rustc_trait_selection/traits/wf.rs
1//! Core logic responsible for determining what it means for various type system
2//! primitives to be "well formed". Actually checking whether these primitives are
3//! well formed is performed elsewhere (e.g. during type checking or item well formedness
4//! checking).
5
6use std::iter;
7
8use rustc_hir as hir;
9use rustc_hir::def::DefKind;
10use rustc_hir::lang_items::LangItem;
11use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
12use rustc_middle::bug;
13use rustc_middle::ty::{
14 self, GenericArgsRef, Term, TermKind, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
15 TypeVisitableExt, TypeVisitor,
16};
17use rustc_session::parse::feature_err;
18use rustc_span::def_id::{DefId, LocalDefId};
19use rustc_span::{Span, sym};
20use tracing::{debug, instrument, trace};
21
22use crate::infer::InferCtxt;
23use crate::traits;
24
25/// Returns the set of obligations needed to make `arg` well-formed.
26/// If `arg` contains unresolved inference variables, this may include
27/// further WF obligations. However, if `arg` IS an unresolved
28/// inference variable, returns `None`, because we are not able to
29/// make any progress at all. This is to prevent cycles where we
30/// say "?0 is WF if ?0 is WF".
31pub fn obligations<'tcx>(
32 infcx: &InferCtxt<'tcx>,
33 param_env: ty::ParamEnv<'tcx>,
34 body_id: LocalDefId,
35 recursion_depth: usize,
36 term: Term<'tcx>,
37 span: Span,
38) -> Option<PredicateObligations<'tcx>> {
39 // Handle the "cycle" case (see comment above) by bailing out if necessary.
40 let term = match term.kind() {
41 TermKind::Ty(ty) => {
42 match ty.kind() {
43 ty::Infer(ty::TyVar(_)) => {
44 let resolved_ty = infcx.shallow_resolve(ty);
45 if resolved_ty == ty {
46 // No progress, bail out to prevent cycles.
47 return None;
48 } else {
49 resolved_ty
50 }
51 }
52 _ => ty,
53 }
54 .into()
55 }
56 TermKind::Const(ct) => {
57 match ct.kind() {
58 ty::ConstKind::Infer(_) => {
59 let resolved = infcx.shallow_resolve_const(ct);
60 if resolved == ct {
61 // No progress, bail out to prevent cycles.
62 return None;
63 } else {
64 resolved
65 }
66 }
67 _ => ct,
68 }
69 .into()
70 }
71 };
72
73 let mut wf = WfPredicates {
74 infcx,
75 param_env,
76 body_id,
77 span,
78 out: PredicateObligations::new(),
79 recursion_depth,
80 item: None,
81 };
82 wf.add_wf_preds_for_term(term);
83 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", term, body_id, wf.out);
84
85 let result = wf.normalize(infcx);
86 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", term, body_id, result);
87 Some(result)
88}
89
90/// Compute the predicates that are required for a type to be well-formed.
91///
92/// This is only intended to be used in the new solver, since it does not
93/// take into account recursion depth or proper error-reporting spans.
94pub fn unnormalized_obligations<'tcx>(
95 infcx: &InferCtxt<'tcx>,
96 param_env: ty::ParamEnv<'tcx>,
97 term: Term<'tcx>,
98 span: Span,
99 body_id: LocalDefId,
100) -> Option<PredicateObligations<'tcx>> {
101 debug_assert_eq!(term, infcx.resolve_vars_if_possible(term));
102
103 // However, if `arg` IS an unresolved inference variable, returns `None`,
104 // because we are not able to make any progress at all. This is to prevent
105 // cycles where we say "?0 is WF if ?0 is WF".
106 if term.is_infer() {
107 return None;
108 }
109
110 let mut wf = WfPredicates {
111 infcx,
112 param_env,
113 body_id,
114 span,
115 out: PredicateObligations::new(),
116 recursion_depth: 0,
117 item: None,
118 };
119 wf.add_wf_preds_for_term(term);
120 Some(wf.out)
121}
122
123/// Returns the obligations that make this trait reference
124/// well-formed. For example, if there is a trait `Set` defined like
125/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
126/// if `Bar: Eq`.
127pub fn trait_obligations<'tcx>(
128 infcx: &InferCtxt<'tcx>,
129 param_env: ty::ParamEnv<'tcx>,
130 body_id: LocalDefId,
131 trait_pred: ty::TraitPredicate<'tcx>,
132 span: Span,
133 item: &'tcx hir::Item<'tcx>,
134) -> PredicateObligations<'tcx> {
135 let mut wf = WfPredicates {
136 infcx,
137 param_env,
138 body_id,
139 span,
140 out: PredicateObligations::new(),
141 recursion_depth: 0,
142 item: Some(item),
143 };
144 wf.add_wf_preds_for_trait_pred(trait_pred, Elaborate::All);
145 debug!(obligations = ?wf.out);
146 wf.normalize(infcx)
147}
148
149/// Returns the requirements for `clause` to be well-formed.
150///
151/// For example, if there is a trait `Set` defined like
152/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
153/// if `Bar: Eq`.
154#[instrument(skip(infcx), ret)]
155pub fn clause_obligations<'tcx>(
156 infcx: &InferCtxt<'tcx>,
157 param_env: ty::ParamEnv<'tcx>,
158 body_id: LocalDefId,
159 clause: ty::Clause<'tcx>,
160 span: Span,
161) -> PredicateObligations<'tcx> {
162 let mut wf = WfPredicates {
163 infcx,
164 param_env,
165 body_id,
166 span,
167 out: PredicateObligations::new(),
168 recursion_depth: 0,
169 item: None,
170 };
171
172 // It's ok to skip the binder here because wf code is prepared for it
173 match clause.kind().skip_binder() {
174 ty::ClauseKind::Trait(t) => {
175 wf.add_wf_preds_for_trait_pred(t, Elaborate::None);
176 }
177 ty::ClauseKind::HostEffect(..) => {
178 // Technically the well-formedness of this predicate is implied by
179 // the corresponding trait predicate it should've been generated beside.
180 }
181 ty::ClauseKind::RegionOutlives(..) => {}
182 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
183 wf.add_wf_preds_for_term(ty.into());
184 }
185 ty::ClauseKind::Projection(t) => {
186 wf.add_wf_preds_for_alias_term(t.projection_term);
187 wf.add_wf_preds_for_term(t.term);
188 }
189 ty::ClauseKind::ConstArgHasType(ct, ty) => {
190 wf.add_wf_preds_for_term(ct.into());
191 wf.add_wf_preds_for_term(ty.into());
192 }
193 ty::ClauseKind::WellFormed(term) => {
194 wf.add_wf_preds_for_term(term);
195 }
196
197 ty::ClauseKind::ConstEvaluatable(ct) => {
198 wf.add_wf_preds_for_term(ct.into());
199 }
200 ty::ClauseKind::UnstableFeature(_) => {}
201 }
202
203 wf.normalize(infcx)
204}
205
206struct WfPredicates<'a, 'tcx> {
207 infcx: &'a InferCtxt<'tcx>,
208 param_env: ty::ParamEnv<'tcx>,
209 body_id: LocalDefId,
210 span: Span,
211 out: PredicateObligations<'tcx>,
212 recursion_depth: usize,
213 item: Option<&'tcx hir::Item<'tcx>>,
214}
215
216/// Controls whether we "elaborate" supertraits and so forth on the WF
217/// predicates. This is a kind of hack to address #43784. The
218/// underlying problem in that issue was a trait structure like:
219///
220/// ```ignore (illustrative)
221/// trait Foo: Copy { }
222/// trait Bar: Foo { }
223/// impl<T: Bar> Foo for T { }
224/// impl<T> Bar for T { }
225/// ```
226///
227/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
228/// we decide that this is true because `T: Bar` is in the
229/// where-clauses (and we can elaborate that to include `T:
230/// Copy`). This wouldn't be a problem, except that when we check the
231/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
232/// impl. And so nowhere did we check that `T: Copy` holds!
233///
234/// To resolve this, we elaborate the WF requirements that must be
235/// proven when checking impls. This means that (e.g.) the `impl Bar
236/// for T` will be forced to prove not only that `T: Foo` but also `T:
237/// Copy` (which it won't be able to do, because there is no `Copy`
238/// impl for `T`).
239#[derive(Debug, PartialEq, Eq, Copy, Clone)]
240enum Elaborate {
241 All,
242 None,
243}
244
245/// Points the cause span of a super predicate at the relevant associated type.
246///
247/// Given a trait impl item:
248///
249/// ```ignore (incomplete)
250/// impl TargetTrait for TargetType {
251/// type Assoc = SomeType;
252/// }
253/// ```
254///
255/// And a super predicate of `TargetTrait` that has any of the following forms:
256///
257/// 1. `<OtherType as OtherTrait>::Assoc == <TargetType as TargetTrait>::Assoc`
258/// 2. `<<TargetType as TargetTrait>::Assoc as OtherTrait>::Assoc == OtherType`
259/// 3. `<TargetType as TargetTrait>::Assoc: OtherTrait`
260///
261/// Replace the span of the cause with the span of the associated item:
262///
263/// ```ignore (incomplete)
264/// impl TargetTrait for TargetType {
265/// type Assoc = SomeType;
266/// // ^^^^^^^^ this span
267/// }
268/// ```
269///
270/// Note that bounds that can be expressed as associated item bounds are **not**
271/// super predicates. This means that form 2 and 3 from above are only relevant if
272/// the [`GenericArgsRef`] of the projection type are not its identity arguments.
273fn extend_cause_with_original_assoc_item_obligation<'tcx>(
274 tcx: TyCtxt<'tcx>,
275 item: Option<&hir::Item<'tcx>>,
276 cause: &mut traits::ObligationCause<'tcx>,
277 pred: ty::Predicate<'tcx>,
278) {
279 debug!(?item, ?cause, ?pred, "extended_cause_with_original_assoc_item_obligation");
280 let (items, impl_def_id) = match item {
281 Some(hir::Item { kind: hir::ItemKind::Impl(impl_), owner_id, .. }) => {
282 (impl_.items, *owner_id)
283 }
284 _ => return,
285 };
286
287 let ty_to_impl_span = |ty: Ty<'_>| {
288 if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
289 && let Some(&impl_item_id) =
290 tcx.impl_item_implementor_ids(impl_def_id).get(&projection_ty.def_id)
291 && let Some(impl_item) =
292 items.iter().find(|item| item.owner_id.to_def_id() == impl_item_id)
293 {
294 Some(tcx.hir_impl_item(*impl_item).expect_type().span)
295 } else {
296 None
297 }
298 };
299
300 // It is fine to skip the binder as we don't care about regions here.
301 match pred.kind().skip_binder() {
302 ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) => {
303 // Form 1: The obligation comes not from the current `impl` nor the `trait` being
304 // implemented, but rather from a "second order" obligation, where an associated
305 // type has a projection coming from another associated type.
306 // See `tests/ui/traits/assoc-type-in-superbad.rs` for an example.
307 if let Some(term_ty) = proj.term.as_type()
308 && let Some(impl_item_span) = ty_to_impl_span(term_ty)
309 {
310 cause.span = impl_item_span;
311 }
312
313 // Form 2: A projection obligation for an associated item failed to be met.
314 // We overwrite the span from above to ensure that a bound like
315 // `Self::Assoc1: Trait<OtherAssoc = Self::Assoc2>` gets the same
316 // span for both obligations that it is lowered to.
317 if let Some(impl_item_span) = ty_to_impl_span(proj.self_ty()) {
318 cause.span = impl_item_span;
319 }
320 }
321
322 ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
323 // Form 3: A trait obligation for an associated item failed to be met.
324 debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
325 if let Some(impl_item_span) = ty_to_impl_span(pred.self_ty()) {
326 cause.span = impl_item_span;
327 }
328 }
329 _ => {}
330 }
331}
332
333impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
334 fn tcx(&self) -> TyCtxt<'tcx> {
335 self.infcx.tcx
336 }
337
338 fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
339 traits::ObligationCause::new(self.span, self.body_id, code)
340 }
341
342 fn normalize(self, infcx: &InferCtxt<'tcx>) -> PredicateObligations<'tcx> {
343 // Do not normalize `wf` obligations with the new solver.
344 //
345 // The current deep normalization routine with the new solver does not
346 // handle ambiguity and the new solver correctly deals with unnnormalized goals.
347 // If the user relies on normalized types, e.g. for `fn implied_outlives_bounds`,
348 // it is their responsibility to normalize while avoiding ambiguity.
349 if infcx.next_trait_solver() {
350 return self.out;
351 }
352
353 let cause = self.cause(ObligationCauseCode::WellFormed(None));
354 let param_env = self.param_env;
355 let mut obligations = PredicateObligations::with_capacity(self.out.len());
356 for mut obligation in self.out {
357 assert!(!obligation.has_escaping_bound_vars());
358 let mut selcx = traits::SelectionContext::new(infcx);
359 // Don't normalize the whole obligation, the param env is either
360 // already normalized, or we're currently normalizing the
361 // param_env. Either way we should only normalize the predicate.
362 let normalized_predicate = traits::normalize::normalize_with_depth_to(
363 &mut selcx,
364 param_env,
365 cause.clone(),
366 self.recursion_depth,
367 obligation.predicate,
368 &mut obligations,
369 );
370 obligation.predicate = normalized_predicate;
371 obligations.push(obligation);
372 }
373 obligations
374 }
375
376 /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
377 fn add_wf_preds_for_trait_pred(
378 &mut self,
379 trait_pred: ty::TraitPredicate<'tcx>,
380 elaborate: Elaborate,
381 ) {
382 let tcx = self.tcx();
383 let trait_ref = trait_pred.trait_ref;
384
385 // Negative trait predicates don't require supertraits to hold, just
386 // that their args are WF.
387 if trait_pred.polarity == ty::PredicatePolarity::Negative {
388 self.add_wf_preds_for_negative_trait_pred(trait_ref);
389 return;
390 }
391
392 // if the trait predicate is not const, the wf obligations should not be const as well.
393 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.args);
394
395 debug!("compute_trait_pred obligations {:?}", obligations);
396 let param_env = self.param_env;
397 let depth = self.recursion_depth;
398
399 let item = self.item;
400
401 let extend = |traits::PredicateObligation { predicate, mut cause, .. }| {
402 if let Some(parent_trait_pred) = predicate.as_trait_clause() {
403 cause = cause.derived_cause(
404 parent_trait_pred,
405 traits::ObligationCauseCode::WellFormedDerived,
406 );
407 }
408 extend_cause_with_original_assoc_item_obligation(tcx, item, &mut cause, predicate);
409 traits::Obligation::with_depth(tcx, cause, depth, param_env, predicate)
410 };
411
412 if let Elaborate::All = elaborate {
413 let implied_obligations = traits::util::elaborate(tcx, obligations);
414 let implied_obligations = implied_obligations.map(extend);
415 self.out.extend(implied_obligations);
416 } else {
417 self.out.extend(obligations);
418 }
419
420 self.out.extend(
421 trait_ref
422 .args
423 .iter()
424 .enumerate()
425 .filter_map(|(i, arg)| arg.as_term().map(|t| (i, t)))
426 .filter(|(_, term)| !term.has_escaping_bound_vars())
427 .map(|(i, term)| {
428 let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
429 // The first arg is the self ty - use the correct span for it.
430 if i == 0 {
431 if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
432 item.map(|i| &i.kind)
433 {
434 cause.span = self_ty.span;
435 }
436 }
437 traits::Obligation::with_depth(
438 tcx,
439 cause,
440 depth,
441 param_env,
442 ty::ClauseKind::WellFormed(term),
443 )
444 }),
445 );
446 }
447
448 // Compute the obligations that are required for `trait_ref` to be WF,
449 // given that it is a *negative* trait predicate.
450 fn add_wf_preds_for_negative_trait_pred(&mut self, trait_ref: ty::TraitRef<'tcx>) {
451 for arg in trait_ref.args {
452 if let Some(term) = arg.as_term() {
453 self.add_wf_preds_for_term(term);
454 }
455 }
456 }
457
458 /// Pushes the obligations required for an alias (except inherent) to be WF
459 /// into `self.out`.
460 fn add_wf_preds_for_alias_term(&mut self, data: ty::AliasTerm<'tcx>) {
461 // A projection is well-formed if
462 //
463 // (a) its predicates hold (*)
464 // (b) its args are wf
465 //
466 // (*) The predicates of an associated type include the predicates of
467 // the trait that it's contained in. For example, given
468 //
469 // trait A<T>: Clone {
470 // type X where T: Copy;
471 // }
472 //
473 // The predicates of `<() as A<i32>>::X` are:
474 // [
475 // `(): Sized`
476 // `(): Clone`
477 // `(): A<i32>`
478 // `i32: Sized`
479 // `i32: Clone`
480 // `i32: Copy`
481 // ]
482 let obligations = self.nominal_obligations(data.def_id, data.args);
483 self.out.extend(obligations);
484
485 self.add_wf_preds_for_projection_args(data.args);
486 }
487
488 /// Pushes the obligations required for an inherent alias to be WF
489 /// into `self.out`.
490 // FIXME(inherent_associated_types): Merge this function with `fn compute_alias`.
491 fn add_wf_preds_for_inherent_projection(&mut self, data: ty::AliasTerm<'tcx>) {
492 // An inherent projection is well-formed if
493 //
494 // (a) its predicates hold (*)
495 // (b) its args are wf
496 //
497 // (*) The predicates of an inherent associated type include the
498 // predicates of the impl that it's contained in.
499
500 if !data.self_ty().has_escaping_bound_vars() {
501 // FIXME(inherent_associated_types): Should this happen inside of a snapshot?
502 // FIXME(inherent_associated_types): This is incompatible with the new solver and lazy norm!
503 let args = traits::project::compute_inherent_assoc_term_args(
504 &mut traits::SelectionContext::new(self.infcx),
505 self.param_env,
506 data,
507 self.cause(ObligationCauseCode::WellFormed(None)),
508 self.recursion_depth,
509 &mut self.out,
510 );
511 let obligations = self.nominal_obligations(data.def_id, args);
512 self.out.extend(obligations);
513 }
514
515 data.args.visit_with(self);
516 }
517
518 fn add_wf_preds_for_projection_args(&mut self, args: GenericArgsRef<'tcx>) {
519 let tcx = self.tcx();
520 let cause = self.cause(ObligationCauseCode::WellFormed(None));
521 let param_env = self.param_env;
522 let depth = self.recursion_depth;
523
524 self.out.extend(
525 args.iter()
526 .filter_map(|arg| arg.as_term())
527 .filter(|term| !term.has_escaping_bound_vars())
528 .map(|term| {
529 traits::Obligation::with_depth(
530 tcx,
531 cause.clone(),
532 depth,
533 param_env,
534 ty::ClauseKind::WellFormed(term),
535 )
536 }),
537 );
538 }
539
540 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
541 if !subty.has_escaping_bound_vars() {
542 let cause = self.cause(cause);
543 let trait_ref = ty::TraitRef::new(
544 self.tcx(),
545 self.tcx().require_lang_item(LangItem::Sized, cause.span),
546 [subty],
547 );
548 self.out.push(traits::Obligation::with_depth(
549 self.tcx(),
550 cause,
551 self.recursion_depth,
552 self.param_env,
553 ty::Binder::dummy(trait_ref),
554 ));
555 }
556 }
557
558 /// Pushes all the predicates needed to validate that `term` is WF into `out`.
559 #[instrument(level = "debug", skip(self))]
560 fn add_wf_preds_for_term(&mut self, term: Term<'tcx>) {
561 term.visit_with(self);
562 debug!(?self.out);
563 }
564
565 #[instrument(level = "debug", skip(self))]
566 fn nominal_obligations(
567 &mut self,
568 def_id: DefId,
569 args: GenericArgsRef<'tcx>,
570 ) -> PredicateObligations<'tcx> {
571 // PERF: `Sized`'s predicates include `MetaSized`, but both are compiler implemented marker
572 // traits, so `MetaSized` will always be WF if `Sized` is WF and vice-versa. Determining
573 // the nominal obligations of `Sized` would in-effect just elaborate `MetaSized` and make
574 // the compiler do a bunch of work needlessly.
575 if self.tcx().is_lang_item(def_id, LangItem::Sized) {
576 return Default::default();
577 }
578
579 let predicates = self.tcx().predicates_of(def_id);
580 let mut origins = vec![def_id; predicates.predicates.len()];
581 let mut head = predicates;
582 while let Some(parent) = head.parent {
583 head = self.tcx().predicates_of(parent);
584 origins.extend(iter::repeat(parent).take(head.predicates.len()));
585 }
586
587 let predicates = predicates.instantiate(self.tcx(), args);
588 trace!("{:#?}", predicates);
589 debug_assert_eq!(predicates.predicates.len(), origins.len());
590
591 iter::zip(predicates, origins.into_iter().rev())
592 .map(|((pred, span), origin_def_id)| {
593 let code = ObligationCauseCode::WhereClause(origin_def_id, span);
594 let cause = self.cause(code);
595 traits::Obligation::with_depth(
596 self.tcx(),
597 cause,
598 self.recursion_depth,
599 self.param_env,
600 pred,
601 )
602 })
603 .filter(|pred| !pred.has_escaping_bound_vars())
604 .collect()
605 }
606
607 fn add_wf_preds_for_dyn_ty(
608 &mut self,
609 ty: Ty<'tcx>,
610 data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
611 region: ty::Region<'tcx>,
612 ) {
613 // Imagine a type like this:
614 //
615 // trait Foo { }
616 // trait Bar<'c> : 'c { }
617 //
618 // &'b (Foo+'c+Bar<'d>)
619 // ^
620 //
621 // In this case, the following relationships must hold:
622 //
623 // 'b <= 'c
624 // 'd <= 'c
625 //
626 // The first conditions is due to the normal region pointer
627 // rules, which say that a reference cannot outlive its
628 // referent.
629 //
630 // The final condition may be a bit surprising. In particular,
631 // you may expect that it would have been `'c <= 'd`, since
632 // usually lifetimes of outer things are conservative
633 // approximations for inner things. However, it works somewhat
634 // differently with trait objects: here the idea is that if the
635 // user specifies a region bound (`'c`, in this case) it is the
636 // "master bound" that *implies* that bounds from other traits are
637 // all met. (Remember that *all bounds* in a type like
638 // `Foo+Bar+Zed` must be met, not just one, hence if we write
639 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
640 // 'y.)
641 //
642 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
643 // am looking forward to the future here.
644 if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
645 let implicit_bounds = object_region_bounds(self.tcx(), data);
646
647 let explicit_bound = region;
648
649 self.out.reserve(implicit_bounds.len());
650 for implicit_bound in implicit_bounds {
651 let cause = self.cause(ObligationCauseCode::ObjectTypeBound(ty, explicit_bound));
652 let outlives =
653 ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
654 self.out.push(traits::Obligation::with_depth(
655 self.tcx(),
656 cause,
657 self.recursion_depth,
658 self.param_env,
659 outlives,
660 ));
661 }
662
663 // We don't add any wf predicates corresponding to the trait ref's generic arguments
664 // which allows code like this to compile:
665 // ```rust
666 // trait Trait<T: Sized> {}
667 // fn foo(_: &dyn Trait<[u32]>) {}
668 // ```
669 }
670 }
671
672 fn add_wf_preds_for_pat_ty(&mut self, base_ty: Ty<'tcx>, pat: ty::Pattern<'tcx>) {
673 let tcx = self.tcx();
674 match *pat {
675 ty::PatternKind::Range { start, end } => {
676 let mut check = |c| {
677 let cause = self.cause(ObligationCauseCode::Misc);
678 self.out.push(traits::Obligation::with_depth(
679 tcx,
680 cause.clone(),
681 self.recursion_depth,
682 self.param_env,
683 ty::Binder::dummy(ty::PredicateKind::Clause(
684 ty::ClauseKind::ConstArgHasType(c, base_ty),
685 )),
686 ));
687 if !tcx.features().generic_pattern_types() {
688 if c.has_param() {
689 if self.span.is_dummy() {
690 self.tcx()
691 .dcx()
692 .delayed_bug("feature error should be reported elsewhere, too");
693 } else {
694 feature_err(
695 &self.tcx().sess,
696 sym::generic_pattern_types,
697 self.span,
698 "wraparound pattern type ranges cause monomorphization time errors",
699 )
700 .emit();
701 }
702 }
703 }
704 };
705 check(start);
706 check(end);
707 }
708 ty::PatternKind::Or(patterns) => {
709 for pat in patterns {
710 self.add_wf_preds_for_pat_ty(base_ty, pat)
711 }
712 }
713 }
714 }
715}
716
717impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for WfPredicates<'a, 'tcx> {
718 fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
719 debug!("wf bounds for t={:?} t.kind={:#?}", t, t.kind());
720
721 let tcx = self.tcx();
722
723 match *t.kind() {
724 ty::Bool
725 | ty::Char
726 | ty::Int(..)
727 | ty::Uint(..)
728 | ty::Float(..)
729 | ty::Error(_)
730 | ty::Str
731 | ty::CoroutineWitness(..)
732 | ty::Never
733 | ty::Param(_)
734 | ty::Bound(..)
735 | ty::Placeholder(..)
736 | ty::Foreign(..) => {
737 // WfScalar, WfParameter, etc
738 }
739
740 // Can only infer to `ty::Int(_) | ty::Uint(_)`.
741 ty::Infer(ty::IntVar(_)) => {}
742
743 // Can only infer to `ty::Float(_)`.
744 ty::Infer(ty::FloatVar(_)) => {}
745
746 ty::Slice(subty) => {
747 self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
748 }
749
750 ty::Array(subty, len) => {
751 self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
752 // Note that the len being WF is implicitly checked while visiting.
753 // Here we just check that it's of type usize.
754 let cause = self.cause(ObligationCauseCode::ArrayLen(t));
755 self.out.push(traits::Obligation::with_depth(
756 tcx,
757 cause,
758 self.recursion_depth,
759 self.param_env,
760 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(
761 len,
762 tcx.types.usize,
763 ))),
764 ));
765 }
766
767 ty::Pat(base_ty, pat) => {
768 self.require_sized(base_ty, ObligationCauseCode::Misc);
769 self.add_wf_preds_for_pat_ty(base_ty, pat);
770 }
771
772 ty::Tuple(tys) => {
773 if let Some((_last, rest)) = tys.split_last() {
774 for &elem in rest {
775 self.require_sized(elem, ObligationCauseCode::TupleElem);
776 }
777 }
778 }
779
780 ty::RawPtr(_, _) => {
781 // Simple cases that are WF if their type args are WF.
782 }
783
784 ty::Alias(ty::Projection | ty::Opaque | ty::Free, data) => {
785 let obligations = self.nominal_obligations(data.def_id, data.args);
786 self.out.extend(obligations);
787 }
788 ty::Alias(ty::Inherent, data) => {
789 self.add_wf_preds_for_inherent_projection(data.into());
790 return; // Subtree handled by compute_inherent_projection.
791 }
792
793 ty::Adt(def, args) => {
794 // WfNominalType
795 let obligations = self.nominal_obligations(def.did(), args);
796 self.out.extend(obligations);
797 }
798
799 ty::FnDef(did, args) => {
800 // HACK: Check the return type of function definitions for
801 // well-formedness to mostly fix #84533. This is still not
802 // perfect and there may be ways to abuse the fact that we
803 // ignore requirements with escaping bound vars. That's a
804 // more general issue however.
805 let fn_sig = tcx.fn_sig(did).instantiate(tcx, args);
806 fn_sig.output().skip_binder().visit_with(self);
807
808 let obligations = self.nominal_obligations(did, args);
809 self.out.extend(obligations);
810 }
811
812 ty::Ref(r, rty, _) => {
813 // WfReference
814 if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
815 let cause = self.cause(ObligationCauseCode::ReferenceOutlivesReferent(t));
816 self.out.push(traits::Obligation::with_depth(
817 tcx,
818 cause,
819 self.recursion_depth,
820 self.param_env,
821 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
822 ty::OutlivesPredicate(rty, r),
823 ))),
824 ));
825 }
826 }
827
828 ty::Coroutine(did, args, ..) => {
829 // Walk ALL the types in the coroutine: this will
830 // include the upvar types as well as the yield
831 // type. Note that this is mildly distinct from
832 // the closure case, where we have to be careful
833 // about the signature of the closure. We don't
834 // have the problem of implied bounds here since
835 // coroutines don't take arguments.
836 let obligations = self.nominal_obligations(did, args);
837 self.out.extend(obligations);
838 }
839
840 ty::Closure(did, args) => {
841 // Note that we cannot skip the generic types
842 // types. Normally, within the fn
843 // body where they are created, the generics will
844 // always be WF, and outside of that fn body we
845 // are not directly inspecting closure types
846 // anyway, except via auto trait matching (which
847 // only inspects the upvar types).
848 // But when a closure is part of a type-alias-impl-trait
849 // then the function that created the defining site may
850 // have had more bounds available than the type alias
851 // specifies. This may cause us to have a closure in the
852 // hidden type that is not actually well formed and
853 // can cause compiler crashes when the user abuses unsafe
854 // code to procure such a closure.
855 // See tests/ui/type-alias-impl-trait/wf_check_closures.rs
856 let obligations = self.nominal_obligations(did, args);
857 self.out.extend(obligations);
858 // Only check the upvar types for WF, not the rest
859 // of the types within. This is needed because we
860 // capture the signature and it may not be WF
861 // without the implied bounds. Consider a closure
862 // like `|x: &'a T|` -- it may be that `T: 'a` is
863 // not known to hold in the creator's context (and
864 // indeed the closure may not be invoked by its
865 // creator, but rather turned to someone who *can*
866 // verify that).
867 //
868 // The special treatment of closures here really
869 // ought not to be necessary either; the problem
870 // is related to #25860 -- there is no way for us
871 // to express a fn type complete with the implied
872 // bounds that it is assuming. I think in reality
873 // the WF rules around fn are a bit messed up, and
874 // that is the rot problem: `fn(&'a T)` should
875 // probably always be WF, because it should be
876 // shorthand for something like `where(T: 'a) {
877 // fn(&'a T) }`, as discussed in #25860.
878 let upvars = args.as_closure().tupled_upvars_ty();
879 return upvars.visit_with(self);
880 }
881
882 ty::CoroutineClosure(did, args) => {
883 // See the above comments. The same apply to coroutine-closures.
884 let obligations = self.nominal_obligations(did, args);
885 self.out.extend(obligations);
886 let upvars = args.as_coroutine_closure().tupled_upvars_ty();
887 return upvars.visit_with(self);
888 }
889
890 ty::FnPtr(..) => {
891 // Let the visitor iterate into the argument/return
892 // types appearing in the fn signature.
893 }
894 ty::UnsafeBinder(ty) => {
895 // FIXME(unsafe_binders): For now, we have no way to express
896 // that a type must be `ManuallyDrop` OR `Copy` (or a pointer).
897 if !ty.has_escaping_bound_vars() {
898 self.out.push(traits::Obligation::new(
899 self.tcx(),
900 self.cause(ObligationCauseCode::Misc),
901 self.param_env,
902 ty.map_bound(|ty| {
903 ty::TraitRef::new(
904 self.tcx(),
905 self.tcx().require_lang_item(
906 LangItem::BikeshedGuaranteedNoDrop,
907 self.span,
908 ),
909 [ty],
910 )
911 }),
912 ));
913 }
914
915 // We recurse into the binder below.
916 }
917
918 ty::Dynamic(data, r, _) => {
919 // WfObject
920 //
921 // Here, we defer WF checking due to higher-ranked
922 // regions. This is perhaps not ideal.
923 self.add_wf_preds_for_dyn_ty(t, data, r);
924
925 // FIXME(#27579) RFC also considers adding trait
926 // obligations that don't refer to Self and
927 // checking those
928 if let Some(principal) = data.principal_def_id() {
929 self.out.push(traits::Obligation::with_depth(
930 tcx,
931 self.cause(ObligationCauseCode::WellFormed(None)),
932 self.recursion_depth,
933 self.param_env,
934 ty::Binder::dummy(ty::PredicateKind::DynCompatible(principal)),
935 ));
936 }
937 }
938
939 // Inference variables are the complicated case, since we don't
940 // know what type they are. We do two things:
941 //
942 // 1. Check if they have been resolved, and if so proceed with
943 // THAT type.
944 // 2. If not, we've at least simplified things (e.g., we went
945 // from `Vec?0>: WF` to `?0: WF`), so we can
946 // register a pending obligation and keep
947 // moving. (Goal is that an "inductive hypothesis"
948 // is satisfied to ensure termination.)
949 // See also the comment on `fn obligations`, describing cycle
950 // prevention, which happens before this can be reached.
951 ty::Infer(_) => {
952 let cause = self.cause(ObligationCauseCode::WellFormed(None));
953 self.out.push(traits::Obligation::with_depth(
954 tcx,
955 cause,
956 self.recursion_depth,
957 self.param_env,
958 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
959 t.into(),
960 ))),
961 ));
962 }
963 }
964
965 t.super_visit_with(self)
966 }
967
968 fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
969 let tcx = self.tcx();
970
971 match c.kind() {
972 ty::ConstKind::Unevaluated(uv) => {
973 if !c.has_escaping_bound_vars() {
974 let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
975 ty::ClauseKind::ConstEvaluatable(c),
976 ));
977 let cause = self.cause(ObligationCauseCode::WellFormed(None));
978 self.out.push(traits::Obligation::with_depth(
979 tcx,
980 cause,
981 self.recursion_depth,
982 self.param_env,
983 predicate,
984 ));
985
986 if tcx.def_kind(uv.def) == DefKind::AssocConst
987 && tcx.def_kind(tcx.parent(uv.def)) == (DefKind::Impl { of_trait: false })
988 {
989 self.add_wf_preds_for_inherent_projection(uv.into());
990 return; // Subtree is handled by above function
991 } else {
992 let obligations = self.nominal_obligations(uv.def, uv.args);
993 self.out.extend(obligations);
994 }
995 }
996 }
997 ty::ConstKind::Infer(_) => {
998 let cause = self.cause(ObligationCauseCode::WellFormed(None));
999
1000 self.out.push(traits::Obligation::with_depth(
1001 tcx,
1002 cause,
1003 self.recursion_depth,
1004 self.param_env,
1005 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
1006 c.into(),
1007 ))),
1008 ));
1009 }
1010 ty::ConstKind::Expr(_) => {
1011 // FIXME(generic_const_exprs): this doesn't verify that given `Expr(N + 1)` the
1012 // trait bound `typeof(N): Add<typeof(1)>` holds. This is currently unnecessary
1013 // as `ConstKind::Expr` is only produced via normalization of `ConstKind::Unevaluated`
1014 // which means that the `DefId` would have been typeck'd elsewhere. However in
1015 // the future we may allow directly lowering to `ConstKind::Expr` in which case
1016 // we would not be proving bounds we should.
1017
1018 let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
1019 ty::ClauseKind::ConstEvaluatable(c),
1020 ));
1021 let cause = self.cause(ObligationCauseCode::WellFormed(None));
1022 self.out.push(traits::Obligation::with_depth(
1023 tcx,
1024 cause,
1025 self.recursion_depth,
1026 self.param_env,
1027 predicate,
1028 ));
1029 }
1030
1031 ty::ConstKind::Error(_)
1032 | ty::ConstKind::Param(_)
1033 | ty::ConstKind::Bound(..)
1034 | ty::ConstKind::Placeholder(..) => {
1035 // These variants are trivially WF, so nothing to do here.
1036 }
1037 ty::ConstKind::Value(..) => {
1038 // FIXME: Enforce that values are structurally-matchable.
1039 }
1040 }
1041
1042 c.super_visit_with(self)
1043 }
1044
1045 fn visit_predicate(&mut self, _p: ty::Predicate<'tcx>) -> Self::Result {
1046 bug!("predicate should not be checked for well-formedness");
1047 }
1048}
1049
1050/// Given an object type like `SomeTrait + Send`, computes the lifetime
1051/// bounds that must hold on the elided self type. These are derived
1052/// from the declarations of `SomeTrait`, `Send`, and friends -- if
1053/// they declare `trait SomeTrait : 'static`, for example, then
1054/// `'static` would appear in the list.
1055///
1056/// N.B., in some cases, particularly around higher-ranked bounds,
1057/// this function returns a kind of conservative approximation.
1058/// That is, all regions returned by this function are definitely
1059/// required, but there may be other region bounds that are not
1060/// returned, as well as requirements like `for<'a> T: 'a`.
1061///
1062/// Requires that trait definitions have been processed so that we can
1063/// elaborate predicates and walk supertraits.
1064pub fn object_region_bounds<'tcx>(
1065 tcx: TyCtxt<'tcx>,
1066 existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1067) -> Vec<ty::Region<'tcx>> {
1068 let erased_self_ty = tcx.types.trait_object_dummy_self;
1069
1070 let predicates =
1071 existential_predicates.iter().map(|predicate| predicate.with_self_ty(tcx, erased_self_ty));
1072
1073 traits::elaborate(tcx, predicates)
1074 .filter_map(|pred| {
1075 debug!(?pred);
1076 match pred.kind().skip_binder() {
1077 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
1078 // Search for a bound of the form `erased_self_ty
1079 // : 'a`, but be wary of something like `for<'a>
1080 // erased_self_ty : 'a` (we interpret a
1081 // higher-ranked bound like that as 'static,
1082 // though at present the code in `fulfill.rs`
1083 // considers such bounds to be unsatisfiable, so
1084 // it's kind of a moot point since you could never
1085 // construct such an object, but this seems
1086 // correct even if that code changes).
1087 if t == &erased_self_ty && !r.has_escaping_bound_vars() {
1088 Some(*r)
1089 } else {
1090 None
1091 }
1092 }
1093 ty::ClauseKind::Trait(_)
1094 | ty::ClauseKind::HostEffect(..)
1095 | ty::ClauseKind::RegionOutlives(_)
1096 | ty::ClauseKind::Projection(_)
1097 | ty::ClauseKind::ConstArgHasType(_, _)
1098 | ty::ClauseKind::WellFormed(_)
1099 | ty::ClauseKind::UnstableFeature(_)
1100 | ty::ClauseKind::ConstEvaluatable(_) => None,
1101 }
1102 })
1103 .collect()
1104}