Architecture
Vacuuming

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

Tasks that require periodic execution
Vacuum and analysis
Table and index bloating

Full vacuum and rebuilding of indexes

o)) PROFESSIONAL

Routine tasks Posigres

Vacuuming pages to remove MVCC historical data

dead row versions are vacuumed out of tables
index entries referring to dead versions are vacuumed from indexes

MVCC makes it possible to effectively implement snapshot isolation, but as
a result, old versions of rows accumulate in table pages, and links to these
versions accumulate in index pages. Historical versions are needed for
some time so that transactions can work with their data snapshots. But over
time, a row version will no longer have any snapshot that needs it. Such a
row version is called “dead”.

The vacuum procedure cleans out dead row versions from table pages, as
well as unnecessary index entries that reference such versions.

If historical data is not vacuumed in a timely manner, tables and indexes will
bloat uncontrollably and the search for current row versions in them will slow
down.

https://postgrespro.com/docs/postgresql/13/routine-vacuuming

o)) PROFESSIONAL

Routine tasks Posigres

Updating the visibility map
tracks pages where all row versions are visible in all snapshots

used to optimize vacuuming and speed up index access
exists only for tables

In addition to this main task, vacuuming also performs other instance
maintenance tasks. Vacuuming updates the visibility map and the free
space map. This is service information that is stored alongside the main
data.

The visibility map shows pages that contain only the current row versions
visible in all data snapshots. In other words, these are pages that have not
changed for long enough to be cleared out of outdated row versions.

The visibility map has several uses:

* Vacuuming optimization.
The marked pages cannot contain dead row versions, so they can be
skipped during vacuuming.

* Index Only access speedup.
Versioning information is stored only for tables, but not for indexes (that's
why indexes don’t have visibility maps). After getting a reference to a row
version from an index, you usually need to read the table page to check
its visibility. But if the index itself already has all the necessary columns,
and at the same time the page is marked in the visibility map, then
reading the table page can be skipped.

If the visibility map isn't updated regularly, index access can slow down. This
Is described in more detail in the course “Query Performance Tuning” (QPT).

Routine tasks Pogga’?“ég

Updating the free space map

tracks the free space in the pages after vacuuming
used when inserting new row versions
exists for both tables and indexes

The visibility map tracks available free space within pages. This space is
constantly changing, decreasing when new row versions are added and
increasing when they are removed.

When inserting new row versions, the map helps to quickly find a suitable
page to record the data into. The free space map has a complex tree-like
structure designed to improve search speed.

Indexes can have free space maps as well. However, since index entries
are inserted into specific positions within an index, the map only tracks
empty pages, which form when all index entries are deleted from them.
These pages are excluded from the index and later can be included again
into another part of the index.

o)) PROFESSIONAL

Routine tasks Posigres

Updating statistics

used by the query optimizer
calculated based on a random sample

The query optimizer requires statistical information about the data it's
working with, such as the number of rows in tables and the distribution of
data in columns. The process of collecting the statistics is called analysis.

For analysis, a random sample of data of a certain size is read from the
table. This way, the system can quickly collect statistics even on very large
tables. The result is not accurate, but it is not expected to be. The data
constantly changes, so it is impossible to maintain absolutely accurate
statistics all of the time anyway. It is sufficient to keep it relatively up-to-date
and relatively close to the truth.

If statistics are not updated regularly, they will no longer represent the data
accurately, leading to the optimizer proposing inefficient execution plans.
Because of this, queries may start executing orders of magnitude slower
than they could.

o)) PROFESSIONAL

Routine tasks Posigres

Freezing

prevents the consequences of the 32-bit transaction counter overflow

As already mentioned, PostgreSQL orders events by transaction ID. The
counter has 32 bits allocated for it, and sooner or later it will overflow (this is
known as transaction ID wraparound). But when the counter resets to zero,
the order of transactions will be disrupted.

This is why the transaction ID scope is looped. For each transaction, half of
the IDs are considered to be in the future, half in the past.

Sufficiently old row versions are marked as frozen. This means that they
were created so far in the past that their transaction ID no longer means
anything and can be reused.

To avoid scanning extra pages, the visibility map has a bit that marks the
pages where all row versions are frozen.

Without regular freezing, the server may end up with no available
transaction IDs for new transactions. This is an emergency: the server
stops, all active transactions drop, and the administrator has to manually
restart the server and do the freezing.

o)) PROFESSIONAL

Autovacuum Posigres

PostgreSQL
Autovacuum launcher sostmaster

background process [S

periodically launches ﬂ
worker processes : backg

autovacuum

ound processes

Autovacuum worker

vacuums tables of a ‘ S e ‘
separate database that
require attention

[cache) oS

ma) C

All the maintenance tasks discussed above are taken care of by the
autovacuum process. It dynamically reacts to the frequency of table
updates, and the more active the changes, the more often the table will be
vacuumed.

The autovacuum launcher process runs in the background, scheduling the
vacuuming work and launching the required number of parallel autovacuum
workers.

Vacuuming works page-by-page, so it doesn't block other transactions
It still does require additional resources from the 1/0O system.

Autovacuum will stop when either of the two parameters autovacuum or
track _counts is switched off. It may seem that disabling autovacuum can
increase system performance by eliminating “unnecessary” I/O operations,
but it cannot. Failure to vacuum will lead to the consequences described
above: uncontrolled bloating, slower query processing, and the risk of an
emergency server shutdown. Ultimately, this will lead to a complete system
paralysis.

Autovacuuming is absolutely necessary. There is a large number of
configuration parameters that allow tweaking the autovacuum process.
They are discussed in detail in the course DBA2 “Configuration and
monitoring”.

o)) PROFESSIONAL

Manual vacuuming Pos{gres

Vacuuming
VACUUM [table, ...] vacuuming specific tables
VACUUM vacuuming the entire database
$ vacuumdb wrapper for the OS
Analysis

ANALYZE
$ vacuumdb --analyze-only

Vacuum and analysis

VACUUM ANALYZE
$ vacuumdb --analyze

If necessary, vacuuming and analysis can be started manually using the
following commands:

VACUUM (vacuuming only), ANALYZE (analysis only), and VACUUM
ANALYZE (both vacuuming and analysis).

Autovacuum is different from running scheduled vacuum and analysis in that
it reacts to the frequency of data changes. Running it on a schedule too
often will create unnecessary load on the system. On the other hand, if you
vacuum too rarely, and data is changed often, the files may have time to
bloat significantly between vacuums.

https://postgrespro.com/docs/postaresql/13/sgl-vacuum

https://postgrespro.com/docs/postgresqgl/13/sgl-analyze

Vacuum

Let’s create a table and turn autovacuum off so that we can vacuum manually:

=> CREATE TABLE bloat(
id integer GENERATED ALWAYS AS IDENTITY,
d timestamptz

) WITH (autovacuum_enabled = off);

CREATE TABLE
Fill the table with data and build an index:

=> INSERT INTO bloat(d)
SELECT current_timestamp FROM generate_series(1,100000);

INSERT 0 100000

=> CREATE INDEX ON bloat(d);

CREATE INDEX

All table rows have only one row version.

Now, let’s update a row:

=> UPDATE bloat SET d = d + interval 'l day' WHERE id = 1;
UPDATE 1

Run vacuum and have it tell us what it is doing:

=> VACUUM (verbose) bloat;

INFO: vacuuming "public.bloat"

INFO: scanned index "bloat d idx" to remove 1 row versions

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: "bloat": removed 1 row versions in 1 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "bloat d idx" now contains 100000 row versions in 87 pages
DETAIL: 1 index row versions were removed.

0 index pages have been deleted, 0 are currently reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: "bloat": found 1 removable, 100000 nonremovable row versions in 541 out of 541 pages
DETAIL: 0O dead row versions cannot be removed yet, oldest xmin: 511
There were 0 unused item identifiers.

Skipped 0 pages due to buffer pins, 0 frozen pages.

0 pages are entirely empty.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.01 s.

VACUUM

The important lines are:

e removed 1 row versions
e 1 index row versions were removed

Bloating Poggai“éé

Vacuuming does not reduce the size of tables and indexes

the “holes” in the pages are used for new data,
but never returned to the operating system

Causes of bloating

incorrect autovacuum configuration
massive changes of data
long-running transactions

Negative consequences

inefficient disk space use
slower sequential table scan
less efficient index access

11

Vacuuming cleans out outdated row versions from pages. This creates spots
of free space in the pages, which is then used to store new data. But the
free space is not returned to the operating system, so, from the point of view
of the OS, the size of the data files does not decrease.

In the case of indexes (B-trees), it is complicated by the fact that if there is
not enough space in the page to place an index entry, the page is split into
two. The resulting pages are never merged again, even if all index entries
are removed from them.

If autovacuuming is configured correctly, the data files grow by a certain
constant amount due to updates between vacuumings. But if a large amount
of data is being changed at the same time, or there are active long
transactions (keeping old data snapshots active and not allowing you to
vacuum out old row versions), vacuuming will not be able to free up the
space in time. As a result, the tables and indexes may continue to grow in
size.

File size bloating leads not only to disk space overuse (including for
backups), but also to a decrease in performance.

https://wiki.postgresqgl.org/wiki/Show_database bloat
https://postgrespro.com/docs/postgresql/13/pgstattuple

Table and index bloating estimation

There are several ways to assess bloating and its impact:

e Queries to the system catalog
e The pgstattuple extension

=> CREATE EXTENSION pgstattuple;
CREATE EXTENSION
The extension helps monitor the state of a table:

=> SELECT * FROM pgstattuple('bloat') \gx

-[RECORD 1]------ ommmma
table len | 4431872
tuple count | 100000
tuple len | 4000000
tuple percent | 90.26
dead tuple count | ©

dead tuple len | ©

dead tuple percent | 0

free space | 16720
free percent | 0.38

e tuple percent is data payload (never 100% because of overhead).

Same for an index:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ Fo------
version 4
tree level 1
index size 712704
root block no 3
internal pages 1

|
|
|
|
|
leaf pages | 85
|
|
|
|

empty pages 0
deleted pages 0
avg leaf density 89.17
leaf_fragmentation | 0

o leaf pages is the number of leaf pages in the index,
e avg leaf density is how full they are,
e leaf fragmentation is how ordered they are on disk.

Let’s update half the rows at once:

=> UPDATE bloat SET d = d + interval 'l day' WHERE id % 2 = 0;
UPDATE 50000

Check the table again:

=> SELECT * FROM pgstattuple('bloat') \gx

-[RECORD 1]------ R
table len | 6643712
tuple count | 100000
tuple len | 4000000
tuple percent | 60.21
dead tuple count | 50000
dead tuple len | 2000000
dead tuple percent | 30.1
free space | 21004
free percent | 0.32

The density went down.
To avoid scanning the whole table, pgstattuple can display approximate information:

=> SELECT * FROM pgstattuple_approx(‘bloat') \gx

6643712

-l RECORD 1]-------- +

table len |

scanned percent | 100

approx_tuple count | 100000

approx_tuple len | 4000000

approx_tuple percent | 60.207305795314426
|
I
|

dead tuple count 50000

dead tuple len 2000000

dead tuple percent 30.103652897657213
approx_free space 21004

approx_free percent | 0.31614856273119607

Check the index:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ o
version | 4
tree_level | 1

index size | 1040384
root block no | 3
internal pages | 1

leaf pages | 125
empty pages | ©
deleted pages | ©

avg leaf density | 90.95

leaf fragmentation | 0

Leaf page density remained the same, but the number of pages has increased.

o)) PROFESSIONAL

Rebuilding objects Pos{gres

Full vacuum

VACUUM FULL
$ vacuumdb --full

completely rebuilds the contents of tables and indexes
locks the table completely

Rebuilding indexes
REINDEX

rebuilds indexes
locks the index completely and locks the associated table for write operations

13

In order to reduce the physical size of bloated tables and indexes, a full
vacuum is required.

The VACUUM FULL command completely rewrites the contents of the table
and its indexes, minimizing the space occupied. However, this process
requires an exclusive table lock and therefore cannot be executed in parallel
with other transactions.

https://postgrespro.com/docs/postgresgl/13/sgl-vacuum

You can rebuild an index or several indexes without touching the table. This
is done by the REINDEX command. It locks the table for writing (reading is
still available), so transactions trying to change the table will be blocked.

https://postgrespro.com/docs/postgresqgl/13/sgl-reindex

If prolonged exclusive locking is undesirable, you can consider pg_repack,
a third-party extension (https://github.com/reorg/pg_repack) that allows you
to rebuild tables and their indexes on the fly.

o)) PROFESSIONAL

Rebuilding objects Pos{gres

Non-blocking index rebuilding
REINDEX ... CONCURRENTLY
rebuilds indexes without blocking tables for writing
takes longer and may fail
not transactional
does not work for system indexes
does not work for indexes associated with exclusion constraints

14

In PostgreSQL 12 and higher, the REINDEX ... CONCURRENTLY command
can work without blocking the table for writing. However, non-blocking
rebuilding takes longer and may fail (due to deadlocks). In this case, the
index will need to be rebuilt again.

Non-blocking index rebuilding has a number of limitations: it cannot be
performed inside a transaction, and it cannot rebuild system indexes and
indexes with exclusion constraints (EXCLUDE).

Rebuilding objects

You can rebuild an index with the REINDEX command with the CONCURRENTLY keyword. It rebuilds the index without
stopping the system.

=> REINDEX TABLE CONCURRENTLY bloat;
REINDEX
Check the index again:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ tomee -
version 4
tree_level 1
index size 712704
root block no 3
internal pages 1

|
|
|
|
|
leaf pages | 85
|
|
|
|

empty pages 0
deleted pages 0
avg leaf density 89.17
leaf fragmentation | 0

The density is back to nominal.

To rebuild a table together with its indexes, you can use VACUUM FULL. However, unlike REINDEX .. CONCURRENTLY,
it does lock the table.

=> VACUUM FULL bloat;
VACUUM

=> SELECT * FROM pgstattuple('bloat') \gx

-[RECORD 1]------ R
table len | 4431872
tuple count | 100000
tuple len | 4000000
tuple percent | 90.26
dead tuple count | ©

dead tuple len | ©
dead_tuple percent | 0

free space | 16724
free percent | 0.38

The density has increased, the freed up space is returned to the operating system.

Takeaways poééa?@g

Row versions accumulate, so periodic vacuuming is necessary

Vacuuming serves multiple goals:

updating visibility maps and free space maps
collecting statistics for the planner
freezing old row versions

Autovacuuming is necessary, but requires configuration

Full vacuum may be necessary to combat bloating

16

o)) PROFESSIONAL

Practice Posigres

1. Disable autovacuuming and make sure it doesn’t work.

In a new database, create a table with one numeric column and
an index for this table. Insert 100,000 random numbers into the
table.

3. Change half of the table rows several times. Write down the size
of the table and the index each time.

4. Run a full vacuum.

5. Repeat step 4, running a regular vacuum each time you change
the values. Compare the results.

6. Turn autovacuuming back on.

17

1. Set the autovacuum parameter to off and reload the configuration files.

3. Use the functions pg_table_size (table name) and
pg_indexes_size (table name). For more information about calculating
the sizes of various objects, see the module “Data organization”.

6. Set the autovacuum parameter back to on (or reset this parameter with
the RESET command), then reload the configuration files.

1. Switching autovacuum off

=> SELECT pid, backend_start, backend_type
FROM pg_stat_activity

WHERE backend_type = 'autovacuum launcher’;
pid | backend_start | backend_type
........ A
147968 | 2024-03-07 13:53:08.814793+03 | autovacuum launcher
(1 row)

=> ALTER SYSTEM SET autovacuum = off;
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload_conf

=> SELECT pid, backend_start, backend_type
FROM pg_stat_activity
WHERE backend_type = 'autovacuum launcher’;

pid | backend_start | backend_type
..... e e e

(0 rows)

2. Database, table and index

Create a database, a table and an index:

=> CREATE DATABASE admin_maintenance;

CREATE DATABASE

=> \c admin_maintenance

You are now connected to database "admin_maintenance" as user "student".
=> CREATE TABLE t(n numeric);

CREATE TABLE

=> CREATE INDEX t_n on t(n);

CREATE INDEX

Insert rows:

=> INSERT INTO t SELECT random() FROM generate_series(1,100000);

INSERT 0 100000

Store a query to calculate the size of the table and the index as a psql variable so that we can use it later:

=> \set SIZE 'SELECT pg_size_pretty(pg_table_size(''t'')) table_size, pg_size_pretty(pg_indexes_size(''t'')) index_size\\g (footer=off)'

=> :SIZE

table _size | index_size
............ e
4360 kB | 4240 kB

3. Changing rows without vacuuming

=> UPDATE t SET n=n WHERE n < 0.5;

UPDATE 49947

=> :SIZE

table _size | index_size
............ e
6520 kB | 6424 kB

=> UPDATE t SET n=n WHERE n < 0.5;

UPDATE 49947

=> :SIZE

table _size | index_size
............ e
8680 kB | 7592 kB

=> UPDATE t SET n=n WHERE n < 0.5;

UPDATE 49947

=> :SIZE

table _size | index_size

The table and index sizes keep growing.
4. Full vacuum

=> VACUUM FULL t;

VACUUM

=> :SIZE

table _size | index_size

............ e
4336 kB | 3104 kB

The table size is almost back to where it was initially, and the index size decreased (building an index for a large data set is more efficient than
keeping adding data to the index row by row).

5. Changing rows with vacuuming

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49947
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49947
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49947
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

The size increased once and then stabilized.
The example demonstrates how removing (or changing) large chunks of data should be done in multiple transactions, if possible. This will allow

autovacuum to clean up unneeded row versions in time, avoiding table bloating.

6. Turn autovacuum back on

=> ALTER SYSTEM RESET autovacuum;
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload_conf

