Data organization
Databases and schemas

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics Pos{gres

Databases and templates
Schemas and search path
Special schemas, temporary objects

Managing databases, schemas, and objects

o)) PROFESSIONAL

Database cluster Posigres

Cluster initialization creates three databases

A new database is always cloned from an existing one

connection postgres
by default

object ||

common
changes
templateO templatel new database

object |I object > object ||

A PostgreSQL instance manages a database cluster that comprises multiple
databases. When a cluster is initialized, three identical databases are
created in a specific way. All other databases created by users are cloned
from one of the existing ones.

https://postgrespro.com/docs/postaresql/13/bki

The templatel database is used by default when creating new databases.
Any objects and extensions added to the template will be copied into any
database created from it.

The template0 database must never be modified. It is required in at least
two scenarios. Firstly, it is necessary when restoring a database from a
backup created via pg_dump (since the copy will include not only the
database objects, but also any objects from templatel). Secondly, it is
used when creating a new database with an encoding different from the one
specified during cluster initialization.

The postgres database is used to connect to by default by the postgres
user. It is not a hard requirement to have it, but some utilities expect it to be
there, so removing it isn’t a good idea, even if you never use the database
directly.

https://postgrespro.com/docs/postaresqgl/l13/manage-ag-templatedbs

Databases

The \l[ist] shows a list of all databases:

= \1
List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges
----------- B it e e L e
postgres | postgres | UTF8 | en US.UTF-8 | en US.UTF-8 |
student | student | UTF8 | en US.UTF-8 | en US.UTF-8 |
templateO | postgres | UTF8 | en US.UTF-8 | en US.UTF-8 | =c/postgres +
| | | | | postgres=CTc/postgres
templatel | postgres | UTF8 | en US.UTF-8 | en US.UTF-8 | =c/postgres +
I | I

| | postgres=CTc/postgres

(4 rows)

There is a student database that is not created during cluster initialization. It was created specifically for the course, so
that there is no need to specify a database every time you run psql. This way, psql will automatically connect to the
database of the same name as the OS user.

You can view the list of databases from within PostgreSQL too:

=> SELECT datname, datistemplate, datallowconn, datconnlimit FROM pg_database;

datname | datistemplate | datallowconn | datconnlimit
----------- L L S R L
postgres | f | t | -1
student | f | t | -1
templatel | t | t | -1
templated | t | f | -1
(4 rows)

e datistemplate — is the database a template,
e datallowconn — are connections to the database allowed,
e datconnlimit — maximum number of connections allowed (-1 = unlimited).

Creating a database from a template

Connect to the templatel database:

=> \c templatel

You are now connected to database "templatel" as user "student".

Check if we can use the digest function, which calculates the hash code of a text string:
=> SELECT digest('Hello, world!', 'md5');

ERROR: function digest(unknown, unknown) does not exist
LINE 1: SELECT digest('Hello, world!', 'md5');

HINT: No function matches the given name and argument types. You might need to add explicit type casts.
There is no such function.

In fact, the digest function is defined in the pgcrypto extension. Install it:

=> CREATE EXTENSION pgcrypto;

CREATE EXTENSION

If we were compiling the server from source and did not install the pgcrypto extension with the make install command, we
would have had the “ERROR: could not open extension control file...” pop up.

Now, we can use the functions provided by the pgcrypto extension. For example, the MD5 digest calculation function:

=> SELECT digest('Hello, world!', 'md5');

\x6cd3556deb0da54bca®60b4c39479839
(1 row)

In order to be used to create a database from, the template must have no active connections. So, disconnect from
templatel first.

=> \c student

You are now connected to database "student" as user "student".

New databases are created with the CREATE DATABASE command:

=> CREATE DATABASE db;

CREATE DATABASE

=> \c db

You are now connected to database "db" as user "student".

Otherwise, a new database can be created from the OS by using the createdb tool.

=> SELECT datname, datistemplate, datallowconn, datconnlimit FROM pg_database;

datname | datistemplate | datallowconn | datconnlimit
----------- e S
postgres | f | t | -1
student | f | t | -1
templatel | t | t | -1
templateO | t | f | -1
db | f | t | -1
(5 rows)

Since templatel is the template used by default, the newly created database will have the pgcrypto extension already
installed:

=> SELECT digest('Hello, world!', 'md5');

\x6cd3556deb0da54bca®60b4c39479839
(1 row)

Database management

The created database can be renamed (must have no active connections):
=> \c student

You are now connected to database "student" as user "student".
=> ALTER DATABASE db RENAME TO appdb;

ALTER DATABASE

=> SELECT datname, datistemplate, datallowconn, datconnlimit FROM pg_database;

datname | datistemplate | datallowconn | datconnlimit
----------- T T T
postgres | f | t | -1
student | f | t | -1
templatel | t | t | -1
templated | t | f | -1
appdb | f | t | -1
(5 rows)

Other parameters can also be changed, such as the maximum number of concurrent connections:
=> ALTER DATABASE appdb CONNECTION LIMIT 10;
ALTER DATABASE

=> SELECT datname, datistemplate, datallowconn, datconnlimit FROM pg_database;

datname | datistemplate | datallowconn | datconnlimit
----------- e S
postgres | f | t | -1
student | f | t | -1
templatel | t | t | -1
templateO | t | f | -1
appdb | f | t | 10

(5 rows)

Database size

A database size is shown by the following function:
=> SELECT pg_database_size('appdb');

pg database size

The output can be displayed in a more readable form:
=> SELECT pg_size_pretty(pg_database_size('appdb'));

pg_size pretty

7941 kB
(1 row)

The database has no user-generated objects so far (except for pgcrypto), so this is the size of an “empty” database.

o)) PROFESSIONAL

Schemas Posigres

Database object namespace

each object belongs to a schema

Purposes

dividing objects into logical groups
preventing name conflicts between applications

Schemas and users are different entities

Schemas are namespaces for database objects. They separate objects into
groups for easier management and serve to prevent name conflicts when
multiple users or applications access the same database.

Every object that exists in the database belongs to a schema.

In PostgreSQL, schema and user are different entities (although the default
settings allow users to seamlessly operate schemas of the same name).

https://postgrespro.com/docs/postgresgl/13/ddl-schemas

Databases and schemas po&a?sg

=

z

appdb postgres [f

‘ object m ‘ object m

object m ‘ object m ‘ object m

pg_catalog public app pg_catalog public
/ \

[I]

T i]
schema system “shared”
created by catalog schema
a user

A cluster comprises multiple databases. Each database contains various
schemas across which database objects are distributed.

There are several standard schemas that exist in any database. More
schemas can be added by users.

Clients may connect to only one database at a time, but within the database,
the client is free to access objects from any schemas.

Schemas

=> \c appdb
You are now connected to database "appdb" as user "student".

The command psql (dn = describe namespace) shows a list of schemas in a database:

=> \dn
List of schemas
Name | Owner
........ o
public | postgres
(1 row)

Create a new schema:
=> CREATE SCHEMA app;

CREATE SCHEMA

=> \dn
List of schemas
Name | Owner
........ o
app | student
public | postgres
(2 rows)

Now create a table (it will get into the public schema by default):
=> CREATE TABLE t(s text);

CREATE TABLE

=> INSERT INTO t VALUES ('This is table t');

INSERT 0 1

You can get a list of tables with the \dt command:

=> \dt

List of relations
Schema | Name | Type | Owner
-------- ek R PR
public | t | table | student
(1 row)

Objects can be moved between schemas. Since this is the logical organization level, it only changes the location in the
system catalog, while data on disk remains where it was.

=> ALTER TABLE t SET SCHEMA app;
ALTER TABLE
Now, the table t can be accessed using its schema name:

=> SELECT * FROM app.t;

This is table t

(1 row)

But without the schema name, the table will not be found:
=> SELECT * FROM t;

ERROR: relation "t" does not exist

LINE 1: SELECT * FROM t;

So, how do you access objects located in other schemas?

o)) PROFESSIONAL

Search path Posigres

Determining an object’s schema

a schema is explicitly defined by a qualified name (schema.name)

a name without a qualifier is looked up among all schemas specified in the
search path

Search path
defined by the search_path parameter

non-existent schemas and schemas with restricted access are excluded;
implicit schemas are included

the real value is shown by the current_schemas function

the first explicitly specified schema in the path is where objects are created

When specifying an object, the schema it belongs to must be determined,
since different schemas may contain objects of the same name.

When the object name is qualified (with the schema name), the object is
looked up in the given schema, as shown on the previous slide. If the name
Is used without a qualifier, PostgreSQL tries to look the name up in one of
the schemas listed in the search path, which is determined by the
search_path configuration parameter.

The actual search path may differ from the search_path parameter value:
any non-existent schemas are excluded, as well as schemas to which the
user does not have access (more on that in the Access control module).
In addition, some special schemas are implicitly added to the beginning of
the search path.

The actual search path, including implicit schemas, returns a call to the
current_schemas(true) function. The schemas are searched in the

order specified in the search path, from left to right. If the desired object
name is not found in the first schema, the next one is searched, and so on.

When an object is created with an unqualified name, it is placed into the first
explicitly defined schema in the path.

The concept of search_path is similar to the PATH variable in popular
operating systems.

R@’FDHS:lloostqrespro.com/docs/nostqresqI/13/dd|-schemas#DDL-SCH EMAS-P

?tla s://postgrespro.com/docs/postgresqgl/13/ddl-schemas#GUC-SEARCH-PA

Special schemas Pogga’?“é“g

The public schema
included in the search path by default
all objects will belong to this schema, unless configured otherwise
The schema named after the user
included in the search path by default but is not created automatically
if created, the user’s objects will belong to this schema
The pg_catalog schema

a schema for system catalog objects
if not explicitly included in the path, implicitly included as the first one

There are several special schemas usually present in any database.

The public schema is used by default for storing objects, unless intentionally
configured otherwise.

The pg_catalog schema stores system catalog objects. The system catalog
is a collection of tables containing metadata about objects belonging to the
cluster. information_schema is another schema with an alternative
representation of the system catalog (as defined in the SQL standard).

The pg_catalog schema contains system catalog objects (in particular, the
pg_* tables).

If pg_catalog is not specified in the search path, the schema will be implicitly
placed in the front of the path so that system objects remain visible (but
after pg_temp).

Search path

First, let’ find out why the table was created in the public schema in the first place. To do that, look at the search path:
=> SHOW search_path;

search path

"$user", public
(1 row)

The construction "$user" defines the schema with the same name as the current user (in this case, student). Since there is
no such schema, it is ignored, and the table is created in public.

To avoid the headache of tracking in your head which schemas exist, which do not, and which are not explicitly declared,
use the following function:

=> SELECT current_schemas(true);

current_schemas

{pg_catalog,public}
(1 row)

Set the search path:

=> SET search_path = public, app;
SET

Now, the table t will be found:

=> SELECT * FROM t;

This is table t
(1 row)

Here, we have set the configuration parameter value on the session level, so it will return to the default value when we
reconnect. Setting it on the cluster level would not be a good solution either, since this path may not be needed often and
not by all users.

However, the parameter value can be set at the database level:

=> ALTER DATABASE appdb SET search_path = public, app;

ALTER DATABASE

Now, it should apply for all connections to appdb. Let’s check if it works:
=> \c appdb

You are now connected to database "appdb" as user "student".
=> SHOW search_path;

search path

=> SELECT current_schemas(true);

current_schemas

{pg_catalog, public,app}
(1 row)

o)) PROFESSIONAL

Special schemas Posigres

Temporary tables

exist for the duration of the session or transaction
not logged (no recovery after a crash)
do not utilize the shared buffer cache

pg_temp_N schema

created automatically for temporary tables
pg_temp: a link to a specific temporary schema for the session
if not explicitly included in the path, implicitly included as the very first one

at the end of the session, all objects of the temporary schema are dropped;
the schema itself remains and is reused for other sessions

11

PostgreSQL can work with temporary tables. Temporary tables store data

that should only be available to the current session and only for as long as
the session is active (or even for the duration of a single transaction within
the session).

Temporary tables are unlogged. This means that if a crash occurs, the table
contents will be lost. Additionally, temporary table pages are never stored in
the shared buffer cache, residing in the internal memory of their backend
process instead. Thanks to that, temporary tables can be accessed a bit
more quickly than regular ones.

Temporary tables are organized using schemas. When a session is started,
a temporary schema named pg_temp_N (pg_temp_1, pg_temp_2, etc.) is
created for it. It can be accessed by the name pg_temp (without a number,
because the name will always refer to the temporary schema specific for the
session).

If pg_temp is not specified in the path, it is searched before all others.
Otherwise, you can specify its position in the path explicitly, like with
pg_catalog.

After the session ends, all objects belonging to the temporary schema are
dropped, and the schema itself remains to be reused later on.

There are other special schemas, more technical in nature.

Temporary tables and pg_temp

Create a temporary table:
=> CREATE TEMP TABLE t(s text);

CREATE TABLE

=> \dt
List of relations
Schema | Name | Type | Owner
----------- B R R
pg temp 3 | t | table | student
(1 row)

The table is created in a special schema. Each session has its own temporary schema, so that sessions cannot access each
other’s temporary schemas.

But, where did the regular table t disappear?

The answer lies in the extended search path. Now, the search path includes the temporary schema, and the object in it
“overshadows” the object in the app schema by the same name.

=> SELECT current_schemas(true);

current _schemas

{pg_temp 3,pg catalog,public,app}
(1 row)

=> INSERT INTO t VALUES ('This is a temporary table');
INSERT 0 1

Still, you can access objects in either schema by providing the schema name. For the temporary table, use the pseudo-
schema pg temp: it will automatically transform to the current session’s pg_temp N:

=> SELECT * FROM app.t;

This is table t
(1 row)

=> SELECT * FROM pg_temp.t;

This is a temporary table
(1 row)

Temporary schemas are not limited to just tables.
=> CREATE VIEW v AS SELECT * FROM pg_temp.t;

NOTICE: view "v" will be a temporary view
CREATE VIEW

Temporary schemas and data in them may have different scopes of life (depending on the keywords ON COMMIT DELETE,
PRESERVE, and DROP). In any case, all temporary objects are deleted upon reconnecting to a database:

=> \c appdb
You are now connected to database "appdb" as user "student".
=> SELECT current_schemas(true);

current_schemas

{pg_catalog,public,app}
(1 row)

=> SELECT * FROM pg_temp.v;

ERROR: relation "pg temp.v" does not exist
LINE 1: SELECT * FROM pg temp.v;

=> SELECT * FROM pg_temp.t;

ERROR: relation "pg temp.t" does not exist
LINE 1: SELECT * FROM pg temp.t;

Deleting objects

A schema cannot be deleted as long as any objects remain in it:
=> DROP SCHEMA app;

ERROR: cannot drop schema app because other objects depend on it
DETAIL: table t depends on schema app
HINT: Use DROP ... CASCADE to drop the dependent objects too.

But you can delete a schema together with all its objects:
=> DROP SCHEMA app CASCADE;

NOTICE: drop cascades to table t
DROP SCHEMA

If the database is no longer needed, it can be deleted as well.

=> \conninfo

You are connected to database "appdb" as user "student" via socket in "/var/run/postgresql" at port "5432".
=> \c student

You are now connected to database "student" as user "student".

=> DROP DATABASE appdb;

DROP DATABASE

o)) PROFESSIONAL

Takeaways Pos{gres

On the logical level,

a cluster contains databases,
a database contains schemas,
a schema contains specific objects (tables, indexes etc.)

Databases are created by cloning existing ones

A schema can be specified explicitly or determined using the
search path

Some schemas have specific purposes

13

Practice Pogga’?é%

1. Create a new database and connect to it.
Check the size of the created database.

3. Create two schemas. Name one app, and the other after your
user name.
Create several tables in both schemas and populate them with
some data.
Check how much the database size has increased.

5. Modify the search path value so that when connecting to the
database, tables from both schemas are accessible by an
unqualified name. The “username” schema should have priority.

14

1. Database

=> CREATE DATABASE data_databases;
CREATE DATABASE
=> \c data_databases

You are now connected to database "data databases" as user "student".

2. Database size

=> SELECT pg_size_pretty(pg_database_size('data_databases'));

pg _size pretty

7957 kB
(1 row)

Save the value in psql:

=> SELECT pg_database_size('data_databases') AS oldsize \gset

3. Schemas and tables

=> CREATE SCHEMA app;

CREATE SCHEMA

=> CREATE SCHEMA student;

CREATE SCHEMA

student schema tables:

=> CREATE TABLE a(s text);

CREATE TABLE

=> INSERT INTO a VALUES ('student');
INSERT 0 1

=> CREATE TABLE b(s text);

CREATE TABLE

=> INSERT INTO b VALUES ('student');
INSERT 0 1

app schema tables:

=> CREATE TABLE app.a(s text);
CREATE TABLE

=> INSERT INTO app.a VALUES ('app');
INSERT 0 1

=> CREATE TABLE app.c(s text);
CREATE TABLE

=> INSERT INTO app.c VALUES ('app');

INSERT 0 1

4. Database size changes

=> SELECT pg_size_pretty(pg_database_size('data_databases'));

pg _size pretty

8045 kB
(1 row)

=> SELECT pg_database_size('data_databases') AS newsize \gset
The size has changed by:
=> SELECT pg_size_pretty(:newsize::bigint - :oldsize::bigint);

pg size pretty

5. Search path

With the current search path configuration, only student tables are visible:

=> SELECT * FROM a;

student
(1 row)

=> SELECT * FROM b;

student
(1 row)

=> SELECT * FROM c;

ERROR: relation "c" does not exist
LINE 1: SELECT * FROM c;

Modify the search path:

=> ALTER DATABASE data_databases SET search_path = "$user",app,public;
ALTER DATABASE

=> \c

You are now connected to database "data databases" as user "student".
=> SHOW search_path;

search path

"$user", app, public
(1 row)

Now, tables from both schemas are visible, but student takes priority:

=> SELECT * FROM a;

student
(1 row)

=> SELECT * FROM b;

student
(1 row)

=> SELECT * FROM c;

Practice+ Pogga’?é%

1. Create a database. For all sessions connecting to this database,
set the temp_buffers parameter to four times the default value.

15

1. Use the command ALTER DATABASE ... SET
https://postgrespro.com/docs/postgresgl/13/sql-alterdatabase
More about the temp_buffers parameter:

https://postgrespro.com/docs/postgresgl/13/runtime-config-resource#GUC-T
EMP-BUFFERS

1. Setting the temp_buffers parameter

=> CREATE DATABASE data_databases;

CREATE DATABASE

=> \c data_databases

You are now connected to database "data databases" as user "student".

The temp_buffers parameter determines the amount of memory allocated for the local cache for temporary tables during
any session. If the temporary tables' data does not fit into temp buffers, the pages are evicted, like with the regular buffer
cache. Too low of a value may affect the server performance if temporary tables are used frequently.

The default temp buffers value is 8MB:

=> SELECT name, setting, unit, boot_val, reset_val
FROM pg_settings
WHERE name = 'temp_buffers' \gx

-[RECORD 1]-----------
name | temp buffers
setting | 1024
unit | 8kB
boot_val | 1024
reset_val | 1024

Set the value to 32MB for all new sessions:

=> ALTER DATABASE data_databases SET temp_buffers = '32MB';

ALTER DATABASE

=> \c

You are now connected to database "data databases" as user "student".
=> SHOW temp_buffers;

temp buffers

The parameter changes made by ALTER DATABASE are stored in the pg db role setting table. You can view them in psql
with the following command:

=> \drds
List of settings
Role | Database | Settings
______ L ST
| data_databases | temp_buffers=32MB
(1 row)

Naturally, you don't have to set the temp buffers parameter just at the database level. For example, you can set them for
the whole cluster if you define it in postgresql.conf.

