

Access Control
Roles and attributes

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Roles
Attributes

Group role membership
Object owners

3

Roles

A role is a DBMS user
A role is in no way associated with the OS user

although many programs use the OS user name
as the default role name

Roles are defined at the cluster level

Essentially, a role is a DBMS user. (A role can also act as a user group, as
discussed later in this topic.)
Roles have nothing to do with OS user names, although many stock
programs assume the OS user name as the default role name. For example,
if you do not specify the role name when starting psql, your OS user name
will be used.
Roles are shared cluster objects. As such, one role can connect to different
databases and own objects in different databases.
https://postgrespro.com/docs/postgresql/13/database-roles

4

Attributes

Attributes define the properties of a role
CREATE ROLE role [WITH] attribute [attribute ...]

LOGIN can log in
SUPERUSER superuser privileges
CREATEDB can create databases
CREATEROLE can create roles
REPLICATION can use the replication protocol

and others

A role possesses a number of attributes that define its general properties
and rights (not related to object access rights).
Generally, attributes come in two opposite variations, for example,
CREATEDB (can create databases) and NOCREATEDB (not allowed to
create databases). Usually, the restrictive option is the default.
The table lists only some of the possible attributes. The INHERIT and
BYPASSRLS attributes are discussed later in this module.
https://postgrespro.com/docs/postgresql/13/role-attributes
https://postgrespro.com/docs/postgresql/13/sql-createrole

Roles	and	attributes

In	this	module,	the	prompt	will	show	the	name	of	the	user	that	executes	the	command.

student=#	CREATE	DATABASE	access_roles;

CREATE	DATABASE

student=#	\c	access_roles

You	are	now	connected	to	database	"access_roles"	as	user	"student".

Create	a	role	for	Alice:

student=#	CREATE	ROLE	alice	LOGIN	CREATEROLE;

CREATE	ROLE

Alice	can	log	in	(the	LOGIN	attribute)	and	create	other	roles	(the	CREATEROLE	attribute).

Проверим	это:

student=#	\c	-	alice

You	are	now	connected	to	database	"access_roles"	as	user	"alice".

alice=>	CREATE	ROLE	bob	LOGIN;

CREATE	ROLE

Indeed,	Alice	can	log	in	and	create	a	role	for	Bob.

Bob	cannot	create	other	roles:

student$	psql	-U	bob	-d	access_roles

bob=>	CREATE	ROLE	charlie	LOGIN;

ERROR:		permission	denied	to	create	role

You	can	view	all	roles	within	the	cluster	with	the	following	command:

alice=>	\du

																																			List	of	roles
	Role	name	|																									Attributes																									|	Member	of	
-----------+--+-----------
	alice					|	Create	role																																																|	{}
	bob							|																																																												|	{}
	postgres		|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}
	student			|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}

In	addition	to	the	newly	created	roles	alice	and	bob,	there	are	two	others,	both	with	superuser	privileges:

postgres	—	a	superuser	created	upon	cluster	initialization,
student	—	a	role	created	specifically	for	the	course,	allows	us	to	skip	providing	connection	parameters	when	using	psql.

Existing	roles	can	be	modified.	For	example,	Alice	can	revoke	the	right	to	log	in	from	Bob:

alice=>	ALTER	ROLE	bob	NOLOGIN;

ALTER	ROLE

Now,	Bob	cannot	log	in:

bob=>	\c	-	bob

\connect:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	FATAL:		role	"bob"	is	not	permitted	to	log	in

Alice	can	revoke	CREATEROLE	from	herself:

alice=>	ALTER	ROLE	alice	NOCREATEROLE;

ALTER	ROLE

Many	attributes	come	in	pairs,	such	as	LOGIN-NOLOGIN	and	CREATEROLE-NOCREATEROLE.

6

Group roles

Granting group membership to a role
student=> GRANT dba TO alice;

Revoking group membership from a role
student=> REVOKE dba FROM alice;

Group role membership control
any role can grant membership in itself to another role
a role with the SUPERUSER attribute can grant membership
in any role to any role
a role with the CREATEROLE attribute can grant membership
in any non-superuser role to any role

student alicedba

dba

alice

A role can be granted membership in another role, just as a Unix user can
be included in a group.
PostgreSQL does not distinguish between user roles and group roles,
allowing any role to be a member of any other. Cascading grants may occur,
unless they result in a cycle.
When a role is granted membership in another role, it obtains access to all
the attributes (and privileges, more on them later) of the group role. The
inclusion done with the GRANT command.
The role that executes the GRANT command is paramount. The roles that
may grant (or revoke) membership in a given role are:
● the role itself,
● roles with the SUPERUSER attribute,
● roles with the CREATEROLE attribute (as long as the given role is not a

superuser).
To take advantage of the newly acquired properties, you must first switch to
the role by using the SET ROLE command.
https://postgrespro.com/docs/postgresql/13/role-membership

Group	roles

Alice	revoked	the	CREATEROLE	attribute	from	herself	and	now	can	neither	create	new	roles	nor	modify	existing	ones:

alice=>	ALTER	ROLE	bob	LOGIN;

ERROR:		permission	denied

To	grant	Alice	superuser	powers,	we	can	include	her	role	into	student.	It	can	be	done	by	student	or	by	another	superuser	role:

alice=>	\c	-	postgres

You	are	now	connected	to	database	"access_roles"	as	user	"postgres".

postgres=#	GRANT	student	TO	alice;

GRANT	ROLE

postgres=#	\du

																																			List	of	roles
	Role	name	|																									Attributes																									|	Member	of	
-----------+--+-----------
	alice					|																																																												|	{student}
	bob							|	Cannot	login																																															|	{}
	postgres		|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}
	student			|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}

Note	that	the	LOGIN	attribute	isn’t	listed	in	the	\du	output,	but	its	absence	is.

To	make	sure	that	Alice	does	not	abuse	her	superuser	powers,	make	all	her	commands	get	recorded	into	the	server	log.	To	do	that,	we	will
use	another	method	of	assigning	configuration	parameters.	This	way,	the	new	parameter	value	will	apply	when	the	user	connects	to	the
server:

postgres=#	ALTER	ROLE	alice	SET	log_min_duration_statement=0;

ALTER	ROLE

The	parameter	scope	can	be	limited	to	a	specific	database:

postgres=#	ALTER	ROLE	alice	RESET	log_min_duration_statement;

ALTER	ROLE

postgres=#	ALTER	ROLE	alice	IN	DATABASE	access_roles	SET	log_min_duration_statement=0;

ALTER	ROLE

Alice	does	not	get	all	the	rights	of	the	group	role	automatically,	but	she	can	switch	to	the	group	role	to	use	them:

postgres=#	\c	-	alice

You	are	now	connected	to	database	"access_roles"	as	user	"alice".

alice=>	SET	ROLE	student;

SET

alice=>	ALTER	ROLE	bob	LOGIN;

ALTER	ROLE

This	functions	similarly	to	the	su	command	in	Unix.

There	are	functions	that	show	who	is	the	active	session	user	and	what	role	they	are	currently	switched	to:

alice=>	SELECT	session_user,	current_user;

	session_user	|	current_user	
--------------+--------------
	alice								|	student
(1	row)

Switch	back	to	the	old	role:

alice=>	RESET	ROLE;

RESET

alice=>	SELECT	session_user,	current_user;

	session_user	|	current_user	
--------------+--------------
	alice								|	alice
(1	row)

And	verify	that	our	commands	have	been	recorded:

student$	tail	-n	5	/var/log/postgresql/postgresql-13-main.log

2024-03-07	13:51:01.904	MSK	[137685]	alice@access_roles	LOG:		duration:	0.446	ms		statement:	SET	ROLE	student;
2024-03-07	13:51:01.969	MSK	[137685]	alice@access_roles	LOG:		duration:	2.674	ms		statement:	ALTER	ROLE	bob	LOGIN;
2024-03-07	13:51:02.026	MSK	[137685]	alice@access_roles	LOG:		duration:	0.142	ms		statement:	SELECT	session_user,	current_user;
2024-03-07	13:51:02.083	MSK	[137685]	alice@access_roles	LOG:		duration:	0.058	ms		statement:	RESET	ROLE;
2024-03-07	13:51:02.110	MSK	[137685]	alice@access_roles	LOG:		duration:	0.095	ms		statement:	SELECT	session_user,	current_user;

8

Owners

Object owner
the role that created the object
(as well as the role’s members)
can be changed with the ALTER ... OWNER TO role command

When a role creates any objects in a database, it becomes their owner.
In addition to that, any members of this role also become owners of these
objects.
If necessary, the owner of an object can be changed with the ALTER
command for the object with the OWNER TO clause.
The concept of ownership is especially important when discussing
privileges, the next topic of this module.

Owners

When	Alice	creates	a	database	object,	she	becomes	its	owner.

alice=>	CREATE	TABLE	test(id	integer);

CREATE	TABLE

An	owner	of	an	object	is	listed	under	the	owner	column	in	the	table:

alice=>	\dt	test

							List	of	relations
	Schema	|	Name	|	Type		|	Owner	
--------+------+-------+-------
	public	|	test	|	table	|	alice
(1	row)

Dropping	roles

A	role	can	be	dropped	only	if	does	not	own	any	objects.

alice=>	\c	-	student

You	are	now	connected	to	database	"access_roles"	as	user	"student".

student=#	DROP	ROLE	alice;

ERROR:		role	"alice"	cannot	be	dropped	because	some	objects	depend	on	it
DETAIL:		owner	of	table	test

To	drop	the	role	alice,	you	must	first	transfer	ownership	of	her	objects	to	another	role:

student=#	REASSIGN	OWNED	BY	alice	TO	bob;

REASSIGN	OWNED

student=#	\dt	test

							List	of	relations
	Schema	|	Name	|	Type		|	Owner	
--------+------+-------+-------
	public	|	test	|	table	|	bob
(1	row)

student=#	DROP	ROLE	alice;

DROP	ROLE

Or	you	can	just	drop	the	owned	objects:

student=#	DROP	OWNED	BY	bob;

DROP	OWNED

student=#	DROP	ROLE	bob;

DROP	ROLE

Remember	that	a	role	may	own	objects	across	different	databases.

10

Takeaways

Roles can be considered as both users and groups of users
The properties of a role are defined by its attributes

Roles can be members of other roles
Each database object has an owner role

11

Practice

1. Create a role swan without login privileges, but with the rights to
create databases and roles.

Create a user duckling with login privileges.

2. Verify that duckling cannot create a database.

3. Grant duckling membership in the swan group.

Create a new database as swan.

1.	Create	roles

student=#	CREATE	ROLE	swan	WITH	CREATEDB	CREATEROLE;

CREATE	ROLE

student=#	CREATE	ROLE	duckling	WITH	LOGIN;

CREATE	ROLE

2.	Check	if	the	role	Duckling	can	create	databases

student=#	\c	-	duckling

You	are	now	connected	to	database	"student"	as	user	"duckling".

duckling=>	CREATE	DATABASE	access_roles;

ERROR:		permission	denied	to	create	database

3.	Grant	membership

duckling=>	\c	-	student

You	are	now	connected	to	database	"student"	as	user	"student".

student=#	GRANT	swan	TO	duckling;

GRANT	ROLE

student=#	\c	-	duckling

You	are	now	connected	to	database	"student"	as	user	"duckling".

duckling=>	SET	ROLE	swan;

SET

duckling=>	CREATE	DATABASE	access_roles;

CREATE	DATABASE

12

Practice+

1. Create roles alice and bob with login privileges.

Create a table on behalf of alice.

2. Set it up so that both roles could modify the table structure
(for example, add columns with the ALTER TABLE command).

2. Only the owners of a table can change its structure. You need to get not
only Alice, but also Bob to be an owner of the table.

1.	Table	and	roles

student=#	CREATE	ROLE	alice	WITH	LOGIN;

CREATE	ROLE

student=#	CREATE	ROLE	bob	WITH	LOGIN;

CREATE	ROLE

student=#	\c	access_roles	alice

You	are	now	connected	to	database	"access_roles"	as	user	"alice".

alice=>	CREATE	TABLE	test	(id	integer);

CREATE	TABLE

2.	Adding	a	table	owner

For	Bob	to	be	able	to	modify	the	structure	of	the	table,	he	must	become	its	owner.	This	can	be	achieved	by	including	bob
into	the	role	of	alice.	Alice	can	do	it	with	the	following	command:

alice=>	GRANT	alice	TO	bob;

GRANT	ROLE

alice=>	\du	alice|bob

											List	of	roles
	Role	name	|	Attributes	|	Member	of	
-----------+------------+-----------
	alice					|												|	{}
	bob							|												|	{alice}

Now,	Bob	can	add	new	columns	to	the	table:

alice=>	\c	-	bob

You	are	now	connected	to	database	"access_roles"	as	user	"bob".

bob=>	ALTER	TABLE	test	ADD	description	text;

ALTER	TABLE

Or	even	drop	the	table:

bob=>	DROP	TABLE	test;

DROP	TABLE

