rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_ast::token::{Token, TokenKind};
38use rustc_ast::tokenstream::{TokenStream, TokenTree};
39use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
40use rustc_errors::codes::*;
41use rustc_errors::{FatalError, struct_span_code_err};
42use rustc_hir::PredicateOrigin;
43use rustc_hir::def::{CtorKind, DefKind, Res};
44use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
45use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span::hygiene::{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw, sym};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use thin_vec::ThinVec;
56use tracing::{debug, instrument};
57use utils::*;
58use {rustc_ast as ast, rustc_hir as hir};
59
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed);
71        if let Some(name) = item.name
72            && (cx.render_options.document_hidden || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.render_options.document_hidden && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_id)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, *import_id);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.render_options.document_hidden || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id,
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_id: Option<LocalDefId>,
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if let Some(import_id) = import_id {
190        // glob reexports are treated the same as `#[doc(inline)]` items.
191        //
192        // For glob re-exports the item may or may not exist to be re-exported (potentially the cfgs
193        // on the path up until the glob can be removed, and only cfgs on the globbed item itself
194        // matter), for non-inlined re-exports see #85043.
195        let is_inline = hir_attr_lists(inline::load_attrs(cx, import_id.to_def_id()), sym::doc)
196            .get_word_attr(sym::inline)
197            .is_some()
198            || (is_glob_import(cx.tcx, import_id)
199                && (cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id)));
200        let mut attrs = get_all_import_attributes(cx, import_id, def_id, is_inline);
201        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
202        attrs
203    } else {
204        // We only keep the item's attributes.
205        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
206    };
207    let cfg = extract_cfg_from_attrs(
208        attrs.iter().map(move |(attr, _)| match attr {
209            Cow::Borrowed(attr) => *attr,
210            Cow::Owned(attr) => attr,
211        }),
212        cx.tcx,
213        &cx.cache.hidden_cfg,
214    );
215    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
216
217    let name = renamed.or(Some(name));
218    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, cfg);
219    item.inner.inline_stmt_id = import_id;
220    item
221}
222
223fn clean_generic_bound<'tcx>(
224    bound: &hir::GenericBound<'tcx>,
225    cx: &mut DocContext<'tcx>,
226) -> Option<GenericBound> {
227    Some(match bound {
228        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
229        hir::GenericBound::Trait(t) => {
230            // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
231            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
232                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
233            {
234                return None;
235            }
236
237            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
238        }
239        hir::GenericBound::Use(args, ..) => {
240            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
241        }
242    })
243}
244
245pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
246    cx: &mut DocContext<'tcx>,
247    trait_ref: ty::PolyTraitRef<'tcx>,
248    constraints: ThinVec<AssocItemConstraint>,
249) -> Path {
250    let kind = cx.tcx.def_kind(trait_ref.def_id()).into();
251    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
252        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
253    }
254    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
255    let path = clean_middle_path(
256        cx,
257        trait_ref.def_id(),
258        true,
259        constraints,
260        trait_ref.map_bound(|tr| tr.args),
261    );
262
263    debug!(?trait_ref);
264
265    path
266}
267
268fn clean_poly_trait_ref_with_constraints<'tcx>(
269    cx: &mut DocContext<'tcx>,
270    poly_trait_ref: ty::PolyTraitRef<'tcx>,
271    constraints: ThinVec<AssocItemConstraint>,
272) -> GenericBound {
273    GenericBound::TraitBound(
274        PolyTrait {
275            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
276            generic_params: clean_bound_vars(poly_trait_ref.bound_vars()),
277        },
278        hir::TraitBoundModifiers::NONE,
279    )
280}
281
282fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
283    if let Some(
284        rbv::ResolvedArg::EarlyBound(did)
285        | rbv::ResolvedArg::LateBound(_, _, did)
286        | rbv::ResolvedArg::Free(_, did),
287    ) = cx.tcx.named_bound_var(lifetime.hir_id)
288        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
289    {
290        return *lt;
291    }
292    Lifetime(lifetime.ident.name)
293}
294
295pub(crate) fn clean_precise_capturing_arg(
296    arg: &hir::PreciseCapturingArg<'_>,
297    cx: &DocContext<'_>,
298) -> PreciseCapturingArg {
299    match arg {
300        hir::PreciseCapturingArg::Lifetime(lt) => {
301            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
302        }
303        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
304    }
305}
306
307pub(crate) fn clean_const<'tcx>(
308    constant: &hir::ConstArg<'tcx>,
309    _cx: &mut DocContext<'tcx>,
310) -> ConstantKind {
311    match &constant.kind {
312        hir::ConstArgKind::Path(qpath) => {
313            ConstantKind::Path { path: qpath_to_string(qpath).into() }
314        }
315        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
316        hir::ConstArgKind::Infer(..) => ConstantKind::Infer,
317    }
318}
319
320pub(crate) fn clean_middle_const<'tcx>(
321    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
322    _cx: &mut DocContext<'tcx>,
323) -> ConstantKind {
324    // FIXME: instead of storing the stringified expression, store `self` directly instead.
325    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
326}
327
328pub(crate) fn clean_middle_region(region: ty::Region<'_>) -> Option<Lifetime> {
329    match region.kind() {
330        ty::ReStatic => Some(Lifetime::statik()),
331        _ if !region.has_name() => None,
332        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(_, name), .. }) => {
333            Some(Lifetime(name))
334        }
335        ty::ReEarlyParam(ref data) => Some(Lifetime(data.name)),
336        ty::ReBound(..)
337        | ty::ReLateParam(..)
338        | ty::ReVar(..)
339        | ty::ReError(_)
340        | ty::RePlaceholder(..)
341        | ty::ReErased => {
342            debug!("cannot clean region {region:?}");
343            None
344        }
345    }
346}
347
348fn clean_where_predicate<'tcx>(
349    predicate: &hir::WherePredicate<'tcx>,
350    cx: &mut DocContext<'tcx>,
351) -> Option<WherePredicate> {
352    if !predicate.kind.in_where_clause() {
353        return None;
354    }
355    Some(match predicate.kind {
356        hir::WherePredicateKind::BoundPredicate(wbp) => {
357            let bound_params = wbp
358                .bound_generic_params
359                .iter()
360                .map(|param| clean_generic_param(cx, None, param))
361                .collect();
362            WherePredicate::BoundPredicate {
363                ty: clean_ty(wbp.bounded_ty, cx),
364                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
365                bound_params,
366            }
367        }
368
369        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
370            lifetime: clean_lifetime(wrp.lifetime, cx),
371            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
372        },
373
374        // We should never actually reach this case because these predicates should've already been
375        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
376        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
377    })
378}
379
380pub(crate) fn clean_predicate<'tcx>(
381    predicate: ty::Clause<'tcx>,
382    cx: &mut DocContext<'tcx>,
383) -> Option<WherePredicate> {
384    let bound_predicate = predicate.kind();
385    match bound_predicate.skip_binder() {
386        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
387        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred)),
388        ty::ClauseKind::TypeOutlives(pred) => {
389            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
390        }
391        ty::ClauseKind::Projection(pred) => {
392            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
393        }
394        // FIXME(generic_const_exprs): should this do something?
395        ty::ClauseKind::ConstEvaluatable(..)
396        | ty::ClauseKind::WellFormed(..)
397        | ty::ClauseKind::ConstArgHasType(..)
398        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
399        | ty::ClauseKind::HostEffect(_) => None,
400    }
401}
402
403fn clean_poly_trait_predicate<'tcx>(
404    pred: ty::PolyTraitPredicate<'tcx>,
405    cx: &mut DocContext<'tcx>,
406) -> Option<WherePredicate> {
407    // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
408    // FIXME(const_trait_impl) check constness
409    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
410        return None;
411    }
412
413    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
414    Some(WherePredicate::BoundPredicate {
415        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
416        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
417        bound_params: Vec::new(),
418    })
419}
420
421fn clean_region_outlives_predicate(pred: ty::RegionOutlivesPredicate<'_>) -> WherePredicate {
422    let ty::OutlivesPredicate(a, b) = pred;
423
424    WherePredicate::RegionPredicate {
425        lifetime: clean_middle_region(a).expect("failed to clean lifetime"),
426        bounds: vec![GenericBound::Outlives(
427            clean_middle_region(b).expect("failed to clean bounds"),
428        )],
429    }
430}
431
432fn clean_type_outlives_predicate<'tcx>(
433    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
434    cx: &mut DocContext<'tcx>,
435) -> WherePredicate {
436    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
437
438    WherePredicate::BoundPredicate {
439        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
440        bounds: vec![GenericBound::Outlives(
441            clean_middle_region(lt).expect("failed to clean lifetimes"),
442        )],
443        bound_params: Vec::new(),
444    }
445}
446
447fn clean_middle_term<'tcx>(
448    term: ty::Binder<'tcx, ty::Term<'tcx>>,
449    cx: &mut DocContext<'tcx>,
450) -> Term {
451    match term.skip_binder().kind() {
452        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
453        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
454    }
455}
456
457fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
458    match term {
459        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
460        hir::Term::Const(c) => {
461            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
462            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
463        }
464    }
465}
466
467fn clean_projection_predicate<'tcx>(
468    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
469    cx: &mut DocContext<'tcx>,
470) -> WherePredicate {
471    WherePredicate::EqPredicate {
472        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
473        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
474    }
475}
476
477fn clean_projection<'tcx>(
478    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
479    cx: &mut DocContext<'tcx>,
480    parent_def_id: Option<DefId>,
481) -> QPathData {
482    let trait_ = clean_trait_ref_with_constraints(
483        cx,
484        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
485        ThinVec::new(),
486    );
487    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
488    let self_def_id = match parent_def_id {
489        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
490        None => self_type.def_id(&cx.cache),
491    };
492    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
493
494    QPathData {
495        assoc: projection_to_path_segment(proj, cx),
496        self_type,
497        should_fully_qualify,
498        trait_: Some(trait_),
499    }
500}
501
502fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
503    !trait_.segments.is_empty()
504        && self_def_id
505            .zip(Some(trait_.def_id()))
506            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
507}
508
509fn projection_to_path_segment<'tcx>(
510    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
511    cx: &mut DocContext<'tcx>,
512) -> PathSegment {
513    let def_id = proj.skip_binder().def_id;
514    let generics = cx.tcx.generics_of(def_id);
515    PathSegment {
516        name: cx.tcx.item_name(def_id),
517        args: GenericArgs::AngleBracketed {
518            args: clean_middle_generic_args(
519                cx,
520                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
521                false,
522                def_id,
523            ),
524            constraints: Default::default(),
525        },
526    }
527}
528
529fn clean_generic_param_def(
530    def: &ty::GenericParamDef,
531    defaults: ParamDefaults,
532    cx: &mut DocContext<'_>,
533) -> GenericParamDef {
534    let (name, kind) = match def.kind {
535        ty::GenericParamDefKind::Lifetime => {
536            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
537        }
538        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
539            let default = if let ParamDefaults::Yes = defaults
540                && has_default
541            {
542                Some(clean_middle_ty(
543                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
544                    cx,
545                    Some(def.def_id),
546                    None,
547                ))
548            } else {
549                None
550            };
551            (
552                def.name,
553                GenericParamDefKind::Type {
554                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
555                    default: default.map(Box::new),
556                    synthetic,
557                },
558            )
559        }
560        ty::GenericParamDefKind::Const { has_default, synthetic } => (
561            def.name,
562            GenericParamDefKind::Const {
563                ty: Box::new(clean_middle_ty(
564                    ty::Binder::dummy(
565                        cx.tcx
566                            .type_of(def.def_id)
567                            .no_bound_vars()
568                            .expect("const parameter types cannot be generic"),
569                    ),
570                    cx,
571                    Some(def.def_id),
572                    None,
573                )),
574                default: if let ParamDefaults::Yes = defaults
575                    && has_default
576                {
577                    Some(Box::new(
578                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
579                    ))
580                } else {
581                    None
582                },
583                synthetic,
584            },
585        ),
586    };
587
588    GenericParamDef { name, def_id: def.def_id, kind }
589}
590
591/// Whether to clean generic parameter defaults or not.
592enum ParamDefaults {
593    Yes,
594    No,
595}
596
597fn clean_generic_param<'tcx>(
598    cx: &mut DocContext<'tcx>,
599    generics: Option<&hir::Generics<'tcx>>,
600    param: &hir::GenericParam<'tcx>,
601) -> GenericParamDef {
602    let (name, kind) = match param.kind {
603        hir::GenericParamKind::Lifetime { .. } => {
604            let outlives = if let Some(generics) = generics {
605                generics
606                    .outlives_for_param(param.def_id)
607                    .filter(|bp| !bp.in_where_clause)
608                    .flat_map(|bp| bp.bounds)
609                    .map(|bound| match bound {
610                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
611                        _ => panic!(),
612                    })
613                    .collect()
614            } else {
615                ThinVec::new()
616            };
617            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
618        }
619        hir::GenericParamKind::Type { ref default, synthetic } => {
620            let bounds = if let Some(generics) = generics {
621                generics
622                    .bounds_for_param(param.def_id)
623                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
624                    .flat_map(|bp| bp.bounds)
625                    .filter_map(|x| clean_generic_bound(x, cx))
626                    .collect()
627            } else {
628                ThinVec::new()
629            };
630            (
631                param.name.ident().name,
632                GenericParamDefKind::Type {
633                    bounds,
634                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
635                    synthetic,
636                },
637            )
638        }
639        hir::GenericParamKind::Const { ty, default, synthetic } => (
640            param.name.ident().name,
641            GenericParamDefKind::Const {
642                ty: Box::new(clean_ty(ty, cx)),
643                default: default.map(|ct| {
644                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
645                }),
646                synthetic,
647            },
648        ),
649    };
650
651    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
652}
653
654/// Synthetic type-parameters are inserted after normal ones.
655/// In order for normal parameters to be able to refer to synthetic ones,
656/// scans them first.
657fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
658    match param.kind {
659        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
660        _ => false,
661    }
662}
663
664/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
665///
666/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
667fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
668    matches!(
669        param.kind,
670        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
671    )
672}
673
674pub(crate) fn clean_generics<'tcx>(
675    gens: &hir::Generics<'tcx>,
676    cx: &mut DocContext<'tcx>,
677) -> Generics {
678    let impl_trait_params = gens
679        .params
680        .iter()
681        .filter(|param| is_impl_trait(param))
682        .map(|param| {
683            let param = clean_generic_param(cx, Some(gens), param);
684            match param.kind {
685                GenericParamDefKind::Lifetime { .. } => unreachable!(),
686                GenericParamDefKind::Type { ref bounds, .. } => {
687                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
688                }
689                GenericParamDefKind::Const { .. } => unreachable!(),
690            }
691            param
692        })
693        .collect::<Vec<_>>();
694
695    let mut bound_predicates = FxIndexMap::default();
696    let mut region_predicates = FxIndexMap::default();
697    let mut eq_predicates = ThinVec::default();
698    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
699        match pred {
700            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
701                match bound_predicates.entry(ty) {
702                    IndexEntry::Vacant(v) => {
703                        v.insert((bounds, bound_params));
704                    }
705                    IndexEntry::Occupied(mut o) => {
706                        // we merge both bounds.
707                        for bound in bounds {
708                            if !o.get().0.contains(&bound) {
709                                o.get_mut().0.push(bound);
710                            }
711                        }
712                        for bound_param in bound_params {
713                            if !o.get().1.contains(&bound_param) {
714                                o.get_mut().1.push(bound_param);
715                            }
716                        }
717                    }
718                }
719            }
720            WherePredicate::RegionPredicate { lifetime, bounds } => {
721                match region_predicates.entry(lifetime) {
722                    IndexEntry::Vacant(v) => {
723                        v.insert(bounds);
724                    }
725                    IndexEntry::Occupied(mut o) => {
726                        // we merge both bounds.
727                        for bound in bounds {
728                            if !o.get().contains(&bound) {
729                                o.get_mut().push(bound);
730                            }
731                        }
732                    }
733                }
734            }
735            WherePredicate::EqPredicate { lhs, rhs } => {
736                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
737            }
738        }
739    }
740
741    let mut params = ThinVec::with_capacity(gens.params.len());
742    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
743    // bounds in the where predicates. If so, we move their bounds into the where predicates
744    // while also preventing duplicates.
745    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
746        let mut p = clean_generic_param(cx, Some(gens), p);
747        match &mut p.kind {
748            GenericParamDefKind::Lifetime { outlives } => {
749                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
750                    // We merge bounds in the `where` clause.
751                    for outlive in outlives.drain(..) {
752                        let outlive = GenericBound::Outlives(outlive);
753                        if !region_pred.contains(&outlive) {
754                            region_pred.push(outlive);
755                        }
756                    }
757                }
758            }
759            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
760                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
761                    // We merge bounds in the `where` clause.
762                    for bound in bounds.drain(..) {
763                        if !bound_pred.0.contains(&bound) {
764                            bound_pred.0.push(bound);
765                        }
766                    }
767                }
768            }
769            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
770                // nothing to do here.
771            }
772        }
773        params.push(p);
774    }
775    params.extend(impl_trait_params);
776
777    Generics {
778        params,
779        where_predicates: bound_predicates
780            .into_iter()
781            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
782                ty,
783                bounds,
784                bound_params,
785            })
786            .chain(
787                region_predicates
788                    .into_iter()
789                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
790            )
791            .chain(eq_predicates)
792            .collect(),
793    }
794}
795
796fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
797    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
798}
799
800fn clean_ty_generics_inner<'tcx>(
801    cx: &mut DocContext<'tcx>,
802    gens: &ty::Generics,
803    preds: ty::GenericPredicates<'tcx>,
804) -> Generics {
805    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
806    // since `clean_predicate` would consume them.
807    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
808
809    let params: ThinVec<_> = gens
810        .own_params
811        .iter()
812        .filter(|param| match param.kind {
813            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
814            ty::GenericParamDefKind::Type { synthetic, .. } => {
815                if param.name == kw::SelfUpper {
816                    debug_assert_eq!(param.index, 0);
817                    return false;
818                }
819                if synthetic {
820                    impl_trait.insert(param.index, vec![]);
821                    return false;
822                }
823                true
824            }
825            ty::GenericParamDefKind::Const { .. } => true,
826        })
827        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
828        .collect();
829
830    // param index -> [(trait DefId, associated type name & generics, term)]
831    let mut impl_trait_proj =
832        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
833
834    let where_predicates = preds
835        .predicates
836        .iter()
837        .flat_map(|(pred, _)| {
838            let mut proj_pred = None;
839            let param_idx = {
840                let bound_p = pred.kind();
841                match bound_p.skip_binder() {
842                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
843                        Some(param.index)
844                    }
845                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
846                        if let ty::Param(param) = ty.kind() =>
847                    {
848                        Some(param.index)
849                    }
850                    ty::ClauseKind::Projection(p)
851                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
852                    {
853                        proj_pred = Some(bound_p.rebind(p));
854                        Some(param.index)
855                    }
856                    _ => None,
857                }
858            };
859
860            if let Some(param_idx) = param_idx
861                && let Some(bounds) = impl_trait.get_mut(&param_idx)
862            {
863                let pred = clean_predicate(*pred, cx)?;
864
865                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
866
867                if let Some(pred) = proj_pred {
868                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
869                    impl_trait_proj.entry(param_idx).or_default().push((
870                        lhs.trait_.unwrap().def_id(),
871                        lhs.assoc,
872                        pred.map_bound(|p| p.term),
873                    ));
874                }
875
876                return None;
877            }
878
879            Some(pred)
880        })
881        .collect::<Vec<_>>();
882
883    for (idx, mut bounds) in impl_trait {
884        let mut has_sized = false;
885        bounds.retain(|b| {
886            if b.is_sized_bound(cx) {
887                has_sized = true;
888                false
889            } else {
890                true
891            }
892        });
893        if !has_sized {
894            bounds.push(GenericBound::maybe_sized(cx));
895        }
896
897        // Move trait bounds to the front.
898        bounds.sort_by_key(|b| !b.is_trait_bound());
899
900        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
901        // Since all potential trait bounds are at the front we can just check the first bound.
902        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
903            bounds.insert(0, GenericBound::sized(cx));
904        }
905
906        if let Some(proj) = impl_trait_proj.remove(&idx) {
907            for (trait_did, name, rhs) in proj {
908                let rhs = clean_middle_term(rhs, cx);
909                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
910            }
911        }
912
913        cx.impl_trait_bounds.insert(idx.into(), bounds);
914    }
915
916    // Now that `cx.impl_trait_bounds` is populated, we can process
917    // remaining predicates which could contain `impl Trait`.
918    let where_predicates =
919        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
920
921    let mut generics = Generics { params, where_predicates };
922    simplify::sized_bounds(cx, &mut generics);
923    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
924    generics
925}
926
927fn clean_ty_alias_inner_type<'tcx>(
928    ty: Ty<'tcx>,
929    cx: &mut DocContext<'tcx>,
930    ret: &mut Vec<Item>,
931) -> Option<TypeAliasInnerType> {
932    let ty::Adt(adt_def, args) = ty.kind() else {
933        return None;
934    };
935
936    if !adt_def.did().is_local() {
937        cx.with_param_env(adt_def.did(), |cx| {
938            inline::build_impls(cx, adt_def.did(), None, ret);
939        });
940    }
941
942    Some(if adt_def.is_enum() {
943        let variants: rustc_index::IndexVec<_, _> = adt_def
944            .variants()
945            .iter()
946            .map(|variant| clean_variant_def_with_args(variant, args, cx))
947            .collect();
948
949        if !adt_def.did().is_local() {
950            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
951        }
952
953        TypeAliasInnerType::Enum {
954            variants,
955            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
956        }
957    } else {
958        let variant = adt_def
959            .variants()
960            .iter()
961            .next()
962            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
963
964        let fields: Vec<_> =
965            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
966
967        if adt_def.is_struct() {
968            if !adt_def.did().is_local() {
969                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
970            }
971            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
972        } else {
973            if !adt_def.did().is_local() {
974                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
975            }
976            TypeAliasInnerType::Union { fields }
977        }
978    })
979}
980
981fn clean_proc_macro<'tcx>(
982    item: &hir::Item<'tcx>,
983    name: &mut Symbol,
984    kind: MacroKind,
985    cx: &mut DocContext<'tcx>,
986) -> ItemKind {
987    let attrs = cx.tcx.hir_attrs(item.hir_id());
988    if kind == MacroKind::Derive
989        && let Some(derive_name) =
990            hir_attr_lists(attrs, sym::proc_macro_derive).find_map(|mi| mi.ident())
991    {
992        *name = derive_name.name;
993    }
994
995    let mut helpers = Vec::new();
996    for mi in hir_attr_lists(attrs, sym::proc_macro_derive) {
997        if !mi.has_name(sym::attributes) {
998            continue;
999        }
1000
1001        if let Some(list) = mi.meta_item_list() {
1002            for inner_mi in list {
1003                if let Some(ident) = inner_mi.ident() {
1004                    helpers.push(ident.name);
1005                }
1006            }
1007        }
1008    }
1009    ProcMacroItem(ProcMacro { kind, helpers })
1010}
1011
1012fn clean_fn_or_proc_macro<'tcx>(
1013    item: &hir::Item<'tcx>,
1014    sig: &hir::FnSig<'tcx>,
1015    generics: &hir::Generics<'tcx>,
1016    body_id: hir::BodyId,
1017    name: &mut Symbol,
1018    cx: &mut DocContext<'tcx>,
1019) -> ItemKind {
1020    let attrs = cx.tcx.hir_attrs(item.hir_id());
1021    let macro_kind = attrs.iter().find_map(|a| {
1022        if a.has_name(sym::proc_macro) {
1023            Some(MacroKind::Bang)
1024        } else if a.has_name(sym::proc_macro_derive) {
1025            Some(MacroKind::Derive)
1026        } else if a.has_name(sym::proc_macro_attribute) {
1027            Some(MacroKind::Attr)
1028        } else {
1029            None
1030        }
1031    });
1032    match macro_kind {
1033        Some(kind) => clean_proc_macro(item, name, kind, cx),
1034        None => {
1035            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1036            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1037            FunctionItem(func)
1038        }
1039    }
1040}
1041
1042/// This is needed to make it more "readable" when documenting functions using
1043/// `rustc_legacy_const_generics`. More information in
1044/// <https://github.com/rust-lang/rust/issues/83167>.
1045fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1046    for meta_item_list in attrs
1047        .iter()
1048        .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
1049        .filter_map(|a| a.meta_item_list())
1050    {
1051        for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
1052            match literal.kind {
1053                ast::LitKind::Int(a, _) => {
1054                    let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1055                    if let GenericParamDefKind::Const { ty, .. } = kind {
1056                        func.decl.inputs.insert(
1057                            a.get() as _,
1058                            Parameter { name: Some(name), type_: *ty, is_const: true },
1059                        );
1060                    } else {
1061                        panic!("unexpected non const in position {pos}");
1062                    }
1063                }
1064                _ => panic!("invalid arg index"),
1065            }
1066        }
1067    }
1068}
1069
1070enum ParamsSrc<'tcx> {
1071    Body(hir::BodyId),
1072    Idents(&'tcx [Option<Ident>]),
1073}
1074
1075fn clean_function<'tcx>(
1076    cx: &mut DocContext<'tcx>,
1077    sig: &hir::FnSig<'tcx>,
1078    generics: &hir::Generics<'tcx>,
1079    params: ParamsSrc<'tcx>,
1080) -> Box<Function> {
1081    let (generics, decl) = enter_impl_trait(cx, |cx| {
1082        // NOTE: Generics must be cleaned before params.
1083        let generics = clean_generics(generics, cx);
1084        let params = match params {
1085            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1086            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1087            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1088                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1089            }),
1090        };
1091        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1092        (generics, decl)
1093    });
1094    Box::new(Function { decl, generics })
1095}
1096
1097fn clean_params<'tcx>(
1098    cx: &mut DocContext<'tcx>,
1099    types: &[hir::Ty<'tcx>],
1100    idents: &[Option<Ident>],
1101    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1102) -> Vec<Parameter> {
1103    types
1104        .iter()
1105        .enumerate()
1106        .map(|(i, ty)| Parameter {
1107            name: postprocess(idents[i]),
1108            type_: clean_ty(ty, cx),
1109            is_const: false,
1110        })
1111        .collect()
1112}
1113
1114fn clean_params_via_body<'tcx>(
1115    cx: &mut DocContext<'tcx>,
1116    types: &[hir::Ty<'tcx>],
1117    body_id: hir::BodyId,
1118) -> Vec<Parameter> {
1119    types
1120        .iter()
1121        .zip(cx.tcx.hir_body(body_id).params)
1122        .map(|(ty, param)| Parameter {
1123            name: Some(name_from_pat(param.pat)),
1124            type_: clean_ty(ty, cx),
1125            is_const: false,
1126        })
1127        .collect()
1128}
1129
1130fn clean_fn_decl_with_params<'tcx>(
1131    cx: &mut DocContext<'tcx>,
1132    decl: &hir::FnDecl<'tcx>,
1133    header: Option<&hir::FnHeader>,
1134    params: Vec<Parameter>,
1135) -> FnDecl {
1136    let mut output = match decl.output {
1137        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1138        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1139    };
1140    if let Some(header) = header
1141        && header.is_async()
1142    {
1143        output = output.sugared_async_return_type();
1144    }
1145    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1146}
1147
1148fn clean_poly_fn_sig<'tcx>(
1149    cx: &mut DocContext<'tcx>,
1150    did: Option<DefId>,
1151    sig: ty::PolyFnSig<'tcx>,
1152) -> FnDecl {
1153    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1154
1155    // If the return type isn't an `impl Trait`, we can safely assume that this
1156    // function isn't async without needing to execute the query `asyncness` at
1157    // all which gives us a noticeable performance boost.
1158    if let Some(did) = did
1159        && let Type::ImplTrait(_) = output
1160        && cx.tcx.asyncness(did).is_async()
1161    {
1162        output = output.sugared_async_return_type();
1163    }
1164
1165    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1166
1167    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1168    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1169    // Since the param name is not part of the semantic type, these params never bear a name unlike
1170    // in the HIR case, thus we can't peform any fancy fallback logic unlike `clean_bare_fn_ty`.
1171    let fallback = did.map(|_| kw::Underscore);
1172
1173    let params = sig
1174        .inputs()
1175        .iter()
1176        .map(|ty| Parameter {
1177            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1178            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1179            is_const: false,
1180        })
1181        .collect();
1182
1183    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1184}
1185
1186fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1187    let path = clean_path(trait_ref.path, cx);
1188    register_res(cx, path.res);
1189    path
1190}
1191
1192fn clean_poly_trait_ref<'tcx>(
1193    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1194    cx: &mut DocContext<'tcx>,
1195) -> PolyTrait {
1196    PolyTrait {
1197        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1198        generic_params: poly_trait_ref
1199            .bound_generic_params
1200            .iter()
1201            .filter(|p| !is_elided_lifetime(p))
1202            .map(|x| clean_generic_param(cx, None, x))
1203            .collect(),
1204    }
1205}
1206
1207fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1208    let local_did = trait_item.owner_id.to_def_id();
1209    cx.with_param_env(local_did, |cx| {
1210        let inner = match trait_item.kind {
1211            hir::TraitItemKind::Const(ty, Some(default)) => {
1212                ProvidedAssocConstItem(Box::new(Constant {
1213                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1214                    kind: ConstantKind::Local { def_id: local_did, body: default },
1215                    type_: clean_ty(ty, cx),
1216                }))
1217            }
1218            hir::TraitItemKind::Const(ty, None) => {
1219                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1220                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1221            }
1222            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1223                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1224                MethodItem(m, None)
1225            }
1226            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1227                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1228                RequiredMethodItem(m)
1229            }
1230            hir::TraitItemKind::Type(bounds, Some(default)) => {
1231                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1232                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1233                let item_type =
1234                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1235                AssocTypeItem(
1236                    Box::new(TypeAlias {
1237                        type_: clean_ty(default, cx),
1238                        generics,
1239                        inner_type: None,
1240                        item_type: Some(item_type),
1241                    }),
1242                    bounds,
1243                )
1244            }
1245            hir::TraitItemKind::Type(bounds, None) => {
1246                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1247                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1248                RequiredAssocTypeItem(generics, bounds)
1249            }
1250        };
1251        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1252    })
1253}
1254
1255pub(crate) fn clean_impl_item<'tcx>(
1256    impl_: &hir::ImplItem<'tcx>,
1257    cx: &mut DocContext<'tcx>,
1258) -> Item {
1259    let local_did = impl_.owner_id.to_def_id();
1260    cx.with_param_env(local_did, |cx| {
1261        let inner = match impl_.kind {
1262            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1263                generics: clean_generics(impl_.generics, cx),
1264                kind: ConstantKind::Local { def_id: local_did, body: expr },
1265                type_: clean_ty(ty, cx),
1266            })),
1267            hir::ImplItemKind::Fn(ref sig, body) => {
1268                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1269                let defaultness = cx.tcx.defaultness(impl_.owner_id);
1270                MethodItem(m, Some(defaultness))
1271            }
1272            hir::ImplItemKind::Type(hir_ty) => {
1273                let type_ = clean_ty(hir_ty, cx);
1274                let generics = clean_generics(impl_.generics, cx);
1275                let item_type =
1276                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1277                AssocTypeItem(
1278                    Box::new(TypeAlias {
1279                        type_,
1280                        generics,
1281                        inner_type: None,
1282                        item_type: Some(item_type),
1283                    }),
1284                    Vec::new(),
1285                )
1286            }
1287        };
1288
1289        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1290    })
1291}
1292
1293pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1294    let tcx = cx.tcx;
1295    let kind = match assoc_item.kind {
1296        ty::AssocKind::Const { .. } => {
1297            let ty = clean_middle_ty(
1298                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1299                cx,
1300                Some(assoc_item.def_id),
1301                None,
1302            );
1303
1304            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1305            simplify::move_bounds_to_generic_parameters(&mut generics);
1306
1307            match assoc_item.container {
1308                ty::AssocItemContainer::Impl => ImplAssocConstItem(Box::new(Constant {
1309                    generics,
1310                    kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1311                    type_: ty,
1312                })),
1313                ty::AssocItemContainer::Trait => {
1314                    if tcx.defaultness(assoc_item.def_id).has_value() {
1315                        ProvidedAssocConstItem(Box::new(Constant {
1316                            generics,
1317                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1318                            type_: ty,
1319                        }))
1320                    } else {
1321                        RequiredAssocConstItem(generics, Box::new(ty))
1322                    }
1323                }
1324            }
1325        }
1326        ty::AssocKind::Fn { has_self, .. } => {
1327            let mut item = inline::build_function(cx, assoc_item.def_id);
1328
1329            if has_self {
1330                let self_ty = match assoc_item.container {
1331                    ty::AssocItemContainer::Impl => {
1332                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1333                    }
1334                    ty::AssocItemContainer::Trait => tcx.types.self_param,
1335                };
1336                let self_param_ty =
1337                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1338                if self_param_ty == self_ty {
1339                    item.decl.inputs[0].type_ = SelfTy;
1340                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1341                    && ty == self_ty
1342                {
1343                    match item.decl.inputs[0].type_ {
1344                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1345                        _ => unreachable!(),
1346                    }
1347                }
1348            }
1349
1350            let provided = match assoc_item.container {
1351                ty::AssocItemContainer::Impl => true,
1352                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1353            };
1354            if provided {
1355                let defaultness = match assoc_item.container {
1356                    ty::AssocItemContainer::Impl => Some(assoc_item.defaultness(tcx)),
1357                    ty::AssocItemContainer::Trait => None,
1358                };
1359                MethodItem(item, defaultness)
1360            } else {
1361                RequiredMethodItem(item)
1362            }
1363        }
1364        ty::AssocKind::Type { .. } => {
1365            let my_name = assoc_item.name();
1366
1367            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1368                match (&param.kind, arg) {
1369                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1370                        if *ty == param.name =>
1371                    {
1372                        true
1373                    }
1374                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1375                        if *lt == param.name =>
1376                    {
1377                        true
1378                    }
1379                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1380                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1381                        _ => false,
1382                    },
1383                    _ => false,
1384                }
1385            }
1386
1387            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1388            if let ty::AssocItemContainer::Trait = assoc_item.container {
1389                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1390                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1391            }
1392            let mut generics = clean_ty_generics_inner(
1393                cx,
1394                tcx.generics_of(assoc_item.def_id),
1395                ty::GenericPredicates { parent: None, predicates },
1396            );
1397            simplify::move_bounds_to_generic_parameters(&mut generics);
1398
1399            if let ty::AssocItemContainer::Trait = assoc_item.container {
1400                // Move bounds that are (likely) directly attached to the associated type
1401                // from the where-clause to the associated type.
1402                // There is no guarantee that this is what the user actually wrote but we have
1403                // no way of knowing.
1404                let mut bounds: Vec<GenericBound> = Vec::new();
1405                generics.where_predicates.retain_mut(|pred| match *pred {
1406                    WherePredicate::BoundPredicate {
1407                        ty:
1408                            QPath(box QPathData {
1409                                ref assoc,
1410                                ref self_type,
1411                                trait_: Some(ref trait_),
1412                                ..
1413                            }),
1414                        bounds: ref mut pred_bounds,
1415                        ..
1416                    } => {
1417                        if assoc.name != my_name {
1418                            return true;
1419                        }
1420                        if trait_.def_id() != assoc_item.container_id(tcx) {
1421                            return true;
1422                        }
1423                        if *self_type != SelfTy {
1424                            return true;
1425                        }
1426                        match &assoc.args {
1427                            GenericArgs::AngleBracketed { args, constraints } => {
1428                                if !constraints.is_empty()
1429                                    || generics
1430                                        .params
1431                                        .iter()
1432                                        .zip(args.iter())
1433                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1434                                {
1435                                    return true;
1436                                }
1437                            }
1438                            GenericArgs::Parenthesized { .. } => {
1439                                // The only time this happens is if we're inside the rustdoc for Fn(),
1440                                // which only has one associated type, which is not a GAT, so whatever.
1441                            }
1442                            GenericArgs::ReturnTypeNotation => {
1443                                // Never move these.
1444                            }
1445                        }
1446                        bounds.extend(mem::take(pred_bounds));
1447                        false
1448                    }
1449                    _ => true,
1450                });
1451                // Our Sized/?Sized bound didn't get handled when creating the generics
1452                // because we didn't actually get our whole set of bounds until just now
1453                // (some of them may have come from the trait). If we do have a sized
1454                // bound, we remove it, and if we don't then we add the `?Sized` bound
1455                // at the end.
1456                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1457                    Some(i) => {
1458                        bounds.remove(i);
1459                    }
1460                    None => bounds.push(GenericBound::maybe_sized(cx)),
1461                }
1462
1463                if tcx.defaultness(assoc_item.def_id).has_value() {
1464                    AssocTypeItem(
1465                        Box::new(TypeAlias {
1466                            type_: clean_middle_ty(
1467                                ty::Binder::dummy(
1468                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1469                                ),
1470                                cx,
1471                                Some(assoc_item.def_id),
1472                                None,
1473                            ),
1474                            generics,
1475                            inner_type: None,
1476                            item_type: None,
1477                        }),
1478                        bounds,
1479                    )
1480                } else {
1481                    RequiredAssocTypeItem(generics, bounds)
1482                }
1483            } else {
1484                AssocTypeItem(
1485                    Box::new(TypeAlias {
1486                        type_: clean_middle_ty(
1487                            ty::Binder::dummy(
1488                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1489                            ),
1490                            cx,
1491                            Some(assoc_item.def_id),
1492                            None,
1493                        ),
1494                        generics,
1495                        inner_type: None,
1496                        item_type: None,
1497                    }),
1498                    // Associated types inside trait or inherent impls are not allowed to have
1499                    // item bounds. Thus we don't attempt to move any bounds there.
1500                    Vec::new(),
1501                )
1502            }
1503        }
1504    };
1505
1506    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1507}
1508
1509fn first_non_private_clean_path<'tcx>(
1510    cx: &mut DocContext<'tcx>,
1511    path: &hir::Path<'tcx>,
1512    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1513    new_path_span: rustc_span::Span,
1514) -> Path {
1515    let new_hir_path =
1516        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1517    let mut new_clean_path = clean_path(&new_hir_path, cx);
1518    // In here we need to play with the path data one last time to provide it the
1519    // missing `args` and `res` of the final `Path` we get, which, since it comes
1520    // from a re-export, doesn't have the generics that were originally there, so
1521    // we add them by hand.
1522    if let Some(path_last) = path.segments.last().as_ref()
1523        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1524        && let Some(path_last_args) = path_last.args.as_ref()
1525        && path_last.args.is_some()
1526    {
1527        assert!(new_path_last.args.is_empty());
1528        new_path_last.args = clean_generic_args(path_last_args, cx);
1529    }
1530    new_clean_path
1531}
1532
1533/// The goal of this function is to return the first `Path` which is not private (ie not private
1534/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1535///
1536/// If the path is not a re-export or is public, it'll return `None`.
1537fn first_non_private<'tcx>(
1538    cx: &mut DocContext<'tcx>,
1539    hir_id: hir::HirId,
1540    path: &hir::Path<'tcx>,
1541) -> Option<Path> {
1542    let target_def_id = path.res.opt_def_id()?;
1543    let (parent_def_id, ident) = match &path.segments {
1544        [] => return None,
1545        // Relative paths are available in the same scope as the owner.
1546        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1547        // So are self paths.
1548        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1549            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1550        }
1551        // Crate paths are not. We start from the crate root.
1552        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1553            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1554        }
1555        [parent, leaf] if parent.ident.name == kw::Super => {
1556            let parent_mod = cx.tcx.parent_module(hir_id);
1557            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1558                (super_parent, leaf.ident)
1559            } else {
1560                // If we can't find the parent of the parent, then the parent is already the crate.
1561                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1562            }
1563        }
1564        // Absolute paths are not. We start from the parent of the item.
1565        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1566    };
1567    // First we try to get the `DefId` of the item.
1568    for child in
1569        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1570    {
1571        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1572            continue;
1573        }
1574
1575        if let Some(def_id) = child.res.opt_def_id()
1576            && target_def_id == def_id
1577        {
1578            let mut last_path_res = None;
1579            'reexps: for reexp in child.reexport_chain.iter() {
1580                if let Some(use_def_id) = reexp.id()
1581                    && let Some(local_use_def_id) = use_def_id.as_local()
1582                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1583                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1584                {
1585                    for res in path.res.present_items() {
1586                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1587                            continue;
1588                        }
1589                        if (cx.render_options.document_hidden ||
1590                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1591                            // We never check for "cx.render_options.document_private"
1592                            // because if a re-export is not fully public, it's never
1593                            // documented.
1594                            cx.tcx.local_visibility(local_use_def_id).is_public()
1595                        {
1596                            break 'reexps;
1597                        }
1598                        last_path_res = Some((path, res));
1599                        continue 'reexps;
1600                    }
1601                }
1602            }
1603            if !child.reexport_chain.is_empty() {
1604                // So in here, we use the data we gathered from iterating the reexports. If
1605                // `last_path_res` is set, it can mean two things:
1606                //
1607                // 1. We found a public reexport.
1608                // 2. We didn't find a public reexport so it's the "end type" path.
1609                if let Some((new_path, _)) = last_path_res {
1610                    return Some(first_non_private_clean_path(
1611                        cx,
1612                        path,
1613                        new_path.segments,
1614                        new_path.span,
1615                    ));
1616                }
1617                // If `last_path_res` is `None`, it can mean two things:
1618                //
1619                // 1. The re-export is public, no need to change anything, just use the path as is.
1620                // 2. Nothing was found, so let's just return the original path.
1621                return None;
1622            }
1623        }
1624    }
1625    None
1626}
1627
1628fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1629    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1630    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1631
1632    match qpath {
1633        hir::QPath::Resolved(None, path) => {
1634            if let Res::Def(DefKind::TyParam, did) = path.res {
1635                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1636                    return new_ty;
1637                }
1638                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1639                    return ImplTrait(bounds);
1640                }
1641            }
1642
1643            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1644                expanded
1645            } else {
1646                // First we check if it's a private re-export.
1647                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1648                    path
1649                } else {
1650                    clean_path(path, cx)
1651                };
1652                resolve_type(cx, path)
1653            }
1654        }
1655        hir::QPath::Resolved(Some(qself), p) => {
1656            // Try to normalize `<X as Y>::T` to a type
1657            let ty = lower_ty(cx.tcx, hir_ty);
1658            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1659            if !ty.has_escaping_bound_vars()
1660                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1661            {
1662                return clean_middle_ty(normalized_value, cx, None, None);
1663            }
1664
1665            let trait_segments = &p.segments[..p.segments.len() - 1];
1666            let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
1667            let trait_ = self::Path {
1668                res: Res::Def(DefKind::Trait, trait_def),
1669                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1670            };
1671            register_res(cx, trait_.res);
1672            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1673            let self_type = clean_ty(qself, cx);
1674            let should_fully_qualify =
1675                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1676            Type::QPath(Box::new(QPathData {
1677                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1678                should_fully_qualify,
1679                self_type,
1680                trait_: Some(trait_),
1681            }))
1682        }
1683        hir::QPath::TypeRelative(qself, segment) => {
1684            let ty = lower_ty(cx.tcx, hir_ty);
1685            let self_type = clean_ty(qself, cx);
1686
1687            let (trait_, should_fully_qualify) = match ty.kind() {
1688                ty::Alias(ty::Projection, proj) => {
1689                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1690                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1691                    register_res(cx, trait_.res);
1692                    let self_def_id = res.opt_def_id();
1693                    let should_fully_qualify =
1694                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1695
1696                    (Some(trait_), should_fully_qualify)
1697                }
1698                ty::Alias(ty::Inherent, _) => (None, false),
1699                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1700                ty::Error(_) => return Type::Infer,
1701                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1702            };
1703
1704            Type::QPath(Box::new(QPathData {
1705                assoc: clean_path_segment(segment, cx),
1706                should_fully_qualify,
1707                self_type,
1708                trait_,
1709            }))
1710        }
1711        hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
1712    }
1713}
1714
1715fn maybe_expand_private_type_alias<'tcx>(
1716    cx: &mut DocContext<'tcx>,
1717    path: &hir::Path<'tcx>,
1718) -> Option<Type> {
1719    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1720    // Substitute private type aliases
1721    let def_id = def_id.as_local()?;
1722    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1723        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1724    {
1725        &cx.tcx.hir_expect_item(def_id).kind
1726    } else {
1727        return None;
1728    };
1729    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1730
1731    let final_seg = &path.segments.last().expect("segments were empty");
1732    let mut args = DefIdMap::default();
1733    let generic_args = final_seg.args();
1734
1735    let mut indices: hir::GenericParamCount = Default::default();
1736    for param in generics.params.iter() {
1737        match param.kind {
1738            hir::GenericParamKind::Lifetime { .. } => {
1739                let mut j = 0;
1740                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1741                    hir::GenericArg::Lifetime(lt) => {
1742                        if indices.lifetimes == j {
1743                            return Some(lt);
1744                        }
1745                        j += 1;
1746                        None
1747                    }
1748                    _ => None,
1749                });
1750                if let Some(lt) = lifetime {
1751                    let lt = if !lt.is_anonymous() {
1752                        clean_lifetime(lt, cx)
1753                    } else {
1754                        Lifetime::elided()
1755                    };
1756                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1757                }
1758                indices.lifetimes += 1;
1759            }
1760            hir::GenericParamKind::Type { ref default, .. } => {
1761                let mut j = 0;
1762                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1763                    hir::GenericArg::Type(ty) => {
1764                        if indices.types == j {
1765                            return Some(ty.as_unambig_ty());
1766                        }
1767                        j += 1;
1768                        None
1769                    }
1770                    _ => None,
1771                });
1772                if let Some(ty) = type_.or(*default) {
1773                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1774                }
1775                indices.types += 1;
1776            }
1777            // FIXME(#82852): Instantiate const parameters.
1778            hir::GenericParamKind::Const { .. } => {}
1779        }
1780    }
1781
1782    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1783        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1784    }))
1785}
1786
1787pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1788    use rustc_hir::*;
1789
1790    match ty.kind {
1791        TyKind::Never => Primitive(PrimitiveType::Never),
1792        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1793        TyKind::Ref(l, ref m) => {
1794            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1795            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1796        }
1797        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1798        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1799        TyKind::Array(ty, const_arg) => {
1800            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1801            // as we currently do not supply the parent generics to anonymous constants
1802            // but do allow `ConstKind::Param`.
1803            //
1804            // `const_eval_poly` tries to first substitute generic parameters which
1805            // results in an ICE while manually constructing the constant and using `eval`
1806            // does nothing for `ConstKind::Param`.
1807            let length = match const_arg.kind {
1808                hir::ConstArgKind::Infer(..) => "_".to_string(),
1809                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1810                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1811                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1812                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1813                    print_const(cx, ct)
1814                }
1815                hir::ConstArgKind::Path(..) => {
1816                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1817                    print_const(cx, ct)
1818                }
1819            };
1820            Array(Box::new(clean_ty(ty, cx)), length.into())
1821        }
1822        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1823        TyKind::OpaqueDef(ty) => {
1824            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1825        }
1826        TyKind::Path(_) => clean_qpath(ty, cx),
1827        TyKind::TraitObject(bounds, lifetime) => {
1828            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1829            let lifetime = if !lifetime.is_elided() {
1830                Some(clean_lifetime(lifetime.pointer(), cx))
1831            } else {
1832                None
1833            };
1834            DynTrait(bounds, lifetime)
1835        }
1836        TyKind::BareFn(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1837        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1838            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1839        }
1840        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1841        TyKind::Infer(())
1842        | TyKind::Err(_)
1843        | TyKind::Typeof(..)
1844        | TyKind::InferDelegation(..)
1845        | TyKind::TraitAscription(_) => Infer,
1846    }
1847}
1848
1849/// Returns `None` if the type could not be normalized
1850fn normalize<'tcx>(
1851    cx: &DocContext<'tcx>,
1852    ty: ty::Binder<'tcx, Ty<'tcx>>,
1853) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1854    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1855    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1856        return None;
1857    }
1858
1859    use rustc_middle::traits::ObligationCause;
1860    use rustc_trait_selection::infer::TyCtxtInferExt;
1861    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1862
1863    // Try to normalize `<X as Y>::T` to a type
1864    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1865    let normalized = infcx
1866        .at(&ObligationCause::dummy(), cx.param_env)
1867        .query_normalize(ty)
1868        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1869    match normalized {
1870        Ok(normalized_value) => {
1871            debug!("normalized {ty:?} to {normalized_value:?}");
1872            Some(normalized_value)
1873        }
1874        Err(err) => {
1875            debug!("failed to normalize {ty:?}: {err:?}");
1876            None
1877        }
1878    }
1879}
1880
1881fn clean_trait_object_lifetime_bound<'tcx>(
1882    region: ty::Region<'tcx>,
1883    container: Option<ContainerTy<'_, 'tcx>>,
1884    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1885    tcx: TyCtxt<'tcx>,
1886) -> Option<Lifetime> {
1887    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1888        return None;
1889    }
1890
1891    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1892    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1893    // latter contrary to `clean_middle_region`.
1894    match region.kind() {
1895        ty::ReStatic => Some(Lifetime::statik()),
1896        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1897        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(_, name), .. }) => {
1898            Some(Lifetime(name))
1899        }
1900        ty::ReBound(..)
1901        | ty::ReLateParam(_)
1902        | ty::ReVar(_)
1903        | ty::RePlaceholder(_)
1904        | ty::ReErased
1905        | ty::ReError(_) => None,
1906    }
1907}
1908
1909fn can_elide_trait_object_lifetime_bound<'tcx>(
1910    region: ty::Region<'tcx>,
1911    container: Option<ContainerTy<'_, 'tcx>>,
1912    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1913    tcx: TyCtxt<'tcx>,
1914) -> bool {
1915    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1916
1917    // > If the trait object is used as a type argument of a generic type then the containing type is
1918    // > first used to try to infer a bound.
1919    let default = container
1920        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1921
1922    // > If there is a unique bound from the containing type then that is the default
1923    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1924    match default {
1925        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1926        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1927        ObjectLifetimeDefault::Arg(default) => return region.get_name() == default.get_name(),
1928        // > If there is more than one bound from the containing type then an explicit bound must be specified
1929        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1930        // Don't elide the lifetime.
1931        ObjectLifetimeDefault::Ambiguous => return false,
1932        // There is no meaningful bound. Further processing is needed...
1933        ObjectLifetimeDefault::Empty => {}
1934    }
1935
1936    // > If neither of those rules apply, then the bounds on the trait are used:
1937    match *object_region_bounds(tcx, preds) {
1938        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1939        // > and is 'static outside of expressions.
1940        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1941        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1942        // Note however that at the time of this writing it should be fine to disregard this subtlety
1943        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1944        // nor show the contents of fn bodies.
1945        [] => region.kind() == ty::ReStatic,
1946        // > If the trait is defined with a single lifetime bound then that bound is used.
1947        // > If 'static is used for any lifetime bound then 'static is used.
1948        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1949        [object_region] => object_region.get_name() == region.get_name(),
1950        // There are several distinct trait regions and none are `'static`.
1951        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1952        // Don't elide the lifetime.
1953        _ => false,
1954    }
1955}
1956
1957#[derive(Debug)]
1958pub(crate) enum ContainerTy<'a, 'tcx> {
1959    Ref(ty::Region<'tcx>),
1960    Regular {
1961        ty: DefId,
1962        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1963        /// contain a self type.
1964        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1965        arg: usize,
1966    },
1967}
1968
1969impl<'tcx> ContainerTy<'_, 'tcx> {
1970    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1971        match self {
1972            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1973            Self::Regular { ty: container, args, arg: index } => {
1974                let (DefKind::Struct
1975                | DefKind::Union
1976                | DefKind::Enum
1977                | DefKind::TyAlias
1978                | DefKind::Trait) = tcx.def_kind(container)
1979                else {
1980                    return ObjectLifetimeDefault::Empty;
1981                };
1982
1983                let generics = tcx.generics_of(container);
1984                debug_assert_eq!(generics.parent_count, 0);
1985
1986                let param = generics.own_params[index].def_id;
1987                let default = tcx.object_lifetime_default(param);
1988                match default {
1989                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
1990                        // The index is relative to the parent generics but since we don't have any,
1991                        // we don't need to translate it.
1992                        let index = generics.param_def_id_to_index[&lifetime];
1993                        let arg = args.skip_binder()[index as usize].expect_region();
1994                        ObjectLifetimeDefault::Arg(arg)
1995                    }
1996                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
1997                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
1998                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
1999                }
2000            }
2001        }
2002    }
2003}
2004
2005#[derive(Debug, Clone, Copy)]
2006pub(crate) enum ObjectLifetimeDefault<'tcx> {
2007    Empty,
2008    Static,
2009    Ambiguous,
2010    Arg(ty::Region<'tcx>),
2011}
2012
2013#[instrument(level = "trace", skip(cx), ret)]
2014pub(crate) fn clean_middle_ty<'tcx>(
2015    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2016    cx: &mut DocContext<'tcx>,
2017    parent_def_id: Option<DefId>,
2018    container: Option<ContainerTy<'_, 'tcx>>,
2019) -> Type {
2020    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2021    match *bound_ty.skip_binder().kind() {
2022        ty::Never => Primitive(PrimitiveType::Never),
2023        ty::Bool => Primitive(PrimitiveType::Bool),
2024        ty::Char => Primitive(PrimitiveType::Char),
2025        ty::Int(int_ty) => Primitive(int_ty.into()),
2026        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2027        ty::Float(float_ty) => Primitive(float_ty.into()),
2028        ty::Str => Primitive(PrimitiveType::Str),
2029        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2030        ty::Pat(ty, pat) => Type::Pat(
2031            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2032            format!("{pat:?}").into_boxed_str(),
2033        ),
2034        ty::Array(ty, n) => {
2035            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2036            let n = print_const(cx, n);
2037            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2038        }
2039        ty::RawPtr(ty, mutbl) => {
2040            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2041        }
2042        ty::Ref(r, ty, mutbl) => BorrowedRef {
2043            lifetime: clean_middle_region(r),
2044            mutability: mutbl,
2045            type_: Box::new(clean_middle_ty(
2046                bound_ty.rebind(ty),
2047                cx,
2048                None,
2049                Some(ContainerTy::Ref(r)),
2050            )),
2051        },
2052        ty::FnDef(..) | ty::FnPtr(..) => {
2053            // FIXME: should we merge the outer and inner binders somehow?
2054            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2055            let decl = clean_poly_fn_sig(cx, None, sig);
2056            let generic_params = clean_bound_vars(sig.bound_vars());
2057
2058            BareFunction(Box::new(BareFunctionDecl {
2059                safety: sig.safety(),
2060                generic_params,
2061                decl,
2062                abi: sig.abi(),
2063            }))
2064        }
2065        ty::UnsafeBinder(inner) => {
2066            let generic_params = clean_bound_vars(inner.bound_vars());
2067            let ty = clean_middle_ty(inner.into(), cx, None, None);
2068            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2069        }
2070        ty::Adt(def, args) => {
2071            let did = def.did();
2072            let kind = match def.adt_kind() {
2073                AdtKind::Struct => ItemType::Struct,
2074                AdtKind::Union => ItemType::Union,
2075                AdtKind::Enum => ItemType::Enum,
2076            };
2077            inline::record_extern_fqn(cx, did, kind);
2078            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2079            Type::Path { path }
2080        }
2081        ty::Foreign(did) => {
2082            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2083            let path = clean_middle_path(
2084                cx,
2085                did,
2086                false,
2087                ThinVec::new(),
2088                ty::Binder::dummy(ty::GenericArgs::empty()),
2089            );
2090            Type::Path { path }
2091        }
2092        ty::Dynamic(obj, reg, _) => {
2093            // HACK: pick the first `did` as the `did` of the trait object. Someone
2094            // might want to implement "native" support for marker-trait-only
2095            // trait objects.
2096            let mut dids = obj.auto_traits();
2097            let did = obj
2098                .principal_def_id()
2099                .or_else(|| dids.next())
2100                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2101            let args = match obj.principal() {
2102                Some(principal) => principal.map_bound(|p| p.args),
2103                // marker traits have no args.
2104                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2105            };
2106
2107            inline::record_extern_fqn(cx, did, ItemType::Trait);
2108
2109            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2110
2111            let mut bounds = dids
2112                .map(|did| {
2113                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2114                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2115                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2116                    PolyTrait { trait_: path, generic_params: Vec::new() }
2117                })
2118                .collect::<Vec<_>>();
2119
2120            let constraints = obj
2121                .projection_bounds()
2122                .map(|pb| AssocItemConstraint {
2123                    assoc: projection_to_path_segment(
2124                        pb.map_bound(|pb| {
2125                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2126                                .projection_term
2127                        }),
2128                        cx,
2129                    ),
2130                    kind: AssocItemConstraintKind::Equality {
2131                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2132                    },
2133                })
2134                .collect();
2135
2136            let late_bound_regions: FxIndexSet<_> = obj
2137                .iter()
2138                .flat_map(|pred| pred.bound_vars())
2139                .filter_map(|var| match var {
2140                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id, name))
2141                        if name != kw::UnderscoreLifetime =>
2142                    {
2143                        Some(GenericParamDef::lifetime(def_id, name))
2144                    }
2145                    _ => None,
2146                })
2147                .collect();
2148            let late_bound_regions = late_bound_regions.into_iter().collect();
2149
2150            let path = clean_middle_path(cx, did, false, constraints, args);
2151            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2152
2153            DynTrait(bounds, lifetime)
2154        }
2155        ty::Tuple(t) => {
2156            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2157        }
2158
2159        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2160            if cx.tcx.is_impl_trait_in_trait(def_id) {
2161                clean_middle_opaque_bounds(cx, def_id, args)
2162            } else {
2163                Type::QPath(Box::new(clean_projection(
2164                    bound_ty.rebind(alias_ty.into()),
2165                    cx,
2166                    parent_def_id,
2167                )))
2168            }
2169        }
2170
2171        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2172            let alias_ty = bound_ty.rebind(alias_ty);
2173            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2174
2175            Type::QPath(Box::new(QPathData {
2176                assoc: PathSegment {
2177                    name: cx.tcx.item_name(def_id),
2178                    args: GenericArgs::AngleBracketed {
2179                        args: clean_middle_generic_args(
2180                            cx,
2181                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2182                            true,
2183                            def_id,
2184                        ),
2185                        constraints: Default::default(),
2186                    },
2187                },
2188                should_fully_qualify: false,
2189                self_type,
2190                trait_: None,
2191            }))
2192        }
2193
2194        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2195            if cx.tcx.features().lazy_type_alias() {
2196                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2197                // we need to use `type_of`.
2198                let path =
2199                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2200                Type::Path { path }
2201            } else {
2202                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2203                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2204            }
2205        }
2206
2207        ty::Param(ref p) => {
2208            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2209                ImplTrait(bounds)
2210            } else if p.name == kw::SelfUpper {
2211                SelfTy
2212            } else {
2213                Generic(p.name)
2214            }
2215        }
2216
2217        ty::Bound(_, ref ty) => match ty.kind {
2218            ty::BoundTyKind::Param(_, name) => Generic(name),
2219            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2220        },
2221
2222        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2223            // If it's already in the same alias, don't get an infinite loop.
2224            if cx.current_type_aliases.contains_key(&def_id) {
2225                let path =
2226                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2227                Type::Path { path }
2228            } else {
2229                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2230                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2231                // by looking up the bounds associated with the def_id.
2232                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2233                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2234                    *count -= 1;
2235                    if *count == 0 {
2236                        cx.current_type_aliases.remove(&def_id);
2237                    }
2238                }
2239                ty
2240            }
2241        }
2242
2243        ty::Closure(..) => panic!("Closure"),
2244        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2245        ty::Coroutine(..) => panic!("Coroutine"),
2246        ty::Placeholder(..) => panic!("Placeholder"),
2247        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2248        ty::Infer(..) => panic!("Infer"),
2249
2250        ty::Error(_) => FatalError.raise(),
2251    }
2252}
2253
2254fn clean_middle_opaque_bounds<'tcx>(
2255    cx: &mut DocContext<'tcx>,
2256    impl_trait_def_id: DefId,
2257    args: ty::GenericArgsRef<'tcx>,
2258) -> Type {
2259    let mut has_sized = false;
2260
2261    let bounds: Vec<_> = cx
2262        .tcx
2263        .explicit_item_bounds(impl_trait_def_id)
2264        .iter_instantiated_copied(cx.tcx, args)
2265        .collect();
2266
2267    let mut bounds = bounds
2268        .iter()
2269        .filter_map(|(bound, _)| {
2270            let bound_predicate = bound.kind();
2271            let trait_ref = match bound_predicate.skip_binder() {
2272                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2273                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2274                    return clean_middle_region(reg).map(GenericBound::Outlives);
2275                }
2276                _ => return None,
2277            };
2278
2279            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2280                && trait_ref.def_id() == sized
2281            {
2282                has_sized = true;
2283                return None;
2284            }
2285
2286            let bindings: ThinVec<_> = bounds
2287                .iter()
2288                .filter_map(|(bound, _)| {
2289                    let bound = bound.kind();
2290                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2291                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2292                    {
2293                        return Some(AssocItemConstraint {
2294                            assoc: projection_to_path_segment(
2295                                bound.rebind(proj_pred.projection_term),
2296                                cx,
2297                            ),
2298                            kind: AssocItemConstraintKind::Equality {
2299                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2300                            },
2301                        });
2302                    }
2303                    None
2304                })
2305                .collect();
2306
2307            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2308        })
2309        .collect::<Vec<_>>();
2310
2311    if !has_sized {
2312        bounds.push(GenericBound::maybe_sized(cx));
2313    }
2314
2315    // Move trait bounds to the front.
2316    bounds.sort_by_key(|b| !b.is_trait_bound());
2317
2318    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2319    // Since all potential trait bounds are at the front we can just check the first bound.
2320    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2321        bounds.insert(0, GenericBound::sized(cx));
2322    }
2323
2324    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2325        bounds.push(GenericBound::Use(
2326            args.iter()
2327                .map(|arg| match arg {
2328                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2329                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2330                    }
2331                    hir::PreciseCapturingArgKind::Param(param) => {
2332                        PreciseCapturingArg::Param(*param)
2333                    }
2334                })
2335                .collect(),
2336        ));
2337    }
2338
2339    ImplTrait(bounds)
2340}
2341
2342pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2343    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2344}
2345
2346pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2347    clean_field_with_def_id(
2348        field.did,
2349        field.name,
2350        clean_middle_ty(
2351            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2352            cx,
2353            Some(field.did),
2354            None,
2355        ),
2356        cx,
2357    )
2358}
2359
2360pub(crate) fn clean_field_with_def_id(
2361    def_id: DefId,
2362    name: Symbol,
2363    ty: Type,
2364    cx: &mut DocContext<'_>,
2365) -> Item {
2366    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2367}
2368
2369pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2370    let discriminant = match variant.discr {
2371        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2372        ty::VariantDiscr::Relative(_) => None,
2373    };
2374
2375    let kind = match variant.ctor_kind() {
2376        Some(CtorKind::Const) => VariantKind::CLike,
2377        Some(CtorKind::Fn) => VariantKind::Tuple(
2378            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2379        ),
2380        None => VariantKind::Struct(VariantStruct {
2381            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2382        }),
2383    };
2384
2385    Item::from_def_id_and_parts(
2386        variant.def_id,
2387        Some(variant.name),
2388        VariantItem(Variant { kind, discriminant }),
2389        cx,
2390    )
2391}
2392
2393pub(crate) fn clean_variant_def_with_args<'tcx>(
2394    variant: &ty::VariantDef,
2395    args: &GenericArgsRef<'tcx>,
2396    cx: &mut DocContext<'tcx>,
2397) -> Item {
2398    let discriminant = match variant.discr {
2399        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2400        ty::VariantDiscr::Relative(_) => None,
2401    };
2402
2403    use rustc_middle::traits::ObligationCause;
2404    use rustc_trait_selection::infer::TyCtxtInferExt;
2405    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2406
2407    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2408    let kind = match variant.ctor_kind() {
2409        Some(CtorKind::Const) => VariantKind::CLike,
2410        Some(CtorKind::Fn) => VariantKind::Tuple(
2411            variant
2412                .fields
2413                .iter()
2414                .map(|field| {
2415                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2416
2417                    // normalize the type to only show concrete types
2418                    // note: we do not use try_normalize_erasing_regions since we
2419                    // do care about showing the regions
2420                    let ty = infcx
2421                        .at(&ObligationCause::dummy(), cx.param_env)
2422                        .query_normalize(ty)
2423                        .map(|normalized| normalized.value)
2424                        .unwrap_or(ty);
2425
2426                    clean_field_with_def_id(
2427                        field.did,
2428                        field.name,
2429                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2430                        cx,
2431                    )
2432                })
2433                .collect(),
2434        ),
2435        None => VariantKind::Struct(VariantStruct {
2436            fields: variant
2437                .fields
2438                .iter()
2439                .map(|field| {
2440                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2441
2442                    // normalize the type to only show concrete types
2443                    // note: we do not use try_normalize_erasing_regions since we
2444                    // do care about showing the regions
2445                    let ty = infcx
2446                        .at(&ObligationCause::dummy(), cx.param_env)
2447                        .query_normalize(ty)
2448                        .map(|normalized| normalized.value)
2449                        .unwrap_or(ty);
2450
2451                    clean_field_with_def_id(
2452                        field.did,
2453                        field.name,
2454                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2455                        cx,
2456                    )
2457                })
2458                .collect(),
2459        }),
2460    };
2461
2462    Item::from_def_id_and_parts(
2463        variant.def_id,
2464        Some(variant.name),
2465        VariantItem(Variant { kind, discriminant }),
2466        cx,
2467    )
2468}
2469
2470fn clean_variant_data<'tcx>(
2471    variant: &hir::VariantData<'tcx>,
2472    disr_expr: &Option<&hir::AnonConst>,
2473    cx: &mut DocContext<'tcx>,
2474) -> Variant {
2475    let discriminant = disr_expr
2476        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2477
2478    let kind = match variant {
2479        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2480            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2481        }),
2482        hir::VariantData::Tuple(..) => {
2483            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2484        }
2485        hir::VariantData::Unit(..) => VariantKind::CLike,
2486    };
2487
2488    Variant { discriminant, kind }
2489}
2490
2491fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2492    Path {
2493        res: path.res,
2494        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2495    }
2496}
2497
2498fn clean_generic_args<'tcx>(
2499    generic_args: &hir::GenericArgs<'tcx>,
2500    cx: &mut DocContext<'tcx>,
2501) -> GenericArgs {
2502    match generic_args.parenthesized {
2503        hir::GenericArgsParentheses::No => {
2504            let args = generic_args
2505                .args
2506                .iter()
2507                .map(|arg| match arg {
2508                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2509                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2510                    }
2511                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2512                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2513                    hir::GenericArg::Const(ct) => {
2514                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct(), cx)))
2515                    }
2516                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2517                })
2518                .collect();
2519            let constraints = generic_args
2520                .constraints
2521                .iter()
2522                .map(|c| clean_assoc_item_constraint(c, cx))
2523                .collect::<ThinVec<_>>();
2524            GenericArgs::AngleBracketed { args, constraints }
2525        }
2526        hir::GenericArgsParentheses::ParenSugar => {
2527            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2528                bug!();
2529            };
2530            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2531            let output = match output.kind {
2532                hir::TyKind::Tup(&[]) => None,
2533                _ => Some(Box::new(clean_ty(output, cx))),
2534            };
2535            GenericArgs::Parenthesized { inputs, output }
2536        }
2537        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2538    }
2539}
2540
2541fn clean_path_segment<'tcx>(
2542    path: &hir::PathSegment<'tcx>,
2543    cx: &mut DocContext<'tcx>,
2544) -> PathSegment {
2545    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2546}
2547
2548fn clean_bare_fn_ty<'tcx>(
2549    bare_fn: &hir::BareFnTy<'tcx>,
2550    cx: &mut DocContext<'tcx>,
2551) -> BareFunctionDecl {
2552    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2553        // NOTE: Generics must be cleaned before params.
2554        let generic_params = bare_fn
2555            .generic_params
2556            .iter()
2557            .filter(|p| !is_elided_lifetime(p))
2558            .map(|x| clean_generic_param(cx, None, x))
2559            .collect();
2560        // Since it's more conventional stylistically, elide the name of all params called `_`
2561        // unless there's at least one interestingly named param in which case don't elide any
2562        // name since mixing named and unnamed params is less legible.
2563        let filter = |ident: Option<Ident>| {
2564            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2565        };
2566        let fallback =
2567            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2568        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2569            filter(ident).or(fallback)
2570        });
2571        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2572        (generic_params, decl)
2573    });
2574    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2575}
2576
2577fn clean_unsafe_binder_ty<'tcx>(
2578    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2579    cx: &mut DocContext<'tcx>,
2580) -> UnsafeBinderTy {
2581    let generic_params = unsafe_binder_ty
2582        .generic_params
2583        .iter()
2584        .filter(|p| !is_elided_lifetime(p))
2585        .map(|x| clean_generic_param(cx, None, x))
2586        .collect();
2587    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2588    UnsafeBinderTy { generic_params, ty }
2589}
2590
2591pub(crate) fn reexport_chain(
2592    tcx: TyCtxt<'_>,
2593    import_def_id: LocalDefId,
2594    target_def_id: DefId,
2595) -> &[Reexport] {
2596    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2597        if child.res.opt_def_id() == Some(target_def_id)
2598            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2599        {
2600            return &child.reexport_chain;
2601        }
2602    }
2603    &[]
2604}
2605
2606/// Collect attributes from the whole import chain.
2607fn get_all_import_attributes<'hir>(
2608    cx: &mut DocContext<'hir>,
2609    import_def_id: LocalDefId,
2610    target_def_id: DefId,
2611    is_inline: bool,
2612) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2613    let mut attrs = Vec::new();
2614    let mut first = true;
2615    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2616        .iter()
2617        .flat_map(|reexport| reexport.id())
2618    {
2619        let import_attrs = inline::load_attrs(cx, def_id);
2620        if first {
2621            // This is the "original" reexport so we get all its attributes without filtering them.
2622            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2623            first = false;
2624        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2625        } else if cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id) {
2626            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2627        }
2628    }
2629    attrs
2630}
2631
2632fn filter_tokens_from_list(
2633    args_tokens: &TokenStream,
2634    should_retain: impl Fn(&TokenTree) -> bool,
2635) -> Vec<TokenTree> {
2636    let mut tokens = Vec::with_capacity(args_tokens.len());
2637    let mut skip_next_comma = false;
2638    for token in args_tokens.iter() {
2639        match token {
2640            TokenTree::Token(Token { kind: TokenKind::Comma, .. }, _) if skip_next_comma => {
2641                skip_next_comma = false;
2642            }
2643            token if should_retain(token) => {
2644                skip_next_comma = false;
2645                tokens.push(token.clone());
2646            }
2647            _ => {
2648                skip_next_comma = true;
2649            }
2650        }
2651    }
2652    tokens
2653}
2654
2655fn filter_doc_attr_ident(ident: Symbol, is_inline: bool) -> bool {
2656    if is_inline {
2657        ident == sym::hidden || ident == sym::inline || ident == sym::no_inline
2658    } else {
2659        ident == sym::cfg
2660    }
2661}
2662
2663/// Remove attributes from `normal` that should not be inherited by `use` re-export.
2664/// Before calling this function, make sure `normal` is a `#[doc]` attribute.
2665fn filter_doc_attr(args: &mut hir::AttrArgs, is_inline: bool) {
2666    match args {
2667        hir::AttrArgs::Delimited(args) => {
2668            let tokens = filter_tokens_from_list(&args.tokens, |token| {
2669                !matches!(
2670                    token,
2671                    TokenTree::Token(
2672                        Token {
2673                            kind: TokenKind::Ident(
2674                                ident,
2675                                _,
2676                            ),
2677                            ..
2678                        },
2679                        _,
2680                    ) if filter_doc_attr_ident(*ident, is_inline),
2681                )
2682            });
2683            args.tokens = TokenStream::new(tokens);
2684        }
2685        hir::AttrArgs::Empty | hir::AttrArgs::Eq { .. } => {}
2686    }
2687}
2688
2689/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2690/// final reexport. For example:
2691///
2692/// ```ignore (just an example)
2693/// #[doc(hidden, cfg(feature = "foo"))]
2694/// pub struct Foo;
2695///
2696/// #[doc(cfg(feature = "bar"))]
2697/// #[doc(hidden, no_inline)]
2698/// pub use Foo as Foo1;
2699///
2700/// #[doc(inline)]
2701/// pub use Foo2 as Bar;
2702/// ```
2703///
2704/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2705/// attributes so we filter out the following ones:
2706/// * `doc(inline)`
2707/// * `doc(no_inline)`
2708/// * `doc(hidden)`
2709fn add_without_unwanted_attributes<'hir>(
2710    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2711    new_attrs: &'hir [hir::Attribute],
2712    is_inline: bool,
2713    import_parent: Option<DefId>,
2714) {
2715    for attr in new_attrs {
2716        if attr.is_doc_comment() {
2717            attrs.push((Cow::Borrowed(attr), import_parent));
2718            continue;
2719        }
2720        let mut attr = attr.clone();
2721        match attr {
2722            hir::Attribute::Unparsed(ref mut normal) if let [ident] = &*normal.path.segments => {
2723                let ident = ident.name;
2724                if ident == sym::doc {
2725                    filter_doc_attr(&mut normal.args, is_inline);
2726                    attrs.push((Cow::Owned(attr), import_parent));
2727                } else if is_inline || ident != sym::cfg_trace {
2728                    // If it's not a `cfg()` attribute, we keep it.
2729                    attrs.push((Cow::Owned(attr), import_parent));
2730                }
2731            }
2732            hir::Attribute::Parsed(..) if is_inline => {
2733                attrs.push((Cow::Owned(attr), import_parent));
2734            }
2735            _ => {}
2736        }
2737    }
2738}
2739
2740fn clean_maybe_renamed_item<'tcx>(
2741    cx: &mut DocContext<'tcx>,
2742    item: &hir::Item<'tcx>,
2743    renamed: Option<Symbol>,
2744    import_id: Option<LocalDefId>,
2745) -> Vec<Item> {
2746    use hir::ItemKind;
2747
2748    fn get_name(
2749        cx: &DocContext<'_>,
2750        item: &hir::Item<'_>,
2751        renamed: Option<Symbol>,
2752    ) -> Option<Symbol> {
2753        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2754    }
2755
2756    let def_id = item.owner_id.to_def_id();
2757    cx.with_param_env(def_id, |cx| {
2758        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2759        // before.
2760        match item.kind {
2761            ItemKind::Impl(impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2762            ItemKind::Use(path, kind) => {
2763                return clean_use_statement(
2764                    item,
2765                    get_name(cx, item, renamed),
2766                    path,
2767                    kind,
2768                    cx,
2769                    &mut FxHashSet::default(),
2770                );
2771            }
2772            _ => {}
2773        }
2774
2775        let mut name = get_name(cx, item, renamed).unwrap();
2776
2777        let kind = match item.kind {
2778            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2779                type_: Box::new(clean_ty(ty, cx)),
2780                mutability,
2781                expr: Some(body_id),
2782            }),
2783            ItemKind::Const(_, generics, ty, body_id) => ConstantItem(Box::new(Constant {
2784                generics: clean_generics(generics, cx),
2785                type_: clean_ty(ty, cx),
2786                kind: ConstantKind::Local { body: body_id, def_id },
2787            })),
2788            ItemKind::TyAlias(_, generics, ty) => {
2789                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2790                let rustdoc_ty = clean_ty(ty, cx);
2791                let type_ =
2792                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2793                let generics = clean_generics(generics, cx);
2794                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2795                    *count -= 1;
2796                    if *count == 0 {
2797                        cx.current_type_aliases.remove(&def_id);
2798                    }
2799                }
2800
2801                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2802
2803                let mut ret = Vec::new();
2804                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2805
2806                ret.push(generate_item_with_correct_attrs(
2807                    cx,
2808                    TypeAliasItem(Box::new(TypeAlias {
2809                        generics,
2810                        inner_type,
2811                        type_: rustdoc_ty,
2812                        item_type: Some(type_),
2813                    })),
2814                    item.owner_id.def_id.to_def_id(),
2815                    name,
2816                    import_id,
2817                    renamed,
2818                ));
2819                return ret;
2820            }
2821            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2822                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2823                generics: clean_generics(generics, cx),
2824            }),
2825            ItemKind::TraitAlias(_, generics, bounds) => TraitAliasItem(TraitAlias {
2826                generics: clean_generics(generics, cx),
2827                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2828            }),
2829            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2830                generics: clean_generics(generics, cx),
2831                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2832            }),
2833            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2834                ctor_kind: variant_data.ctor_kind(),
2835                generics: clean_generics(generics, cx),
2836                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2837            }),
2838            ItemKind::Macro(_, macro_def, MacroKind::Bang) => MacroItem(Macro {
2839                source: display_macro_source(cx, name, macro_def),
2840                macro_rules: macro_def.macro_rules,
2841            }),
2842            ItemKind::Macro(_, _, macro_kind) => clean_proc_macro(item, &mut name, macro_kind, cx),
2843            // proc macros can have a name set by attributes
2844            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2845                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2846            }
2847            ItemKind::Trait(_, _, _, generics, bounds, item_ids) => {
2848                let items = item_ids
2849                    .iter()
2850                    .map(|ti| clean_trait_item(cx.tcx.hir_trait_item(ti.id), cx))
2851                    .collect();
2852
2853                TraitItem(Box::new(Trait {
2854                    def_id,
2855                    items,
2856                    generics: clean_generics(generics, cx),
2857                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2858                }))
2859            }
2860            ItemKind::ExternCrate(orig_name, _) => {
2861                return clean_extern_crate(item, name, orig_name, cx);
2862            }
2863            _ => span_bug!(item.span, "not yet converted"),
2864        };
2865
2866        vec![generate_item_with_correct_attrs(
2867            cx,
2868            kind,
2869            item.owner_id.def_id.to_def_id(),
2870            name,
2871            import_id,
2872            renamed,
2873        )]
2874    })
2875}
2876
2877fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2878    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2879    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2880}
2881
2882fn clean_impl<'tcx>(
2883    impl_: &hir::Impl<'tcx>,
2884    def_id: LocalDefId,
2885    cx: &mut DocContext<'tcx>,
2886) -> Vec<Item> {
2887    let tcx = cx.tcx;
2888    let mut ret = Vec::new();
2889    let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
2890    let items = impl_
2891        .items
2892        .iter()
2893        .map(|ii| clean_impl_item(tcx.hir_impl_item(ii.id), cx))
2894        .collect::<Vec<_>>();
2895
2896    // If this impl block is an implementation of the Deref trait, then we
2897    // need to try inlining the target's inherent impl blocks as well.
2898    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2899        build_deref_target_impls(cx, &items, &mut ret);
2900    }
2901
2902    let for_ = clean_ty(impl_.self_ty, cx);
2903    let type_alias =
2904        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2905            DefKind::TyAlias => Some(clean_middle_ty(
2906                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2907                cx,
2908                Some(def_id.to_def_id()),
2909                None,
2910            )),
2911            _ => None,
2912        });
2913    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2914        let kind = ImplItem(Box::new(Impl {
2915            safety: impl_.safety,
2916            generics: clean_generics(impl_.generics, cx),
2917            trait_,
2918            for_,
2919            items,
2920            polarity: tcx.impl_polarity(def_id),
2921            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
2922                ImplKind::FakeVariadic
2923            } else {
2924                ImplKind::Normal
2925            },
2926        }));
2927        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2928    };
2929    if let Some(type_alias) = type_alias {
2930        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2931    }
2932    ret.push(make_item(trait_, for_, items));
2933    ret
2934}
2935
2936fn clean_extern_crate<'tcx>(
2937    krate: &hir::Item<'tcx>,
2938    name: Symbol,
2939    orig_name: Option<Symbol>,
2940    cx: &mut DocContext<'tcx>,
2941) -> Vec<Item> {
2942    // this is the ID of the `extern crate` statement
2943    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2944    // this is the ID of the crate itself
2945    let crate_def_id = cnum.as_def_id();
2946    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2947    let ty_vis = cx.tcx.visibility(krate.owner_id);
2948    let please_inline = ty_vis.is_public()
2949        && attrs.iter().any(|a| {
2950            a.has_name(sym::doc)
2951                && match a.meta_item_list() {
2952                    Some(l) => ast::attr::list_contains_name(&l, sym::inline),
2953                    None => false,
2954                }
2955        })
2956        && !cx.is_json_output();
2957
2958    let krate_owner_def_id = krate.owner_id.def_id;
2959    if please_inline
2960        && let Some(items) = inline::try_inline(
2961            cx,
2962            Res::Def(DefKind::Mod, crate_def_id),
2963            name,
2964            Some((attrs, Some(krate_owner_def_id))),
2965            &mut Default::default(),
2966        )
2967    {
2968        return items;
2969    }
2970
2971    vec![Item::from_def_id_and_parts(
2972        krate_owner_def_id.to_def_id(),
2973        Some(name),
2974        ExternCrateItem { src: orig_name },
2975        cx,
2976    )]
2977}
2978
2979fn clean_use_statement<'tcx>(
2980    import: &hir::Item<'tcx>,
2981    name: Option<Symbol>,
2982    path: &hir::UsePath<'tcx>,
2983    kind: hir::UseKind,
2984    cx: &mut DocContext<'tcx>,
2985    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2986) -> Vec<Item> {
2987    let mut items = Vec::new();
2988    let hir::UsePath { segments, ref res, span } = *path;
2989    for res in res.present_items() {
2990        let path = hir::Path { segments, res, span };
2991        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
2992    }
2993    items
2994}
2995
2996fn clean_use_statement_inner<'tcx>(
2997    import: &hir::Item<'tcx>,
2998    name: Option<Symbol>,
2999    path: &hir::Path<'tcx>,
3000    kind: hir::UseKind,
3001    cx: &mut DocContext<'tcx>,
3002    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3003) -> Vec<Item> {
3004    if should_ignore_res(path.res) {
3005        return Vec::new();
3006    }
3007    // We need this comparison because some imports (for std types for example)
3008    // are "inserted" as well but directly by the compiler and they should not be
3009    // taken into account.
3010    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
3011        return Vec::new();
3012    }
3013
3014    let visibility = cx.tcx.visibility(import.owner_id);
3015    let attrs = cx.tcx.hir_attrs(import.hir_id());
3016    let inline_attr = hir_attr_lists(attrs, sym::doc).get_word_attr(sym::inline);
3017    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
3018    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
3019    let import_def_id = import.owner_id.def_id;
3020
3021    // The parent of the module in which this import resides. This
3022    // is the same as `current_mod` if that's already the top
3023    // level module.
3024    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3025
3026    // This checks if the import can be seen from a higher level module.
3027    // In other words, it checks if the visibility is the equivalent of
3028    // `pub(super)` or higher. If the current module is the top level
3029    // module, there isn't really a parent module, which makes the results
3030    // meaningless. In this case, we make sure the answer is `false`.
3031    let is_visible_from_parent_mod =
3032        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3033
3034    if pub_underscore && let Some(ref inline) = inline_attr {
3035        struct_span_code_err!(
3036            cx.tcx.dcx(),
3037            inline.span(),
3038            E0780,
3039            "anonymous imports cannot be inlined"
3040        )
3041        .with_span_label(import.span, "anonymous import")
3042        .emit();
3043    }
3044
3045    // We consider inlining the documentation of `pub use` statements, but we
3046    // forcefully don't inline if this is not public or if the
3047    // #[doc(no_inline)] attribute is present.
3048    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3049    let mut denied = cx.is_json_output()
3050        || !(visibility.is_public()
3051            || (cx.render_options.document_private && is_visible_from_parent_mod))
3052        || pub_underscore
3053        || attrs.iter().any(|a| {
3054            a.has_name(sym::doc)
3055                && match a.meta_item_list() {
3056                    Some(l) => {
3057                        ast::attr::list_contains_name(&l, sym::no_inline)
3058                            || ast::attr::list_contains_name(&l, sym::hidden)
3059                    }
3060                    None => false,
3061                }
3062        });
3063
3064    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3065    // crate in Rust 2018+
3066    let path = clean_path(path, cx);
3067    let inner = if kind == hir::UseKind::Glob {
3068        if !denied {
3069            let mut visited = DefIdSet::default();
3070            if let Some(items) = inline::try_inline_glob(
3071                cx,
3072                path.res,
3073                current_mod,
3074                &mut visited,
3075                inlined_names,
3076                import,
3077            ) {
3078                return items;
3079            }
3080        }
3081        Import::new_glob(resolve_use_source(cx, path), true)
3082    } else {
3083        let name = name.unwrap();
3084        if inline_attr.is_none()
3085            && let Res::Def(DefKind::Mod, did) = path.res
3086            && !did.is_local()
3087            && did.is_crate_root()
3088        {
3089            // if we're `pub use`ing an extern crate root, don't inline it unless we
3090            // were specifically asked for it
3091            denied = true;
3092        }
3093        if !denied
3094            && let Some(mut items) = inline::try_inline(
3095                cx,
3096                path.res,
3097                name,
3098                Some((attrs, Some(import_def_id))),
3099                &mut Default::default(),
3100            )
3101        {
3102            items.push(Item::from_def_id_and_parts(
3103                import_def_id.to_def_id(),
3104                None,
3105                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3106                cx,
3107            ));
3108            return items;
3109        }
3110        Import::new_simple(name, resolve_use_source(cx, path), true)
3111    };
3112
3113    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3114}
3115
3116fn clean_maybe_renamed_foreign_item<'tcx>(
3117    cx: &mut DocContext<'tcx>,
3118    item: &hir::ForeignItem<'tcx>,
3119    renamed: Option<Symbol>,
3120) -> Item {
3121    let def_id = item.owner_id.to_def_id();
3122    cx.with_param_env(def_id, |cx| {
3123        let kind = match item.kind {
3124            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3125                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3126                sig.header.safety(),
3127            ),
3128            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3129                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3130                safety,
3131            ),
3132            hir::ForeignItemKind::Type => ForeignTypeItem,
3133        };
3134
3135        Item::from_def_id_and_parts(
3136            item.owner_id.def_id.to_def_id(),
3137            Some(renamed.unwrap_or(item.ident.name)),
3138            kind,
3139            cx,
3140        )
3141    })
3142}
3143
3144fn clean_assoc_item_constraint<'tcx>(
3145    constraint: &hir::AssocItemConstraint<'tcx>,
3146    cx: &mut DocContext<'tcx>,
3147) -> AssocItemConstraint {
3148    AssocItemConstraint {
3149        assoc: PathSegment {
3150            name: constraint.ident.name,
3151            args: clean_generic_args(constraint.gen_args, cx),
3152        },
3153        kind: match constraint.kind {
3154            hir::AssocItemConstraintKind::Equality { ref term } => {
3155                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3156            }
3157            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3158                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3159            },
3160        },
3161    }
3162}
3163
3164fn clean_bound_vars(bound_vars: &ty::List<ty::BoundVariableKind>) -> Vec<GenericParamDef> {
3165    bound_vars
3166        .into_iter()
3167        .filter_map(|var| match var {
3168            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id, name))
3169                if name != kw::UnderscoreLifetime =>
3170            {
3171                Some(GenericParamDef::lifetime(def_id, name))
3172            }
3173            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id, name)) => {
3174                Some(GenericParamDef {
3175                    name,
3176                    def_id,
3177                    kind: GenericParamDefKind::Type {
3178                        bounds: ThinVec::new(),
3179                        default: None,
3180                        synthetic: false,
3181                    },
3182                })
3183            }
3184            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3185            ty::BoundVariableKind::Const => None,
3186            _ => None,
3187        })
3188        .collect()
3189}