
The latest version of this doc is probably at
https://commonpike.github.io/nl.kw.processing.portmods/docs/PortMods.pdf
This is a work in progress. Interfaces may still change. If you have comments or suggestions, ​let me know​.

Processing PortMods
https://github.com/commonpike/nl.kw.processing.portmods
pike*20190502

What they do

Basics

A Processing PortMod is a java object with several ports. You can `get()` and `set()` values
on ports, and the values you `get()` from a port may be updated every time you have `set()`
a new value on another port. It is much like a regular function:

void draw() {

Mod sin = ​new​ ModSin();
 for​ (int i=​-100​; i<= ​100​; i++) {
 sin.set(​"tick"​,i);
 point(i,sin.get(​"out"​));
 }

 noLoop();

}

(NB: you can ​easily​ do the above without PortMods in Processing)
(NB2: the graphics shown have a bit more code in them to get this nice preview) 1

(NB3: the above code is exactly the same as “Mod sin = new ModSin(); sin.plotter().plot(this)”)

The above code uses two ports of the ModSin mod, “​tick​” and “​out​”. ModSin also has ports
“​amp​”, “​phase​”, “​speed​” and “​shift​”. Let’s see what happens if we play with amp, too:

void draw() {

 Mod sin = ​new​ ModSin();
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 sin.set(​"tick"​,i).set(​"amp"​,​100​-i);
 point(i,sin.get(​"out"​));
 }

 noLoop();

}

1 try "​translate(width/​2​,height/​2​); scale(​1​,​-1​);​" to normalize your graphs like this..

https://commonpike.github.io/nl.kw.processing.portmods/docs/PortMods.pdf
mailto:pike-portmods@kw.nl
https://github.com/commonpike/nl.kw.processing.mods

nl.kw.processing.portmods 2

Push and pull

The cool thing about PortMods is that you can connect them - use the output of one mod as
the input of another mod. Obviously, you can just do that in your own loop:

void draw() {

 Mod sin1 = ​new​ ModSin();
 Mod sin2 = ​new​ ModSin();
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 sin1.set(​"tick"​,i*​2​);
 sin2.set(​"tick"​,i).set(​"amp"​,sin1.get(​"out"​));
 point(i,sin2.get(​"out"​));
 }

 noLoop();

}

But there are ways to connect mods together so that they run as one, by `pushing` or
`pulling` ports of one mod to and from ports of the other mod:

void draw() {

 ​// connect the mods
 Mod sin = ​new​ ModSin();
 Mod subsin = ​new​ ModSin();
 sin.port(​"tick"​).push(subsin.port(​"tick"​));
 sin.port(​"amp"​).pull(subsin.port(​"out"​));
 subsin.set(​"speed"​,sqrt(​20000​));
 ​// now loop the main mod only
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 sin.set(​"tick"​,i);
 point(i,sin.get(​"out"​));
 }

 noLoop();

}

(NB: to get an updated value from a mod, you must either ​get​ or ​pull​ one of its ports; a ​set​ or ​push​ will not update
its port values)

nl.kw.processing.portmods 3

Chain and prechain

The particular type of setup where one port sends its source value to another mod and then
retrieves a ‘modulated’ result value from that same mod is called a ‘chain’. You can do this
using `push` and `pull` yourself, but also via the shorter `chain` method:

void draw() {

 Mod sin = ​new​ ModSin();
 Mod noise = ​new​ ModNoise(this);
 sin.port(​"out"​).chain(noise,​"in"​,​"out"​);
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 sin.set(​"tick"​,i);
 point(i,sin.get(​"out"​));
 }

 noLoop();

}

(NB: ModNoise needs `this` as an argument to the constructor. If you omit this, it will complain, and then fail)

The line

sin.port(​"out"​).chain(noise,​"in"​,​"out"​);

is exactly the same as

sin.port(​"out"​).push(noise,​"in"​).pull(noise,​"out"​);

But with `chain`, you can chain a second Mod on the same ​port​, and it will be added on top
of the first one - which would be harder to do using just the `push` and `pull` methods:

sin.port(​"out"​).chain(noise,​"in"​,​"out"​).chain(median,​"in"​,​"out"​)...;

`Prechain` does almost the same. The above line is effectively the same as

sin.port(​"out"​).chain(median,​"in"​,​"out"​).prechain(noise,​"in"​,​"out"​)...;

As you probably expected by now, you can turn such clusters of Mods into a new Mod.
Which you can then connect to other Mods. Which you can turn into new Mods. Ad infinitum.
For creating your own mods, see ​creating your own mods​.

nl.kw.processing.portmods 4

How they do it

In Processing PortMods, a Mod is a java Object with several ModPorts.

● Any time you `set` (or `push`) a value on a port it is just stored there.
● Any time you `get` (or `pull`) a value from a port, the mod will examine all its ports

and if necessary `calc()` new results before it returns its value.
● It is the `calc` method that defines the behaviour of the Mod.

NB: notice how it's necessary to `get` or `pull` a Mod to trigger it to recalculate its values.

Below is a theoretical sketch of a Mod with two ports: input and output.

Each port has a `source` and `result` part. Whenever you `set()` a value, it is set on the
source part. Whenever you `get` a value, the result part is returned. By default, when you try
to `get` a value, the source part is simply copied to the result part and then returned.

Each port can have exactly one `push` port assigned, and exactly one `pull` port.

If the port has a `push` port assigned, anytime you `set` a value on that port, it will also copy
that value to the source part of its push port:

nl.kw.processing.portmods 5

If a `pull` port is assigned to the port, whenever you `get` a value from that port, it ignores its
own source part. Instead, it copies the result part of the `pull` port to its own result part, and
then returns that:

This becomes more interesting if you combine push and pull to 'hook' a port to another Mod,
which is what 'chain' does:

nl.kw.processing.portmods 6

Just for the heck of it, here are some chains stacked on top of eachother:

And `prechain` only works slightly different. Here are some prechains stacked in front of
eachother - try to figure out the difference:

Obviously, you can combine `push`, `pull`, `chain` and `prechain` as needed, as long as they
don't conflict with each other.

nl.kw.processing.portmods 7

Conventions

Ranges and domains

In general: ports are floats, ranging from -100 to 100 and defaulting at either 0 or 100.

To be able to connect ports from one mod to another, they should all more
or less use the same output and input ranges. By default, ports return floats
between -100 and 100, like a signed percentage, and expect similar values
in return. The default value of a port is usually either 0 or 100. For example,
you may have noticed ModSin above, with a default speed of 100, returns a
single sine wave with tick ranging between 0 and 100, while returning values
between -100 and 100.
Not all Mods limit themselves to that range. ModSpiral for example spirals
nicely between 0 and 100 in the first 100 ticks, but then it just spirals way
out of bounds..

Input and output ports

Between mods, the port names vary. ModSin, which you’ve seen, has one output port (​̀out​`)
and arguably one major input port (​̀tick​`). The other ports are ​`amp ​̀ (amplitude - vertical
multiplication), ​`speed ​̀ (a horizontal multiplication), ​`shift ​̀ (a vertical translation) and
`phase ​̀ (a horizontal translation). These are common port names.

ModSin does not really have an 'in' port, because it just depends on how you want to use it
what port you would send your 'input' to.

Not all mods have a `tick` port. ModFuzz, for example, just adds ‘amp’ amount of
randomness to `in` and returns that in `out`. There is really nothing to `tick` about that. It
does however have a clear 'in' port:

void draw() {

 Mod f = ​new​ ModFuzz();
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 f.set(​"in"​,i);
 point(i,f.get(​"out"​));
 }

 noLoop();

}

nl.kw.processing.portmods 8

There may be more than one 'output' port. All ‘Mod2d*’ Mods have at least two output ports
named ​̀outx​` and ​̀outy​`, for obvious reasons:

void draw() {

 Mod c = ​new​ Mod2dCircle();
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 c.set(​"tick"​,i);
 point(c.get(​"outx"​),c.get(​"outy"​));
 }

 noLoop();

}

There is not even always a useful output port. When using ModColor, for example, you are
mostly interested in its custom method named `color()`, which sets and gets a color value:

void draw() {

 ModColor c = ​new​ ModColor();
 ​for​ (int i=​-100​; i<= ​100​; i++) {
 ​if​ (i%​25​==​0​) {
 c.setColor(-random(​255*255*255​));​//dontask
 c.set(​"green"​,c.get(​"green"​)/​2​);
 }

 c.set(​"red"​,int(i%​25​)*​4​);
 stroke(c.getColor());

 line(i,​-100​,i,​100​);
 }

 noLoop();

}

nl.kw.processing.portmods 9

Subports

Mods that combine other mods can assign names to such 'submods' for your convenience.
Mod2dSpiral, for example, uses ModLin for its growing speed, and has called it "grow".
Below are two examples on how to set or get a value on a port on its 'grow' submod:

void ​draw​() {
 Mod s = ​new​ Mod2dSpiral();
 s.mod(​"grow"​).set(​"shift"​,​100​);
 for (int i=-​100​; i<= ​100​; i++) {
 s.set(​"grow"​,​"speed"​,-2*i);
 s.set(​"tick"​,i);
 point(s.get(​"outx"​),-s.get(​"outy"​));
 }

 noLoop();

}

So exactly what ports a Mod has just depends on how it works and what it does. To find out
more info about your mod, use mod.report():

void​ ​draw​() {
 Mod sin = ​new​ ModSin();
 sin.addMod(​"fuzz"​,​new​ ModFuzz());
 sin.port(​"out"​).chain(​"fuzz"​,​"in"​,​"out"​);
 print(sin.report());

 noLoop();

 ​/*
 ​ Mod ModSin
 Port ModSin.phase: src 0.0 res 0.0

 Port ModSin.shift: src 0.0 res 0.0

 Port ModSin.out: src 0.0 res -5.496292 push: fuzz.in pull: fuzz.out

 Port ModSin.amp: src 100.0 res 100.0

 Port ModSin.tick: src 0.0 res 0.0

 Port ModSin.speed: src 100.0 res 100.0

 Mod fuzz

 Port fuzz.in: src 0.0 res 0.0

 Port fuzz.out: src -5.496292 res -5.496292

 Port fuzz.amp: src 100.0 res 100.0

 */

 }

nl.kw.processing.portmods 10

Plots, points and shapes
Instead of looping and plotting the output of a mod yourself, you can use a ModPlotter. It
requires 3 ports: the `in` port, the `outx` port and the `outy` port. You can pass a range (to
animate port in on) and a domain (to which outx and outy are scaled and translated):

void​ ​draw​() {
 Mod c=​new​ Mod2dCircle();
 ModPlotter p=c.plotter(​"tick"​,​"outx"​,​"outy"​);
 p.range(​0​,​100​,​1​);
 ​for​ (​int​ x=-​100​; x<=​100​; x+=​25​) {
 ​for​ (​int​ y=-​100​; y<=​100​; y+=​25​) {
 p.domain(x,y,x+​25​,y+​25​);
 p.plot(​this​);
 }

 }

}

Some mods provide nice defaults for the Mod, so you don't have to specify ports. Range
defaults to -100, 100, as do both domains; the output ranges (that is, the expected source
values of the used output ports, not shown here) can also be specified, and also default to
-100,100.

The command ​p.plot(this); ​tells the plotter exactly on which output to plot - this one.

The ModPlotter can also return all the coordinates as an array-of-arrays of floats:

void​ ​draw​() {
 Mod c=​new​ Mod2dCircle();
 Mod s = ​new​ ModSin();
 s.set(​"speed"​,​150​).set(​"shift"​,​60​).set(​"amp"​,​40​);
 c.port(​"tick"​).push(s,​"tick"​);
 c.port(​"radius"​).pull(s,​"out"​);
 ​float​[][] points = c.plotter().points();
 ​for​ (​int​ pc=​0​; pc<points.length;pc++) {
 point(points[pc][​0​],points[pc][​1​]);
 }

 noLoop();

}

nl.kw.processing.portmods 11

And finally, a ModPlotter can create a PShape for you which you can reuse in your own
code. By default it is closed, so you can use a fill color, too :

void​ ​draw​() {
 Mod c = ​new​ Mod2dCircle();
 Mod tri = ​new​ ModTri();
 tri.set(​"speed"​,​350​);
 c.port(​"tick"​).push(tri,​"tick"​);
 c.port(​"radius"​).pull(tri,​"out"​);

 fill(​0x66ff0000​);
 stroke(​0xccffff00​);
 strokeWeight(​2​);
 shape(c.plotter().shape(this));

 noLoop();

}

Again ​p.shape(this); ​tells the plotter exactly which output to create shapes for.

nl.kw.processing.portmods 12

Creating your own Mods

Creating your own Mod is easy: just extend an existing Mod (or mod itself), optionally add
some ports, and optionally implement the calc() method:

class​ ​ModNop​ ​extends​ ​Mod​ {
 public ModNop() {

 ​super​();
 addPort(​"in"​).def(0);
 addPort(​"out"​).def(0);
 }

 ​protected​ ​void​ ​calc​() {
 set(​"out"​,get(​"in"​));
 }

}

If you extend a mod, maybe you don't even have to implement calc() yourself:

class​ ​Mod2dSpiral​ ​extends​ ​Mod2dCircle​ {
 public Mod2dSpiral() {

 ​super​();
 addMod(​"grow"​,​new​ ModLin());
 port(​"tick"​).push(​"grow"​,​"tick"​);
 port(​"radius"​).pull(​"grow"​,​"out"​);
 }

}

This says: a spiral is a circle, but it has a lineair 'grow'. The grows ticks along with the spiral,
and the output of the grow goes to the radius. The `calc()` stuff happens in Mod2dCircle.

nl.kw.processing.portmods 13

If you want to implement the default input and output ports for the plotter, implement the
`plotter()` method:

class​ ​ModFuzz​ ​extends​ ​Mod​ {

 public ModFuzz() {

 ​super​();
 addPort(​"in"​).def(​0​);

 addPort(​"amp"​).def(​100​);
 addPort(​"out"​);
 }

 ​protected​ ​void​ ​calc​() {
 ​float​ in = get(​"in"​);
 ​float​ amp = get(​"amp"​);
 ​float​ out = in+random(amp)-amp/​2​;
 set(​"out"​,out);
 }

 ​public​ ModPlotter ​plotter​() {
 ​return​ plotter(​"in"​,​"in"​,​"out"​);
 }

}

nl.kw.processing.portmods 14

Basic Methods
Below are most basic methods. These are often shorthand notation to deeper methods, and
there will be variations on the same methods using objects instead of strings, etcetera. Most
of the setters return the objects on which values were set, so they can be chained (like
mod1.addMod(“mod2”).set(“x”,y).get(“q”) ​).
For the exact and full API, read the JavaDoc. Otherwise, play around !

Mod foo = ​new​ ModFoo();

// for creating new mods

foo.addPort(String portname); ​// add a port
foo.addMod(modname); ​// register a submod for easy access

// submods and ports

foo.mod(modname); ​// retrieve a submod
foo.port(portname); ​// retrieve a port
foo.port(modname,portname); ​// retrieve a port from a submod

// getters and setters

foo.get(portname); ​// get value from a port
foo.get(modname,portname); ​// get value from a port of a submod
foo.set(portname,portvalue); ​// set value on a port
foo.set(modname,portname,value); ​// set value on a port of a submod

Mod bar = ​new​ ModBar();

// port send and receive

foo.port(portname).push(bar,pushname);

foo.port(portname).pull(bar,pullname);

// port chain and prechain

foo.port(portname).chain(bar,sendname,receivename);

foo.port(portname).prechain(bar,sendname,receivename);

// plotter and shapes

foo.plotter(in,outx,outy);

foo.plotter().plot();

foo.plotter().shape();

The latest version of this doc is probably at
https://commonpike.github.io/nl.kw.processing.portmods/docs/PortMods.pdf
This is a work in progress. Interfaces may still change. If you have comments or suggestions, ​let me know​.

https://commonpike.github.io/nl.kw.processing.portmods/docs/PortMods.pdf
mailto:pike-portmods@kw.nl

