Administrative tasks
Monitoring

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics

OS tools
Database statistics
Server message log

External monitoring systems

PoSdgras

OS tools 62

Processes

ps (grep postgres)
update_process_title parameter for updating the status of processes

Resource usage
iostat, vmstat, sar, top...

Disk space
df, du, quota...

PostgreSQL runs on an operating system and to a certain extent depends
on its configuration.

Unix provides multiple state and performance monitoring tools.

In particular, you can monitor the processes belonging to PostgreSQL.
The server parameter update _process_title (on by default) displays the state
of each process next to its title, making it even more convenient.

Various tools are available to monitor the use of system resources (CPU,
RAM, disks): iostat, vmstat, sar, top, etc.

Disk space monitoring is also necessary. The space occupied by the
database on disk can be viewed both from the database itself (see the Data
Organization module) and from the OS (with the du command). The amount
of disk space available is also displayed with the df command in the OS.

If disk quotas are used, they must also be taken into account.

The tools and approaches to monitoring differ significantly between various
OS and file systems, so we will not discuss them in detail.

https://postgrespro.com/docs/postgresgl/13/monitoring-ps
https://postgrespro.com/docs/postgresgl/13/diskusage

Database statistics D

Stats collector
Ongoing system activities
Command execution monitoring

Extensions

There are two primary sources of information about the state of the system.
The first one is statistical information collected by PostgreSQL and stored
inside the database.

Stats collector

Stats collector process settings

statistics

table and index access
(access, touched rows)

page accesses

user function calls

o)) PROFESSIONAL

Posygres

parameter

track_counts

on by default
needed for vacuuming

track_io_timing
off by default

track_functions

off by default

In addition to tracking ongoing activities, PostgreSQL also collects some
statistics.

These statistics are collected by the stats collector background process.
The amount of information collected is controlled by several server
parameters, since the more information is collected, the greater the
overhead.

https://postgrespro.com/docs/postgresgl/13/monitoring-stats

o)) PROFESSIONAL

Architecture Posigres

backend ' stats collector

transaction by transaction | aggregated
statistics - statistics

statistics
snapshot

A

on first
access
by transaction

twice
a second

aggregated
statistics

PGDATA/pg_stat_tmp/
PGDATA/pg_stat/

Backends collect statistics from executed transactions. The stats collector
process collects statistics from all backends and aggregates it. Once every
half a second (can be changed during compilation), the collector dumps
statistics to temporary files in the PGDATA/pg_stat_tmp directory.
(Therefore, moving this directory to an in-memory file system can improve
overall performance.)

When a worker process requests statistics data (via views or functions), it’s
served a statistics snapshot, the most recent version of statistics provided
by the collector. Unless explicitly requested, the process will not read new
snapshots until the end of the transaction to ensure consistency.

Due to latency, the worker process will not always have the latest statistics,
but it is seldom necessary.

On server shutdown, the collector dumps statistics data into permanent files
inside the PGDATA/pg_stat catalog. When the server starts up again, it can
keep using the data. Statistics can be reset manually by the administrator,
and always reset after a crash.

Database statistics

=> CREATE DATABASE admin_monitoring;

CREATE DATABASE

=> \c admin_monitoring

You are now connected to database "admin_monitoring" as user "student".
Enable collection of input-output statistics first:

=> ALTER SYSTEM SET track_io_timing=on;

ALTER SYSTEM

=> SELECT pg_reload_conf();

pg_reload conf

Monitoring server activity only makes sense if there is any activity to be monitored in the first place. We can imitate load with pgbench,
a stock benchmarking utility.

First, it creates a number of tables and fills them with data.
student$ pgbench -i admin_monitoring

dropping old tables...

NOTICE: table "pgbench accounts" does not exist, skipping

NOTICE: table "pgbench branches" does not exist, skipping

NOTICE: table "pgbench history" does not exist, skipping

NOTICE: table "pgbench tellers" does not exist, skipping

creating tables...

generating data (client-side)...

100000 of 100000 tuples (100%) done (elapsed 0.11 s, remaining 0.00 s)
vacuuming. ..

creating primary keys...

done in 0.30 s (drop tables 0.00 s, create tables 0.01 s, client-side generate 0.14 s, vacuum 0.07 s, primary keys 0.08 s).

Reset any previously collected statistics:
=> SELECT pg_stat_reset();

pg_stat_reset

=> SELECT pg_stat_reset_shared('bgwriter');

pg stat reset shared

Start the TPC-B test and let it run for a few seconds:
student$ pgbench -T 10 admin_monitoring

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 10 s

number of transactions actually processed: 5717
latency average = 1.749 ms

tps = 571.687219 (including connections establishing)
tps = 571.841303 (excluding connections establishing)

Now, let’s check the statistics on table touches in terms of rows:

=> SELECT *
FROM pg_stat_all_tables
WHERE relid = 'pgbench_accounts'::regclass \gx

-[RECORD 1]------- B R R
relid | 16546
schemaname | public
relname | pgbench accounts
seq_scan | 0

seq tup read | 0
idx_scan | 11434
idx_tup_ fetch | 11434
n_tup_ins | 0
n_tup_upd | 5717
n_tup del | ©

n tup hot upd | 4119
n_live tup | 0
n_dead tup | 2989
n_mod_since_analyze | 5717
n_ins_since_vacuum | 0
last_vacuum |
last_autovacuum |

last _analyze |
last_autoanalyze |
vacuum_count | 0
autovacuum_count | 0
analyze count | 0
autoanalyze count | ©

And in terms of tables:

=> SELECT *
FROM pg_statio_all_tables
WHERE relid = 'pgbench_accounts'::regclass \gx

<[RECORD 1]---devmcmmmmmmmmmmmn-
relid 16546
schemaname public

+
|
|

relname | pgbench_accounts

heap blks read | 26
|
|
|
|
|
|
|

heap_blks_hit 23695
idx_blks_read 276
idx_blks_hit 25879

toast blks read
toast blks hit
tidx_blks_read
tidx_blks_hit

There are similar views for indexes:

=> SELECT *
FROM pg_stat_all_indexes
WHERE relid = 'pgbench_accounts'::regclass \gx

<[RECORD 1 J--nnmmmmmmmmmcmmammaaos

relid | 16546

indexrelid | 16560

schemaname | public

relname | pgbench accounts
indexrelname | pgbench_accounts_pkey
idx_scan | 11434

idx_tup_read | 13122

idx_tup fetch | 11434

=> SELECT *
FROM pg_statio_all_indexes
WHERE relid = 'pgbench_accounts'::regclass \gx

<[RECORD 1 J-omrmmmmmmmmmemcamcaas

relid | 16546

indexrelid | 16560

schemaname | public

relname | pgbench_accounts
indexrelname | pgbench_accounts_ pkey
idx_blks_read | 276

idx_blks hit | 25879

These views can be used to pinpoint unused indexes. Such indexes not only occupy useful space on the disk, but also waste resources
on updates every time data in the table changes.

There are also views for user-defined and system objects (all, user, sys), current transaction statistics (pg stat xact*), and more.

You can view global statistics across the whole database:

=> SELECT *
FROM pg_stat_database

WHERE datname = 'admin_monitoring' \gx
-[RECORD 1]--------- R e R
datid | 16539
datname | admin_monitoring
numbackends | 1
xact_commit | 5732
xact_rollback | 0
blks read | 395
blks_hit | 79186
tup_returned | 78116
tup fetched | 11956
tup_inserted | 5717
tup updated | 17152
tup_deleted | 0
conflicts | 0
temp files | 0
temp_bytes | 0
deadlocks | 0
checksum_failures |
checksum last failure |
blk read time | 7.186
blk write time | 0

|

stats_reset 2024-03-07 13:50:39.859183+03

It provides a lot of data on the number of deadlocks occurred, committed and cancelled transactions, utilization of temporary files, and
checksum errors.

PostgreSQL 14 also added statistics on user sessions.

There are separate statistics for background writer and checkpointer, valuable as they are for monitoring:
=> CHECKPOINT;
CHECKPOINT

=> SELECT * FROM pg_stat_bgwriter \gx

2024-03-07 13:50:39.907856+03

-[RECORD 1]--------- R e R
checkpoints timed | 0
checkpoints req |1
checkpoint write time | 44
checkpoint_sync_time | 35
buffers_checkpoint | 2043
buffers clean | 0
maxwritten_clean | 0
buffers_backend | 1742
buffers backend fsync | 0
buffers_alloc | 423
I

stats_reset

o buffers clean — number of pages written by background writer;
e buffers checkpoint — number of pages written with checkpoints;
o buffers backend — number of pages written by backends.

o)) PROFESSIONAL

Ongoing activities Posigres

Configuration
statistics parameter
current activities track_activities
and backends’ and background on by default

processes’ waits

The current activities of all backends and background processes are
displayed in the pg_stat_activity view. We will focus on it more in the demo.

This view depends on the track_activities parameter (enabled by default).

Current activities

Let’s imitate a scenario when one process blocks another, and then figure it out using system views.
Create a table with one row:

=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES(42);

INSERT 0 1

Start two sessions, one of which changes the table and does nothing more:
student$ psql -d admin_monitoring

| => BEGIN;

| BEGIN

| => UPDATE t SET n = n + 1;

| UPDATE 1

And the other tries to change the same row and gets blocked:

student$ psql -d admin_monitoring

| => UPDATE t SET n = n + 2;

View data about backend processes:

=> SELECT pid, query, state, wait_event, wait_event_type, pg_blocking pids(pid)
FROM pg_stat_activity
WHERE backend_type = 'client backend' \gx

S [RECORD 1] - - - odm oo oo oo oo oo oo oo oo

pid | 136196

query | UPDATE t SET n =n + 1;

state | idle in transaction

wait event | ClientRead

wait_event type | Client

pg_blocking pids | {}

S RECORD 2] - - mdm o m o m s o o e oo oo e e oo

pid | 135423

query | SELECT pid, query, state, wait event, wait event type, pg blocking pids(pid)+
| FROM pg stat activity +
| WHERE backend_type = 'client backend'

state | active

wait event |

wait event type |

pg blocking pids | {}

S RECORD 3 J---mm o s s o s s o s oo e m o e e e e oo

pid | 136276

query | UPDATE t SET n = n + 2;

state | active

wait_event | transactionid

wait_event_type | Lock

pg_blocking pids | {136196}

The state “idle in transaction” means that the session has started a transaction, but isn’t doing anything at the moment,
and the transaction isn’t closed. This could become a problem if the situation comes up regularly (for example, because of
poor application code or driver errors), because an open session holds a data snapshot and prevents vacuuming.

The administrator has a parameter idle in transaction session timeout at their disposal to force sessions to close after
they are idle for a certain period of time.

You can also terminate a session manually. First, you need the blocked process ID. The function pg blocking pids can help
you with that:

=> SELECT pid AS blocked_pid

FROM pg_stat_activity

WHERE backend_type = 'client backend'

AND cardinality(pg_blocking_pids(pid)) > 0;

blocked pid
136276
(1 row)

You don’t need pg blocking pids to find the blocking process. Instead, you can access the locks table directly. It will return
two rows in this case: one for the transaction that has been granted the lock and another for the one that hasn’t.

=> SELECT locktype, transactionid, pid, mode, granted
FROM pg_locks
WHERE transactionid IN (
SELECT transactionid FROM pg_locks WHERE pid = 136276 AND NOT granted
)i

locktype | transactionid | pid | mode | granted
--------------- R it R it
transactionid | 6301 | 136196 | Exclusivelock | t
transactionid | 6301 | 136276 | SharelLock | f
(2 rows)

Generally, you have to keep the lock type in mind.

A process can be cancelled with the pg cancel backend function. The transaction is idle in our case, so we can use the
pg terminate backend command to terminate it:

=> SELECT pg_terminate_backend(b.pid)
FROM unnest(pg_blocking_pids(136276)) AS b(pid);

pg_terminate backend

The unnest function is necessary because pg blocking pids returns an array of process IDs that block the specified
process. There is only one in our examples, but there can be multiple.

Locks are discussed in more detail in the DBA2 course.

Check the backends:

=> SELECT pid, query, state, wait_event, wait_event_type
FROM pg_stat_activity
WHERE backend_type = 'client backend' \gx

< RECORD 1] - o m s o m o e o e oot m o e ot e m et

pid | 135423

query | SELECT pid, query, state, wait event, wait event type+
| FROM pg stat activity +
| WHERE backend type = 'client backend'

state | active

wait_event |

wait_event_type |

S RECORD 2 J--dmmmmmm o s e e e e e e e e e

pid | 136276

query | UPDATE t SET n = n + 2;

state | idle

wait_event | ClientRead

wait_event type | Client

Only two remain, and the blocked one has completed its transaction successfully.

The pg_stat_activity view shows not only the information about backend processes, but also about the service processes
running on the instance:

=> SELECT pid, backend_type, backend_start, state
FROM pg_stat_activity;

pid | backend type | backend start | state
-------- i e il
129564 | autovacuum launcher | 2024-03-07 13:49:22.166377+03 |

129566 | logical replication launcher | 2024-03-07 13:49:22.198149+03 |

135423 | client backend | 2024-03-07 13:50:39.282317+03 | active
136276 | client backend | 2024-03-07 13:50:52.1675+03 | idle
129562 | background writer | 2024-03-07 13:49:22.204068+03 |

129561 | checkpointer | 2024-03-07 13:49:22.206842+03 |

129563 | walwriter | 2024-03-07 13:49:22.20064+03 |
(7 rows)

Compare that to what the OS sees:

student$ sudo head -n 1 /var/lib/postgresql/13/main/postmaster.pid
129559

student$ sudo ps -o pid,command --ppid 129559

PID COMMAND
129561 postgres: 13/main: checkpointer
129562 postgres: 13/main: background writer
129563 postgres: 13/main: walwriter
129564 postgres: 13/main: autovacuum launcher
129565 postgres: 13/main: stats collector
129566 postgres: 13/main: logical replication launcher
135423 postgres: 13/main: student admin monitoring [locall] idle
136276 postgres: 13/main: student admin monitoring [local] idle

pg stat activity does not include the stats collector process.

o)) PROFESSIONAL

Command execution Posigres

Views for monitoring command executions

command execution

ANALYZE pg_stat_progress_analyze
CREATE INDEX, REINDEX pg_stat_progress_create_index
VACUUM pg_stat_progress_vacuum
including autovacuuming

CLUSTER, VACUUM FULL pg_stat_progress_cluster
Create base backup pg_stat_progress_basebackup

10

You can monitor the progress of some potentially long-running commands
using the corresponding views.

The structures of the views are described in the documentation:
https://postgrespro.com/docs/postgresql/13/progress-reporting
Backup is discussed in the Backup module.

In PostgreSQL 14, the pg_stat_progress_copy view was added to this list to
track the COPY command.

Additional statistics Posigres

Stock extensions

pg_stat_statements query statistics
pgstattuple row versions statistics
pg_buffercache buffer cache status

Other extensions

pg_wait_sampling statistics for waits
pg_stat_kcache CPU and I/0O statistics
pg_qualstats predicate statistics
etc.

11

There are extensions, both stock and third-party, that enable the collection
of additional statistics.

For example, the pg_stat_statements extension collects information

about queries executed by the system, pg_buffercache provides tools for
monitoring the buffer cache, etc.

Server message log

Log record configuration
Log file rotation

Log analysis

12

The other primary source of information about the state of the server is the
message log.

o)) PROFESSIONAL

Server message log Pos{gres

Message receiver (log_destination = list)

stderr error stream

csvlog CSV format (if the collector is enabled)
syslog the syslog daemon

eventlog Windows event log

Message collector (logging_collector = on)

can provide additional info
never loses messages (unlike syslog)
writes stderr and csvlog to the log_directory/log_filename file

13

The server log can be output in various formats and forwarded to various
destinations. The format and the destination are determined primarily by the
log_destination parameter (you can list multiple destinations separated by a
comma).

The stderr flag (on by default) streams message log errors into the standard
error log as plain text. The syslog flag tells the log to forward messages to
the syslog daemon (for Unix systems), and the eventlog flag does the same
for the Windows event log.

The message collector is an auxiliary process that collects additional
information from all PostgreSQL processes to supplement the basic log
messages. It is designed to keep track of every message, therefore it can
become the bottleneck in high-load environments.

The message collector is switched on and off by the logging_collector flag.
When stderr is on, the log writes into the file defined by the log_filename
parameter, which is located in the directory defined by the log_directory
parameter.

When the collector is on and csvlog is selected as a destination, the log will
also write output into a CSV file log_filename.csv. And in PostgreSQL 15,
jsonlog becomes a destination option.

What to log? Pogga“ﬁéﬁ

Settings
information parameter
level of messages log_min_messages
long command execution time log_min_duration_statement
command execution time log_duration
application name application_name
checkpoints log_checkpoints
connections and disconnections log_(dis)connections
long lock waits log_lock_waits
command execution outputs log_statement
temporary files usage log_temp_files

etc.

14

A lot of useful information can be output to the server message log.

By default, almost all output is disabled so as not to turn logging into the
bottleneck for the disk subsystem. The administrator must decide what
information is important, provide the necessary disk space to store it, and
evaluate the impact on the overall system performance.

Log file rotation Poggai“éé

By the message collector

statistics parameter

file name mask log_filename

rotation time, minutes log_rotation_age

rotation file size, KB log_rotation_size

allow to rewrite files log_truncate_on_rotation = on
different file name masks and rotation times allow for different
combinations:

'postgresql-%H.log', '1h' 24 files a day
'postgresql-%a.log', '1d’ 7 files a week

External tools
@ logrotate system utility

15

If all the log output goes into a single file, sooner or later the file will grow to
an unmanageable size, making administration and analysis highly
inconvenient. Therefore, a log rotation scheme is usually employed.

https://postgrespro.com/docs/postgresql/13/logfile-maintenance

The message collector has its own rotation tools. Some of the parameters
that configure them are listed on the slide.

The log_filename parameter can specify not just a name, but a file name
mask using designated date and time characters.

The log_rotation_age parameter determines how log a file is used before the
log switches to a new one (and log_rotation_size is the file size at which to
switch to the next one).

The log_truncate_on_rotation flag determines if the log should overwrite
existing files or not.

Different rotation schemes can be defined by using various file name mask
and switch time combinations.

https://postgrespro.com/docs/postgresgl/13/runtime-config-
logging.htmI#RUNTIME-CONFIG-LOGGING-WHERE

Alternatively, external rotation management tools can be used, such as
logrotate from the Ubuntu package (it's configured through the
/etc/logrotate.d/postgresql-common file).

o)) PROFESSIONAL

Log analysis Posigres

OS tools
grep, awk...

Special analysis tools

pgBadger — requires a certain log configuration

16

There are different ways to analyze logs.

You can search for certain information using OS tools or specially designed
scripts.

The de facto standard for log analysis is the PgBadger application
(https://github.com/dalibo/pgbadger), but it imposes certain restrictions on
the contents of the log.

In particular, only messages in English are allowed.

Log analysis

Let’s start simple. For example, display all messages of the FATAL level:

student$ sudo grep FATAL /var/log/postgresql/postgresql-13-main.log | tail -n 10

2024-03-07 13:48:13.303 MSK [122044] student@student FATAL:
2024-03-07 13:49:12.002 MSK [128903] student@student FATAL:
2024-03-07 13:50:53.569 MSK [136196] student@admin_monitoring FATAL:

The “terminating connection” message is caused by us terminating the blocking process.

terminating connection due to administrator command
terminating connection due to administrator command
terminating connection due to administrator command

Logs are usually used to analyse the queries that execute the longest. We can make the log display all executed commands and their execution times:

=> ALTER SYSTEM SET log_min_duration_statement=0;
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload conf

Now, run a command:

=> SELECT sum(random()) FROM generate_series(1,1000000);

500408.0170670183
(1 row)

Check the log:
student$ sudo tail -n 1 /var/log/postgresql/postgresql-13-main.log

2024-03-07 13:50:54.323 MSK [135423] student@admin_monitoring LOG: duration:

191.569 ms

statement: SELECT sum(random()) FROM generate series(1,1000000);

External monitoring Wz

Universal monitoring systems

Zabbix, Munin, Cacti...
cloud-based: Okmeter, NewRelic, Datadog...

PostgreSQL monitoring systems

PGObserver
PostgreSQL Workload Analyzer (PoWA)
Open PostgreSQL Monitoring (OPM)

pg_profile, pgpro_pwr
etc.

18

In practice, for any serious environment, you need a full-fledged monitoring
system that collects various metrics from both PostgreSQL and the
operating system, stores the history of these metrics, displays them as
readable graphs, notifies when certain metrics reach certain thresholds, etc.

PostgreSQL does not come with such a system by itself, it only provides the
means by which such information can be acquired. We’ve gone over them
already. Therefore, for full-scale monitoring, an external system is required.

There are quite a few such systems on the market. Some are universal and
come with PostgreSQL plugins or settings. These include Zabbix, Munin,
Cacti, cloud services such as Okmeter, NewRelic, Datadog, and others.

There are also systems specifically designed for PostgreSQL: PGObserver,
PoWA, OPM, etc. The pg_profile extension allows you to build snapshots of
static data and compare them, identifying resource-intensive operations and
their dynamics. pgpro_pwr is its extended, commercially available version.

An incomplete but representative list of monitoring systems can be viewed
here: https://wiki.postgresql.org/wiki/Monitoring

Takeaways poééa?@g

Monitoring collects data on server operations
both from the operating system
and from the database points of view

PostgreSQL provides collected statistics
and the server message log

Full-scale monitoring requires an external system

19

o)) PROFESSIONAL

Practice Posigres

1. In a new database, create a table, insert several rows, and then
delete all rows.

Look at the table access statistics and reference the values
(n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) against your
activity.

Perform a vacuum, check the statistics again and compare with
the previous figures.

2. Create a deadlock with two transactions.
See what information is recorded in the server message log.

20

2. Deadlock is a situation when two (or more) transactions are waiting for
each other to complete first. Unlike a normal lock, transactions have no way
to get out of deadlock, and the DBMS is forced to resolve it by forcibly
interrupting one of the transactions.

The easiest way to reproduce a deadlock is on a table with two rows. The
first transaction changes (and locks) the first row, and the second one locks
the second row. Then the first transaction tries to change the second row,
discovers that it's locked, and starts waiting. And then the second
transaction tries to change the first row, and also waits for the lock to be
released.

Table access statistics

Create a database and a table:

=> CREATE DATABASE admin_monitoring;

CREATE DATABASE

=> \c admin_monitoring

You are now connected to database "admin_monitoring" as user "student".
=> CREATE TABLE t(n numeric);

CREATE TABLE

=> INSERT INTO t SELECT 1 FROM generate_series(1,1000);
INSERT 0 1000

=> DELETE FROM t;

DELETE 1000

Check access statistics.

=> SELECT * FROM pg_stat_all_tables WHERE relid = 't'::regclass \gx

-[RECORD 1]------- +ooaeo--
relid | 16719
schemaname | public
relname | t
seq_scan |1
seq_tup_read | 1000
idx_scan

idx_tup_fetch

n_tup_ins | 1000
n_tup_upd | 0
n_tup_del | 1000
n_tup_hot_upd | 0
n_live_tup | 0
n_dead_tup | 1000
n_mod_since_analyze | 2000
n_ins_since_vacuum | 1000
last_vacuum |
last_autovacuum
last_analyze
last_autoanalyze |
vacuum_count | 0
autovacuum_count | 0
analyze_count | 0
autoanalyze count | 0

We inserted 1000 rows (n_tup_ins = 1000), then removed 1000 rows (n_tup_del = 1000).
No live row versions remain (n_live_tup = 0), all 1000 rows are dead (n_dead_tup = 1000).
Run vacuuming.

=> VACUUM;

VACUUM

=> SELECT * FROM pg_stat_all_tables WHERE relid = 't'::regclass \gx

last_vacuum
last_autovacuum
last_analyze
last_autoanalyze
vacuum_count
autovacuum_count
analyze_count
autoanalyze_count

2024-03-07 13:54:28.194582+03

-[RECORD 1]------- e
relid | 16719
schemaname | public
relname | t
seq_scan |1
seq_tup_read | 1000
idx_scan
idx_tup_fetch
n_tup_ins | 1000
n_tup_upd | 0
n_tup del | 1000
n_tup_hot_upd | 0
n_live_tup | 0
n_dead_tup | 0
n_mod_since_analyze | 2000
n_ins_since vacuum | 0

|

|

|

|

|

|

|

|

oo o

Dead row versions vacuumed (n_dead_tup = 0), vacuuming performed in one pass (vacuum_count = 1).
2. Deadlocks

=> INSERT INTO t VALUES (1),(2);

INSERT 0 2

One transaction locks the first row of the table...
student$ psql

| => \c admin_monitoring

| You are now connected to database "admin_monitoring" as user "student".

| => BEGIN;

| BEGIN

‘ => UPDATE t SET n = 10 WHERE n = 1;

| UPDATE 1

The other locks the second row...

student$ psql

| => \c admin_monitoring

| You are now connected to database "admin_monitoring" as user "student".
| => BEGIN;

I BEGIN

| => UPDATE t SET n = 200 WHERE n = 2;

| UPDATE 1

Now, the first transaction tries to change the second row and waits for it to release...
‘ => UPDATE t SET n = 20 WHERE n = 2;

While the second transaction waits for the first row to release...

I => UPDATE t SET n = 100 WHERE n = 1;

...and so a deadlock occurs.

| UPDATE 1

ERROR: deadlock detected

DETAIL: Process 154989 waits for ShareLock on transaction 6479; blocked by process 155108.
Process 155108 waits for ShareLock on transaction 6478; blocked by process 154989.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "t"

Check the message log:
student$ sudo tail -n 8 /var/log/postgresql/postgresql-13-main.log

2024-03-07 13:54:31.068 MSK [154989] student@admin monitoring ERROR: deadlock detected

2024-03-07 13:54:31.068 MSK [154989] student@admin monitoring DETAIL: Process 154989 waits for ShareLock on transaction 6479; blocked by process 155108.
Process 155108 waits for ShareLock on transaction 6478; blocked by process 154989.
Process 154989: UPDATE t SET n = 20 WHERE n = 2;
Process 155108: UPDATE t SET n = 100 WHERE n = 1;

2024-03-07 13:54:31.068 MSK [154989] student@admin monitoring HINT: See server log for query details.

2024-03-07 13:54:31.068 MSK [154989] student@admin _monitoring CONTEXT: while updating tuple (0,2) in relation "t"

2024-03-07 13:54:31.068 MSK [154989] student@admin_monitoring STATEMENT: UPDATE t SET n = 20 WHERE n = 2;

o)) PROFESSIONAL

Practice+ Posigres

1. Install the pg_stat_statements extension.
Execute several queries.
See what information gets into the pg_stat_statements view.

21

1. To install the extension, in addition to executing the CREATE
EXTENSION command, you need to change the value of the
shared_preload_libraries parameter and restart the server.

https://postgrespro.com/docs/postgresgl/13/pgstatstatements

1. The pg_stat_statements extension

The extension collects planning and execution statistics for all queries.

For the extension to work, a module with the same name has to be loaded. To do that, add the module name to
shared preload libraries and restart the server. This is usually done through postgresql.conf, but for the purpose of the
demo we will set it using the ALTER SYSTEM command.

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_stat_statements';
ALTER SYSTEM

=> \q

student$ sudo pg_ctlcluster 13 main restart

student$ psql

Verify the parameter value and enable the extension. Since it will track queries for all databases within the cluster, it
should be installed into a database that is always present, such as the postgres database.

=> \c postgres
You are now connected to database "postgres" as user "student".
=> SHOW shared_preload_libraries;

shared preload libraries

pg stat statements
(1 row)

=> CREATE EXTENSION pg_stat_statements;
CREATE EXTENSION

Now, run some queries:

=> CREATE TABLE t(n numeric);

CREATE TABLE

=> SELECT format('INSERT INTO t VALUES (%L)', x)
FROM generate_series(1,5) AS x \gexec

INSERT 0
INSERT 0
INSERT 0
INSERT 0
INSERT 0

l

=> DELETE FROM t;

DELETE 5

=> DROP TABLE t;

DROP TABLE

Check the statistics for the most frequently executed query.

=> SELECT * FROM pg_stat_statements ORDER BY calls DESC LIMIT 1 \gx

-[RECORD 1]------

userid

dbid

queryid

query

plans

total plan_time
min_plan_time
max_plan_time
mean_plan_time
stddev _plan time
calls
total_exec_time
min_exec_time
max_exec_time
mean_exec_time
stddev_exec time
rows
shared_blks_hit
shared blks read

shared blks dirtied
shared blks written

local blks_hit
local_blks_read

local blks dirtied
local blks written

temp blks read
temp_blks written
blk_read_time

blk write time
wal records

wal fpi

wal_bytes

13485
9098096990651905112
INSERT INTO t VALUES ($1)
0

.185624

.012253
.12164799999999999
.0371248
.04248937570452171

WOUOOOOOOOOHHFORMRUODODOOOOUIOOO OO

