Access Control
Row level security

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

What is row level security
When RLS policies apply

Multiple policies, same table

o)) PROFESSIONAL

Row level security policy Pos{gres

Determines the visibility and mutability of table rows

the predicate is calculated for each row using the initiating user’s privileges
the client can only access the rows for which the predicate is true

Predicate for existing rows (USING)

used by SELECT, UPDATE, DELETE commands

policy violation does not trigger an error
(unless the row_security parameter is unset)

Predicate for new rows (WITH CHECK)

used by INSERT, UPDATE commands
if omitted, the first predicate is used
policy violation triggers an error

Row level security (RLS) policies allow the system administrator to control
user access to a table at the level of individual rows. This mechanism is also
known as Fine-Grained Access Control.

It it a supplemental tool, as the role must have necessary privileges to
access the table in the first place.

Row level security policies determine if a certain user should be able to
read or modify a certain row by calculating one of two predicates (binary
expressions) for each of the queried rows. The predicate result determines
if the user would be allowed to access the row.

The first predicate is used for existing rows. It is used by the commands
SELECT, UPDATE, and DELETE. If the predicate for a given row does not
return true (that is, the function returns false or NULL), the row isn't included
into the client's result set. As a gross oversimplification, you can imagine
that the predicate is simply appended to the WHERE clause of the query.

In reality, however, it is more complicated.

If the row_security parameter value is set to off, a false predicate for even a
single row will result in an query error. This is useful when making a logical
backup to ensure that all rows of all tables got in.

The second predicate determines the visibility of new rows. It is used by the
INSERT and UPDATE commands and always throws an error if the policy is
violated.

https://postgrespro.com/docs/postgresgl/13/ddl-rowsecurity

o)) PROFESSIONAL

When RLS policies apply Pos{gres

Policy applies
to the table for which RLS is enabled

for specified roles and operators
(SELECT, INSERT, UPDATE, DELETE)

Policy does not apply

during integrity constraints verification
for superusers and roles with the BYPASSRLS attribute
for the owner (unless enabled explicitly)

In order for row level security policies to start working, this mechanism must
be explicitly enabled for each table.

When creating a RLS policy, you can specify what roles (by default, all) and
what operators (by default, also all) will the policy apply to.

Policies are not applied during integrity constraints verification: PostgreSQL
must guarantee data integrity regardless of security configurations.

Policies are not applied for superusers (as with any other security checks)
and for roles with the BYPASSRLS attribute.

For the owner of the table, the policies do not apply by default, but can be
enabled if necessary.

Row level security policy example

=> CREATE DATABASE access_rls;

CREATE DATABASE

=> \c access_rls

You are now connected to database "access rls" as user "student".
Alice and Bob work in different departments of the same company.
student=# CREATE ROLE alice LOGIN;

CREATE ROLE

student=# CREATE ROLE bob LOGIN;

CREATE ROLE

student=# CREATE TABLE users_depts(
login text,
department text

)i

CREATE TABLE
student=# INSERT INTO users_depts VALUES ('alice','PR'), ('bob','Sales');
INSERT 0 2

They work with the same table that contains information from different departments. However, both Alice and Bob must
only see the data from their own departments.

student=# CREATE TABLE revenue(
department text,
amount numeric(10,2)

)i

CREATE TABLE

student=# INSERT INTO revenue SELECT 'PR', -random()* 100.00 FROM generate_series(1,100000);
INSERT 0 100000

student=# INSERT INTO revenue SELECT 'Sales', random()*1000.00 FROM generate_series(1,10000);
INSERT 0 10000

Define an appropriate policy and enable it:

student=# CREATE POLICY departments ON revenue
USING (department = (SELECT department FROM users_depts WHERE login = current_user));

CREATE POLICY

student=# ALTER TABLE revenue ENABLE ROW LEVEL SECURITY;

ALTER TABLE

Grant Alice and Bob the privileges:

student=# GRANT SELECT ON users_depts, revenue TO alice, bob;

GRANT

The superuser (and also the owner, in this case) sees all the rows, as they ignore the policy restrictions:

student=# SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
............ e e e e e oo oo oo
PR | -4995446.82
Sales | 5042529.14
(2 rows)

What do Alice and Bob see?
student=# \c - alice

You are now connected to database "access rls" as user "alice".

alice=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ Femm e -
PR | -4995446.82
(1 row)

| => \c access_rls bob
| You are now connected to database "access rls" as user "bob".
| bob=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department

Multiple policies Pogga’?“é“g

Permissive policies

visibility must be allowed by at least one permissive policy

if no policy allows visibility, the row is not visible

Restrictive policies

visibility must be allowed by all restrictive policies, unless none exist

Multiple policies can be defined on a single table. In this case, all predicates
will be considered.

By default, created policies are permissive. For a row to be visible, at least
one of the predicates of these policies must be true.

But if row level security is enabled and no permissive policy is defined, not a
single row will be available.

Additionally, you can define restrictive policies. If such policies are defined,
all of them must return true for the row to be visible.

In other words, if only permissive policies are defined and the predicates are
P, ..., P, then for each row the following expression is evaluated:

1
P,OR..ORP,.

And if restrictive policies R,, ..., R,, are also defined, then the evaluated
expression will be

(P, OR ... ORP,)AND R, AND ... ANDR,,

The bottom line is, visibility must be allowed by at least one permissive
policy and by all restrictive policies.

Multiple policies

Allow Bob to add rows to the table, but only for his department and only under 100 USD:

e the first restriction will apply automatically (the same predicate works for both existing and newly created rows),
e the second restriction needs a new policy created for it.

alice=> \c - student
You are now connected to database "access rls" as user "student".

student=# CREATE POLICY amount ON revenue AS RESTRICTIVE
USING (true) -- all existing rows are visible
WITH CHECK (abs(amount) <= 100.00); -- must be true for new rows

CREATE POLICY

student=# GRANT INSERT ON revenue TO bob;

GRANT

Verify:

| bob=> INSERT INTO revenue VALUES ('Sales', 42.00);

| INSERT 0 1

| bob=> INSERT INTO revenue VALUES ('PR', 42.00);

| ERROR: new row violates row-level security policy for table "revenue"
| bob=> INSERT INTO revenue VALUES ('Sales', 1000.00);

| ERROR: new row violates row-level security policy "amount" for table "revenue"

To see what policies exist for a given object, use psql commands \d (object description) and \dp (privilege description), for
example:

student=# \d revenue

Table "public.revenue"

Column | Type | Collation | Nullable | Default
------------ R e S ek R P
department | text | | |
amount | numeric(10,2) | |
Policies:

POLICY "amount" AS RESTRICTIVE
USING (true)
WITH CHECK ((abs(amount) <= 100.00))
POLICY "departments"
USING ((department = (SELECT users depts.department
FROM users _depts
WHERE (users depts.login = CURRENT USER))))

This data is also available in the pg policies view in the system catalog.

Takeaways Pogga’??é

Privileges control access to tables and columns,
row level security policies control access to rows

Policies are easier to set up and work more efficiently than
view and trigger based implementations

Practice Pogga’?éé

1. Continuing the example from the demo, create a role for Charlie
and assign him two departments in the user table.

2. Define row level security policies in such a way that:
- roles can only see the rows from their departments,
- roles associated with a single department could add rows with the amount
of up to $100,
- roles associated with multiple departments could add rows with any
amount.

3. Verify that the policies are set up correctly.

Estimate the overhead costs of row level security policies by
running the same query as a regular user and as a superuser.

1. Roles and tables

=> CREATE DATABASE access_rls;

CREATE DATABASE

=> \c access_rls

You are now connected to database "access rls" as user "student".
student=# CREATE ROLE alice LOGIN;

CREATE ROLE

student=# CREATE ROLE bob LOGIN;

CREATE ROLE

student=# CREATE ROLE charlie LOGIN;

CREATE ROLE

student=# CREATE TABLE users_depts(
login text,
department text

)i

CREATE TABLE

student=# INSERT INTO users_depts VALUES
('alice', 'PR'),
('bob', '‘Sales'),
('charlie', 'PR'),
('charlie', 'Sales');

INSERT 0 4

student=# CREATE TABLE revenue(
department text,
amount numeric(10,2)

)5

CREATE TABLE

student=# INSERT INTO revenue SELECT 'PR', -random()* 100.00 FROM generate_series(1,100000);
INSERT 0 100000

student=# INSERT INTO revenue SELECT 'Sales', random()*1000.00 FROM generate_series(1,10000);

INSERT 0 10000

2. Policies and privileges

student=# CREATE POLICY departments ON revenue
USING (department IN (SELECT department FROM users_depts WHERE login = current_user));

CREATE POLICY

student=# CREATE POLICY amount ON revenue AS RESTRICTIVE
USING (true)
WITH CHECK (
(SELECT count(*) FROM users_depts WHERE login = current_user) > 1
OR abs(amount) <= 100.00
);

CREATE POLICY

student=# ALTER TABLE revenue ENABLE ROW LEVEL SECURITY;

ALTER TABLE

student=# GRANT SELECT ON users_depts TO alice, bob, charlie;
GRANT

student=# GRANT SELECT, INSERT ON revenue TO alice, bob, charlie;

GRANT

3. Verify

Alice:
student=# \c - alice
You are now connected to database "access rls" as user "alice".

alice=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ e e e e e e oo oo
PR | -4991269.96
(1 row)

alice=> INSERT INTO revenue VALUES ('PR', 100.00);

INSERT 0 1

alice=> INSERT INTO revenue VALUES ('PR', 101.00);

ERROR: new row violates row-level security policy "amount" for table "revenue"
Bob:

alice=> \c - bob

You are now connected to database "access rls" as user "bob".

bob=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ L —_—
Sales | 4994106.05
(1 row)

bob=> INSERT INTO revenue VALUES ('Sales', 100.00);

INSERT 0 1

bob=> INSERT INTO revenue VALUES ('Sales', 101.00);

ERROR: new row violates row-level security policy "amount" for table "revenue"
Charlie:

bob=> \c - charlie

You are now connected to database "access rls" as user "charlie".

charlie=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ Femm e -
PR | -4991169.96
Sales | 4994206.05
(2 rows)

charlie=> INSERT INTO revenue VALUES ('PR', 1000.00);
INSERT 0 1
charlie=> INSERT INTO revenue VALUES ('Sales', 1000.00);

INSERT 0 1

4. Overhead

Run the query several times to get the average execution time.
charlie=> \timing on

Timing is on.

First as charlie:

charlie=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum

____________ e e e e e oo oo
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 95.967 ms

charlie=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ L
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 100.821 ms

charlie=> SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ e e e e e e oo oo
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 102.398 ms

Now do that again as the owner of the table, who is unaffected by the policies by default:
charlie=> \c - student

You are now connected to database "access rls" as user "student".

student=# SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ Fomm e e e e e e e e
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 73.021 ms

student=# SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
............ Fmmm e e e -
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 70.803 ms

student=# SELECT department, sum(amount) FROM revenue GROUP BY department;

department | sum
____________ Femm e -
PR | -4990169.96
Sales | 4995206.05
(2 rows)

Time: 70.908 ms

The overhead isn't dramatic in this case, but not negligible either.

