23 24 7



⊗ x(k) ⊕





2
0
14



⊗ u(k) (29)

y(k) =
[

ε ε 7
]

⊗ x(k) (30)

with u(k) the time instant at which a batch of raw material is fed to the system for the
(k + 1)th time, xi(k) the time instant at which Pi starts working for the kth time, and y(k)
the time instant at which the kth finished product leaves the system.

Let us now compare the efficiency of the methods discussed in Section 5 when solving one
step of the MPC problem for the objective function J = Jout,1+Jin,1 (so λ = 1) with the addi-
tional constraints 2 6 ∆u(k+ j) 6 12 for j = 0, . . . , Nc−1. We take Nc = 5 and Np = 8. As-
sume that k = 0, x(0) = [0 0 10]T , u(−1) = 0, and r̃(k) = [40 45 55 66 75 85 90 100]T .

The objective function J and the linear constraints are monotonically nondecreasing as a
function of ỹ so that we can apply Theorem 2. We have computed a solution ũelcp obtained
using the ELCP method and the ELCP algorithm of (De Schutter and De Moor, 1995), a
solution ũnlcon using nonlinear constrained optimization, a solution ũpenalty using linearly con-
strained optimization with a penalty function for the nonlinear constraints, a solution ũrelaxed
for the relaxed MPC problem, and a linear programming solution ũlinear (cf. footnote 5). For
the nonlinear constrained optimization we have used a sequential quadratic programming al-
gorithm, and for the linear optimization a variant of the simplex algorithm. All these methods
result in the same optimal input sequence:

{uopt}
7
k=0 = 12, 24, 35, 46, 58, 70, 82, 94.

The corresponding output sequence is {yopt(k)}
8
k=1 = 33, 45, 56, 67, 79, 91, 103, 115 and the

corresponding value of the objective function is J = −381.
In Table 1 we have listed the CPU time needed to compute the various input sequence

vectors ũ for Nc = 4, 5, 6, 7 (with all other variables having the same values as above) on a

14

Table 1: The CPU time needed to compute the optimal input sequence vectors for the example
of Section 6 for Nc = 4, 5, 6, 7. For Nc = 7 we have not computed the ELCP solution since it
requires too much CPU time.

CPU time

ũopt Nc = 4 Nc = 5 Nc = 6 Nc = 7

ũelcp 5.525 106.3 287789 —

ũnlcon 0.870 1.056 1.319 1.470

ũpenalty 0.826 0.988 1.264 1.352

ũrelaxed 0.431 0.500 0.562 0.634

ũlinear 0.029 0.030 0.031 0.032

Pentium II 300 MHz PC running Linux with the optimization routines called from MATLAB
and implemented in C. The CPU times are average values over 10 experiments. For the
input sequence vectors that have to be determined using a nonlinear optimization algorithm
selecting different (feasible) initial points always leads to the same numerical value of the final
objective function (within a certain tolerance). Therefore, we have only performed one run
with a random feasible initial point for each of these cases.

The CPU time needed to compute the optimal switching interval vector using the ELCP
algorithm of (De Schutter and De Moor, 1995) increases exponentially as the number of
variables increases (see also Table 1). So in practice the ELCP approach cannot be used for
on-line computations if the control horizon or the number of inputs or outputs are large. In
that case one of the other methods should be used instead. If we look at Table 1 then we see
that the ũlinear solution — which is based on Theorem 2 and which uses a linear programming
approach — is clearly the most interesting.

Let us now compare the MPC-MPL method with the other control design methods men-
tioned in Section 4.5.
In the Addendum we will use results from (Baccelli et al., 1992; Cuninghame-Green, 1979) to
derive an analytic solution for two special cases of the MPL-MPC problem6. If we use these
analytic solutions we obtain

{u1(k)}7k=0 = −3, 9, 21, 33, 45, 57, 68, 79

{y1(k)}8k=1 = 31, 43, 55, 67, 79, 91, 103, 115

{u2(k)}7k=0 = 8, 20, 32, 44, 56, 68, 79, 90

{y2(k)}8k=1 = 31, 43, 55, 67, 79, 91, 103, 115.

The first solution is not feasible since for this solution we have u(0) = −3 < 0 = u(−1).
This infeasibility is caused by the fact that the solution aims to fulfill the constraint ỹ(k) 6

6Case 1: min Jout,11 subject to ỹ(k) = H ⊗ ũ(k) ⊕ g(k) and ỹ(k) 6 r̃(k); Case 2: min Jout,21 subject to
ỹ(k) = H ⊗ ũ(k) ⊕ g(k). In both cases we have Np = Nc and the input constraint (22) is not taken into
account.

15

r̃(k), which cannot be met using a nondecreasing input sequence. So other control design
methods that also include this constraint such as (Libeaut and Loiseau, 1995; Menguy et
al., 1997; Menguy et al., 1998b) would also yield a nondecreasing — and thus infeasible —
input sequence. The second solution {u2(k)}7k=0 is feasible and the corresponding value of
the objective function is J = −358.
The control design method of (Boimond and Ferrier, 1996) leads to

{u3(k)}7k=0 = 19, 30, 41, 53, 65, 77, 89, 101

{y3(k)}8k=1 = 40, 51, 62, 74, 86, 98, 110, 122.

but this input sequence does not satisfy the constraints since ∆u(0) = u(0)−u(−1) = 19 66 12.
The method of (Menguy et al., 1998a) results in

{u4(k)}7k=0 = 12, 23, 34, 46, 58, 70, 82, 94

{y4(k)}8k=1 = 33, 44, 55, 67, 79, 91, 103, 115

with J = −380.
So for this particular case the MPC method and the method of (Menguy et al., 1998a)

outperform the other methods to compute (optimal) input time sequences for MPL systems
that have been considered in this report. However, the method of (Menguy et al., 1998a) does
not take the input constraint 2 6 ∆u(k + j) 6 12 for j = 0, 1, . . . , 9 into account so that in
general this method will not always lead to a feasible solution. So in general the MPC-MPL
method is the only method among the methods considered in this report that is guaranteed
to yield a feasible solution (provided that one exists).

7 Conclusions

We have extended the popular MPC framework from linear discrete-time systems to max-
plus-linear discrete event systems. The reason for using an MPC approach for max-plus-
linear systems is the same as for conventional linear systems: MPC allows the inclusion of
constraints on the inputs and outputs, it is an easy-to-tune method, and it is flexible for
structure changes (since the optimal strategy is recomputed every time or event step so that
model changes can be taken into account as soon as they are identified). Note that although in
general the optimization may be complex and time-consuming and should be performed each
event step, the inter-event times are usually sufficiently long so that the calculation can be
performed on-line (especially if the objective function and the constraints are monotonically
nondecreasing functions of the output and if the objective function is convex, since then the
resulting (relaxed) optimization problem is convex).

We have discussed the analogies and differences between the objective functions and con-
straints in the conventional MPC problem and in the max-plus-algebraic MPC problem. We
have also presented some methods to solve the max-plus-algebraic MPC problem. In general
this leads to a nonlinear non-convex optimization problem. If the objective function and the
constraints are nondecreasing functions of the output, then we can relax the MPC problem
to problem with a convex set of feasible solutions. If in addition the objective function is
convex, this leads to a problem that can be solved very efficiently.

Topics for future research include: investigation of issues (such as prediction) that arise
when we consider MPC for nondeterministic max-plus-algebraic systems, investigation of the

16

effects of the tuning parameters on the stability of the controlled systems and the smooth-
ness of the input control sequence, and determination of rules of thumb for the selection of
appropriate values for the tuning parameters.

Acknowledgments

This research was partially sponsored by the TMR project ALAPEDES (Algebraic Approach to Per-

formance Evaluation of Discrete-Event Systems) of the European Community Training and Mobility of

Researchers Program (network contract ERBFMRXCT960074), and by the FWO (Fund for Scientific

Research–Flanders) Research Community ICCoS (Identification and Control of Complex Systems).

References

Baccelli, F., G. Cohen, G.J. Olsder and J.P. Quadrat (1992). Synchronization and Linearity.
John Wiley & Sons. New York.

Boimond, J.L. and J.L. Ferrier (1996). Internal model control and max-algebra: Controller
design. IEEE Transactions on Automatic Control 41(3), 457–461.

Camacho, E.F. and C. Bordons (1995). Model Predictive Control in the Process Industry.
Springer-Verlag. Berlin, Germany.

Cassandras, C.G., S. Lafortune and G.J. Olsder (1995). Introduction to the modelling, con-
trol and optimization of discrete event systems. In: Trends in Control: A European
Perspective (A. Isidori, Ed.). pp. 217–291. Springer-Verlag. Berlin, Germany.

Clarke, D.W., C. Mohtadi and P.S. Tuffs (1987). Generalized predictive control – Part I. The
basic algorithm. Automatica 23(2), 137–148.

Cohen, G., D. Dubois, J.P. Quadrat and M. Viot (1985). A linear-system-theoretic view of
discrete-event processes and its use for performance evaluation in manufacturing. IEEE
Transactions on Automatic Control 30(3), 210–220.

Cuninghame-Green, R.A. (1979). Minimax Algebra. Vol. 166 of Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag. Berlin, Germany.

Cutler, C.R. and B.L. Ramaker (1979). Dynamic matrix control – a computer control algo-
rithm. In: Proceedings of the 86th AIChE National Meeting. Houston, Texas.

De Schutter, B. and B. De Moor (1995). The extended linear complementarity problem.
Mathematical Programming 71(3), 289–325.

Garćıa, C.E., D.M. Prett and M. Morari (1989). Model predictive control: Theory and practice
— A survey. Automatica 25(3), 335–348.

Ho, Y.C., Ed.) (1989). Proceedings of the IEEE. Vol. 77. Special Issue on Dynamics of Discrete
Event Systems.

Ho, Y.C., Ed.) (1992). Discrete Event Dynamic Systems: Analyzing Complexity and Perfor-
mance in the Modern World. IEEE Press. Piscataway, New Jersey.

17

Libeaut, L. and J.J. Loiseau (1995). Admissible initial conditions and control of timed event
graphs. In: Proceedings of the 34th IEEE Conference on Decision and Control. New
Orleans, Louisiana. pp. 2011–2016.

Menguy, E., J.L. Boimond and L. Hardouin (1997). A feedback control in max-algebra. In:
Proceedings of the European Control Conference (ECC’97). Brussels, Belgium, paper
487.

Menguy, E., J.L. Boimond and L. Hardouin (1998a). Adaptive control for linear systems in
max-algebra. In: Proceedings of the International Workshop on Discrete Event Systems
(WODES’98). Cagliari, Italy. pp. 481–488.

Menguy, E., J.L. Boimond and L. Hardouin (1998b). Optimal control of discrete event systems
in case of updated reference input. In: Proceedings of the IFAC Conference on System
Structure and Control (SSC’98). Nantes, France. pp. 601–607.

Olsder, G.J. and B. De Schutter (1999). The minimal realization problem in the max-plus
algebra. In: Open Problems in Mathematical Systems and Control Theory (V.D. Blondel,
E.D. Sontag, M. Vidyasagar and J.C. Willems, Eds.). Chap. 32, pp. 157–162. Springer-
Verlag. London.

Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control:
Applications to industrial processes. Automatica 14(5), 413–428.

18

Model predictive control for max-plus-linear

discrete event systems: Addendum

This addendum is organized as follows. In Section A we discuss how the feasibility of the
MPL-MPC problem can be determined and what can be done if the problem is found to
be infeasible. In Section B we derive an analytic expression for the solution of a max-plus-
algebraic optimization problem. In Section C we consider two special cases of the MPL-MPC
problem for which analytic solutions can be formulated. In the last section we give some
additional information in connection with the worked example of Section 6.

A Feasibility and constraint relaxation

The existence of a solution of the MPL-MPC problem at event step k can be verified by solving
the system of (in)equalities (20) – (23), which describes the feasible set of the problem. Since
(20) is a nonlinear equation, in general this requires solving a system of nonlinear equations
subject to linear constraints. However, if the entries of F are nonnegative, then we can use
the result of Theorem 2 and replace (20) by the relaxed equation ỹ(k) > H ⊗ ũ(k)⊕ g(k). So
in that case the MPL-MPC problem is feasible if and only if the system of linear inequalities

ỹi(k) > hij + ũj(k) for i = 1, . . . , lNp and j = 1, . . . ,mNp

ỹi(k) > gi(k) for i = 1, . . . , lNp

E(k)ũ(k) + F (k)ỹ(k) 6 h(k)

∆u(k + j) > 0 for j = 0, . . . , Np − 1

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1

is feasible. Indeed, the feasibility of the problem is independent of the choice of the objective
function. So if we consider a dummy monotonic objective function (e.g. J = Jout,1 or Jin,1),
then we can use Theorem 2 to recast the problem as a linear programming problem. Note
that there exist very efficient algorithms to determine the feasibility of a system of linear
inequalities.

If the MPC problem is found to be infeasible then we could use constraint relaxation (see
(Camacho and Bordons, 1995) and the references therein), i.e. we relax some of the constraints
in such a way that we obtain a feasible problem. This can be done as follows. The constraints
ỹ = H⊗ũ(k)⊕g(k) and ∆u(k+j) > 0 for j = 0, . . . , Np−1 should always be satisfied because
of their physical meaning. Furthermore, the constraint ∆2u(k+ j) = 0 for j = Nc, . . . , Np−1
is used to reduce the number of variables. Therefore, we will not relax it. So the only “soft”
constraint in the problem is the constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) .

This constraint is relaxed as follows. First we choose a diagonal matrix R ∈ R
nE×nE with

positive diagonal entries that determine the relative weights of the constraints (i.e. if satisfying
constraint i is more important than satisfying constraint j then we select rii and rjj such that
rii is much smaller than rjj) where nE is the number of rows of E(k). If Jorig is the original

i

objective function of the (infeasible) MPL-MPC problem, then we introduce a vector ν ∈ R
nE

of dummy variables and we solve the problem

min
ũ(k),ν

Jorig +

nE
∑

i=1

νi (A.1)

subject to

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (A.2)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) +Rν (A.3)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (A.4)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (A.5)

ν > 0 . (A.6)

This problem is feasible since the constraints can always met by making the components of
the vector ν sufficiently large. Also note that inclusion of the term ν1 + · · · + νnE

in the
objective function makes the constraint violations w.r.t. the original infeasible problem as
small as possible. Furthermore, if the original (infeasible) MPL-MPC problem satisfies the
conditions of Theorem 2 (i.e. Jorig and the mapping ỹ → F (k)ỹ are monotonically nonde-
creasing functions of ỹ) then the problem (A.1) – (A.6) also satisfies these conditions so that
Theorem 2 still applies. Moreover, if the original objective function Jorig is convex or linear,
then the same holds for the new objective function since the relaxation term is linear.

In general the solution of the MPL-MPC problem is not necessarily unique since the
general MPC problem for MPL systems is nonlinear and non-convex. But if the constraints
are monotonically nondecreasing as a function of ỹ(k) and if the objective function is strictly
convex, then Theorem 2 applies and then we have a strictly convex problem that has a unique
solution. Note however that in practice the uniqueness issue is not really important since as
soon as we have an optimal solution that satisfies all constraints, we are satisfied and we can
use that solution.

B The analytic solution of a special max-plus-algebraic opti-

mization problem

In this section we determine an analytic solution of the following problem:

Given A ∈ R
m×n
ε and b ∈ R

m
ε , find a vector x ∈ R

n
ε that minimizes ‖b−A⊗ x‖

∞
, (A.7)

where ‖x‖
∞

= max
i

|xi|. This problem and its solution will be used in Section C.2 to provide

an analytic solution to a special case of the MPL-MPC problem. Now we will show that the
following theorem holds:

Theorem A-1 An optimal solution of Problem (A.7) is given by x♯ = x∗ ⊗ δ
2 , with x∗ the

greatest subsolution of A⊗ x = b and δ = ‖b−A⊗ x∗‖
∞
. We have ‖b−A⊗ x♯‖

∞
= δ

2 .

Before we prove this theorem we first make some remarks, and we state a lemma that will be
used in the proof.

ii

Note that x♯j =
(

x∗ ⊗ δ
2

)

j
= x∗j +

δ
2 . The solution x♯ = x∗ ⊗ δ

2 for Problem (A.7) is

mentioned on p. 165 of (Cuninghame-Green, 1979) but not proven explicitly. Furthermore, it
is easy to verify that in general the solution of Problem (A.7) is not unique since “non-critical”
components of x∗ do not have to be augmented by δ

2 .
Since A ⊗ x∗ 6 b we have δ = ‖b−A⊗ x∗‖

∞
= max

i
|(b − A ⊗ x∗)i| = max

i

(

(b − A ⊗ x∗)i
)

,

i.e., the absolute values are redundant.
The greatest subsolution x∗ of A ⊗ x = b is given by (Baccelli et al., 1992; Cuninghame-
Green, 1979)

x∗j = min
i=1,...,m

(bi − aij) for j = 1, . . . , n .

Recall that the greatest subsolution of A ⊗ x = b is the solution of A ⊗ x 6 b for which all
components are as large as possible without violating the constraint A ⊗ x 6 b. Since the
function x → A ⊗ x is a monotonically nondecreasing function of x, this implies that the
following lemma holds:

Lemma A-2 Consider A ∈ R
m×n
ε and b ∈ R

m
ε , where A has a finite entry in each column.

Let x∗ be the greatest subsolution of A ⊗ x = b. Then for each index r ∈ {1, 2, . . . , n} there
exists an index ir ∈ {1, 2, . . . ,m} such that airr + x∗r = bir .

Proof of Theorem A-1 : Clearly, δ is always nonnegative. Furthermore, if δ = 0 then
x♯ = x∗ and ‖b−A⊗ x♯‖

∞
= 0. Hence, x♯ = x∗ is an optimal solution of Problem (A.7) if

δ = 0. So from now on we assume that δ > 0. Furthermore, we may assume without loss of
generality that all columns of A that contain only ε entries are removed, because changes to
the corresponding components of the x vector do not change the value of A⊗ x.

In the first step of the proof we set x = x∗⊗α for some real number α, and we prove that
‖b−A⊗ (x∗ ⊗ α)‖

∞
is minimized by α = δ

2 . In the second step we prove that it is impossible
to find another x that yields a smaller value of the objective function ‖b− (A⊗ x)‖

∞
than

x = x♯ = x∗ ⊗ δ
2 .

Step 1

Define x(α) = x∗ ⊗ α with α ∈ Rε. Then A⊗ x(α) = A⊗ (x∗ ⊗ α) = (A⊗ x∗)⊗ α.
We can partition {1, . . . ,m} into three pairwise disjunct subsets I, J and K such that:

(A⊗ x∗)i = bi for all i ∈ I

(A⊗ x∗)i = bi − δ for all i ∈ J

(A⊗ x∗)i = bi − ξiδ for all i ∈ K with 0 < ξi < 1 .

From Lemma A-2 it follows that I is non-empty. Since δ > 0, the set J is also non-empty.
Since A⊗ x(α) = (A⊗ x∗)⊗ α, we have

(A⊗ x(α))i − bi =











α if i ∈ I

α− δ if i ∈ J

α− ξiδ if i ∈ K .

Since I and J are not empty, and since 0 < ξi < 1 for all i ∈ K, this implies that

‖b− (A⊗ x(α))‖
∞

= max
i

|bi − (A⊗ x(α))i| = max(|α|, |α− δ|) .

iii

Now it is easy to verify that d(α)
def
= max(|α|, |α − δ|) is minimized for α = δ

2 and that

d
(

δ
2

)

= δ
2 . So for x♯ = x(δ2) = x∗ ⊗ δ

2 , we have ‖b− (A⊗ x♯)‖
∞

= δ
2 .

In the next step of the proof we will show that we cannot find another x for which
‖b− (A⊗ x)‖

∞
is less than δ

2 . This will be done by contradiction.

Step 2

Suppose that there exists a vector x̃ such that

‖b− (A⊗ x̃)‖
∞
<
δ

2
. (A.8)

Define β = x̃− x∗. Note that β is a vector and not a number as α was in Step 1 of the proof.
Hence, A ⊗ x̃ = A ⊗ (x∗ + β). Consider an arbitrary r ∈ {1, 2, . . . , n}. From Lemma A-2 it
follows that exists an index ir such that airr + x∗r = bir . Since (A⊗ x̃)ir > airr + x∗r + βr, we
have (A⊗ x̃)ir > bir + βr. Hence, βr <

δ
2 because of (A.8). Since r is an arbitrary index, this

implies that

βr <
δ

2
for each r ∈ {1, 2, . . . , n} . (A.9)

From the definition of δ it follows that there exists an index s ∈ {1, 2, . . . ,m} such that
(A⊗ x∗)s = bs − δ. Hence,

asj + x∗j 6 bs − δ for each j ∈ {1, 2, . . . , n} . (A.10)

As a consequence, we have

(A⊗ x̃)s = max
j=1,...,n

(asj + x∗j + βj)

6 max
j=1,...,n

(bs − δ + βj) (by (A.10))

6 bs − δ + max
j=1,...,n

βj

< bs − δ +
δ

2
(by (A.9))

< bs −
δ

2
.

But this would imply that ‖b− (A⊗ x̃)‖
∞

>
δ
2 , which is in contradiction with our initial

assumption that ‖b− (A⊗ x̃)‖
∞
< δ

2 .

Hence, x♯ is an optimal solution of Problem (A.7) and the corresponding value of the objective
function is ‖b− (A⊗ x♯)‖

∞
= δ

2 . ✷

C Analytic solutions for two special cases of the MPL-MPC

problem

Now we consider two problems that can be considered as special cases of the MPL-MPC
problem and for which analytic solutions exist.

iv

C.1 Special case 1

Consider the following special MPL-MPC problem:

min
ũ(k)

Jout,11 =

Np
⊕

j=1

l
⊕

i=1

max(ŷi(k + j|k)− ri(k + j), 0) (A.11)

(A.12)

subject to

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (A.13)

ỹ(k) 6 r̃(k) (A.14)

with Nc = Np. Note that the input constraint (22) is not taken into account7.
An optimal input sequence vector ũ∗ for this MPC is given by (Cuninghame-Green, 1979;

Baccelli et al., 1992)

ũ∗j = min
i=1,...,lNp

(r̃i(k)− hij) for j = 1, . . . ,mNc , (A.15)

provided that g(k) 6 r̃(k) since otherwise there would be no feasible solution. The solution
(A.15) corresponds to the “principal solution” (Cuninghame-Green, 1979) or “greatest sub-
solution” (Baccelli et al., 1992) of the system H ⊗ ũ = r̃(k), i.e. the solution of H ⊗ ũ 6 r̃(k)
for which all components of ũ are as large as possible without violating the constraint. So
this solution in fact minimizes the objective function Jin,1 (or Jin,0) over all optimal solutions
of the problem (A.11) – (A.14).

An alternative way (that also directly yields the evolution of the state of the system) to
compute the optimal input sequence that corresponds to ũ∗ is to use the backward equations
of the system (Baccelli et al., 1992, Section 5.6).

Remark A-3 In fact (Baccelli et al., 1992) and (Cuninghame-Green, 1979) do not consider
the term g(k) in the evolution equation ỹ(k) = H ⊗ ũ(k) ⊕ g(k). Nevertheless, it is easy to
verify that the result also holds if g(k) is present since the function ũ → H ⊗ ũ ⊕ g(k) is a
monotonically nondecreasing function of ũ. So if ũ∗ is the greatest subsolution ofH⊗ũ = r̃(k),
then any increase in one of the components of ũ∗ will cause the constraint H ⊗ ũ 6 r̃(k) and
thus also H ⊗ ũ⊕ g(k) 6 r̃(k) to be violated8. ✸

C.2 Special case 2

Now we consider another special MPC-MPL problem:

min
ũ(k)

Jout,21 =

Np
⊕

j=1

l
⊕

i=1

|ŷi(k + j|k)− ri(k + j)| (A.16)

subject to

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (A.17)

7Also note that the constraint (23) is void since Nc = Np.
8Recall that all components of the greatest subsolution ũ∗ are as large as possible without violating the

constraint H ⊗ ũ 6 r̃(k).

v

withNc = Np and no other constraints. So in this case we to minimize the maximal differences
between the due dates and the actual output time instants, which could be useful if we have
perishable goods.

If H ⊗ ũ∗ > g(k) with ũ∗ defined by (A.15), then it follows from Theorem A-1 that the
optimal solution of the MPC problem (A.16) – (A.17) is given by

ũ♯ = ũ∗ ⊗
δ

2
with δ = max

i=1,...,mNp

(

r̃i(k)− (H ⊗ ũ∗)i
)

. (A.18)

Remark A-4 The analytic solutions for Special Cases 1 and 2 can also be used as initial
solutions for iterative optimization methods for the general MPC problem. Note however
that the analytic solutions do not take into account all of the MPC constraints (21) and (22)
so that they will not always result in a feasible solution (see also Section 6). ✸

D Additional information and results for the example of Sec-

tion 6

D.1 Derivation of the MPL state space model

Now we derive the max-plus-linear state space model of the production system of Section 6.
For readers familiar with Petri nets, we have presented the Petri net or timed event graph
that corresponds to this production system in Figure A-1.

First we determine the time instant at which processing unit P1 starts working for the
(k + 1)th time. If we feed raw material to the system for the (k + 1)th time, then this raw
material is available at the input of processing unit P1 at time t = u(k) + 2. However, P1

can only start working on the new batch of raw material as soon as it has finished processing
the current, i.e. the kth batch. Since the processing time on P1 is d1 = 11 time units, the
kth intermediate product will leave P1 at time t = x1(k) + 11. Since P1 starts working on a
batch of raw material as soon as the raw material is available and the current batch has left
the processing unit, this implies that we have

x1(k + 1) = max(x1(k) + 11, u(k) + 2) . (A.19)

Using a similar reasoning we find the following expressions for the time instants at which P2

and P3 start working for the (k+1)st time and for the time instant at which the kth finished
product leaves the system:

x2(k + 1) = max(x2(k) + 12, u(k) + 0) (A.20)

x3(k + 1) = max(x1(k + 1) + 11 + 1, x2(k + 1) + 12 + 0, x3(k) + 7) (A.21)

= max(x1(k) + 23, x2(k) + 24, x3(k) + 7, u(k) + 14) (A.22)

y(k) = x3(k) + 7 + 0 . (A.23)

Let us now rewrite the evolution equations of the production system using the symbols ⊕ and
⊗. It is easy to verify that (A.19) can be rewritten as

x1(k + 1) = 11⊗ x1(k) ⊕ 2⊗ u(k) .

vi

Equations (A.20) – (A.23) result in

x2(k + 1) = 12⊗ x2(k) ⊕ u(k)

x3(k + 1) = 23⊗ x1(k) ⊕ 24⊗ x2(k) ⊕ 7⊗ x3(k) ⊕ 14⊗ u(k)

y(k) = 7⊗ x3(k) .

If we rewrite these evolution equations in max-algebraic matrix notation, we obtain the de-
scription (29) – (30).

D.2 A further comparison of some control design methods for MPL sys-

tems

In this section we compare the results of several control design methods when applied to the
MPC problem of Section 6 but instead of considering one MPC step we now look at the
evolution over 10 MPC steps.

We take Nc = 3 and Np = 5 for the control horizon and the prediction horizon. Note
that these values of Nc and Np lie closer to the heuristic values that would by used in MPC
for PTL systems than the values selected in the example in Section 6 There we have used
the values Nc = 5 and Np = 8. That choice has mainly been inspired by the need to have
enough parameters in the optimization so that the computational requirements of the various
methods can be effectively compared. Note however that the behavior of the simple system
considered in this example is not sufficiently rich to warrant such large values of Nc and Np

in practice: it can be shown that the minimal system order of this system is 2 (see (Olsder
and De Schutter, 1999) for an overview of techniques to determine minimal system orders
and (partial) minimal state space realizations for MPL systems). Furthermore, the impulse
response of the system is given by the sequence 21, 32, 43, 55, 67, 79, . . . So the steady state
behavior, which is characterized by an increment rate of 12 time units, is already reached
after 3 steps.

We define
{r(k)}10k=1 = 40, 45, 55, 66, 75, 85, 90, 100, 110, 118.

For the 6th up to the 10th MPC step we extend the sequence {r(k)}10k=1 by assuming that the
system operates in steady state with an increment rate of 12 time units9. So r(k+1) = r(k)+12
for k > 10.

This leads to the following (actual) MPC-based input sequence:

{umpc(k)}
9
k=0 = 12, 24, 35, 46, 58, 70, 82, 94, 106, 118. (A.24)

The corresponding output sequence is

{ympc(k)}
10
k=1 = 33, 45, 56, 67, 79, 91, 103, 115, 127, 139,

and the corresponding value of the objective function defined by

Jact =
10
∑

k=1

max
(

y(k)− r(k), 0
)

−
10
∑

k=1

u(k − 1)

9Note that this corresponds to the steady state increment rate of the impulse response of the system.

vii

is −567. The exact optimal solution, which can be determined by solving the MPC problem
for k = 0 with Nc = Np = 10, is the same as solution (A.24).

The analytic solution given by (A.15) is physically infeasible since it is not nondecreasing.
The solution defined by (A.18) results in the following input sequence:

{u2(k)}9k=0 = 5, 17, 29, 41, 53, 65, 77, 89, 100, 111 .

The corresponding output sequence is

{y2(k)}10k=1 = 31, 43, 55, 67, 79, 91, 103, 115, 127, 139 ,

and the corresponding value of the objective function Jact is −510.
The control design method of (Menguy et al., 1998a) results in

{u4(k)}9k=0 = 12, 23, 34, 46, 58, 70, 82, 94, 106, 118

with {y4(k)}10k=1 = 33, 44, 55, 67, 79, 91, 103, 115, 127, 139 and Jact = −566.
The other control design methods mentioned at the end of Section 4.5 also lead to input
sequences that do not satisfy the constraints.

viii

u(k)

y(k)

x1(k) x2(k)

x3(k)

2 0

7

11 12

12 + 011 + 1

7 + 0

Figure A-1: The Petri net or timed event graph that corresponds to the production system
of Figure 1. The numbers next to each place correspond to the holding times of the tokens
in that place.

ix

