Access Control
Roles and attributes

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics

Roles
Attributes
Group role membership

Object owners

o)) PROFESSIONAL

Posygres

Roles POQSFF@%

A role is a DBMS user

A role is in no way associated with the OS user

although many programs use the OS user name
as the default role name

Roles are defined at the cluster level

Essentially, a role is a DBMS user. (A role can also act as a user group, as
discussed later in this topic.)

Roles have nothing to do with OS user names, although many stock
programs assume the OS user name as the default role name. For example,
if you do not specify the role name when starting psql, your OS user name
will be used.

Roles are shared cluster objects. As such, one role can connect to different
databases and own objects in different databases.

https://postgrespro.com/docs/postgresqgl/13/database-roles

Attributes Posigres

Attributes define the properties of a role
CREATE ROLE role [WITH] attribute [attribute ...]

LOGIN can log in

SUPERUSER superuser privileges

CREATEDB can create databases
CREATEROLE can create roles

REPLICATION can use the replication protocol
and others

A role possesses a number of attributes that define its general properties
and rights (not related to object access rights).

Generally, attributes come in two opposite variations, for example,
CREATEDB (can create databases) and NOCREATEDB (not allowed to
create databases). Usually, the restrictive option is the default.

The table lists only some of the possible attributes. The INHERIT and
BYPASSRLS attributes are discussed later in this module.

https://postgrespro.com/docs/postgresgl/13/role-attributes
https://postgrespro.com/docs/postgresqgl/13/sql-createrole

Roles and attributes

In this module, the prompt will show the name of the user that executes the command.
student=# CREATE DATABASE access_roles;

CREATE DATABASE

student=# \c access_roles

You are now connected to database "access roles" as user "student".

Create a role for Alice:

student=# CREATE ROLE alice LOGIN CREATEROLE;

CREATE ROLE

Alice can log in (the LOGIN attribute) and create other roles (the CREATEROLE attribute).
TIpoBepuM 3T0:

student=# \c - alice

You are now connected to database "access roles" as user "alice".

alice=> CREATE ROLE bob LOGIN;

CREATE ROLE

Indeed, Alice can log in and create a role for Bob.

Bob cannot create other roles:

student$ psql -U bob -d access_roles

‘ bob=> CREATE ROLE charlie LOGIN;

| ERROR: permission denied to create role

You can view all roles within the cluster with the following command:
alice=> \du

List of roles

Role name | Attributes | Member of
___________ e e e e e e e e
alice | Create role | {3}
bob | | {}
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
student | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

In addition to the newly created roles alice and bob, there are two others, both with superuser privileges:

e postgres — a superuser created upon cluster initialization,
e student — a role created specifically for the course, allows us to skip providing connection parameters when using psql.

Existing roles can be modified. For example, Alice can revoke the right to log in from Bob:
alice=> ALTER ROLE bob NOLOGIN;

ALTER ROLE

Now, Bob cannot log in:

| bob=> \c - bob

\connect: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed: FATAL: role "bob" is not permitted to log in

Alice can revoke CREATEROLE from herself:
alice=> ALTER ROLE alice NOCREATEROLE;
ALTER ROLE

Many attributes come in pairs, such as LOGIN-NOLOGIN and CREATEROLE-NOCREATEROLE.

Group roles Pogga’?“ég

Granting group membership to a role
student=> GRANT dba TO alice; dba

Revoking group membership from a role
student=> REVOKE dba FROM alice;

Group role membership control

any role can grant membership in itself to another role

a role with the SUPERUSER attribute can grant membership
in any role to any role

a role with the CREATEROLE attribute can grant membership
in any non-superuser role to any role 6

A role can be granted membership in another role, just as a Unix user can
be included in a group.

PostgreSQL does not distinguish between user roles and group roles,
allowing any role to be a member of any other. Cascading grants may occur,
unless they result in a cycle.

When a role is granted membership in another role, it obtains access to all
the attributes (and privileges, more on them later) of the group role. The
inclusion done with the GRANT command.

The role that executes the GRANT command is paramount. The roles that
may grant (or revoke) membership in a given role are:

* the role itself,
* roles with the SUPERUSER attribute,

* roles with the CREATEROLE attribute (as long as the given role is not a
superuser).

To take advantage of the newly acquired properties, you must first switch to
the role by using the SET ROLE command.

https://postgrespro.com/docs/postaresal/13/role-membership

Group roles

Alice revoked the CREATEROLE attribute from herself and now can neither create new roles nor modify existing ones:
alice=> ALTER ROLE bob LOGIN;

ERROR: permission denied

To grant Alice superuser powers, we can include her role into student. It can be done by student or by another superuser role:
alice=> \c - postgres

You are now connected to database "access roles" as user "postgres".

postgres=# GRANT student TO alice;

GRANT ROLE

postgres=# \du

List of roles

Role name | Attributes | Member of
___________ e e e e e e
alice | | {student}
bob | Cannot login | {3}
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
student | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

Note that the LOGIN attribute isn’t listed in the \du output, but its absence is.

To make sure that Alice does not abuse her superuser powers, make all her commands get recorded into the server log. To do that, we will
use another method of assigning configuration parameters. This way, the new parameter value will apply when the user connects to the
server:

postgres=# ALTER ROLE alice SET log_min_duration_statement=0;

ALTER ROLE

The parameter scope can be limited to a specific database:

postgres=# ALTER ROLE alice RESET log_min_duration_statement;

ALTER ROLE

postgres=# ALTER ROLE alice IN DATABASE access_roles SET log_min_duration_statement=0;
ALTER ROLE

Alice does not get all the rights of the group role automatically, but she can switch to the group role to use them:
postgres=# \c - alice

You are now connected to database "access roles" as user "alice".

alice=> SET ROLE student;

SET

alice=> ALTER ROLE bob LOGIN;

ALTER ROLE

This functions similarly to the su command in Unix.

There are functions that show who is the active session user and what role they are currently switched to:
alice=> SELECT session_user, current_user;

session user | current user

Switch back to the old role:

alice=> RESET ROLE;

RESET

alice=> SELECT session_user, current_user;

session user | current user

And verify that our commands have been recorded:

student$ tail -n 5 /var/log/postgresql/postgresql-13-main.log

2024-03-07
2024-03-07
2024-03-07
2024-03-07
2024-03-07

13:51
13:51
13:51
13:51
13:51

101
101
102
102
102

.904 MSK
.969 MSK
.026 MSK
.083 MSK
.110 MSK

alice@access roles
alice@access roles
alice@access roles
alice@access roles
alice@access roles

LOG:
LOG:
LOG:
LOG:
LOG:

duration:
duration:
duration:
duration:
duration:

0.446
2.674
0.142
0.058
0.095

statement:
statement:
statement:
statement:
statement:

SET ROLE student;

ALTER ROLE bob LOGIN;

SELECT session user, current user;
RESET ROLE;

SELECT session user, current user;

owners Posigres

Object owner

the role that created the object
(as well as the role’s members)

can be changed with the ALTER ... OWNER TO role command

When a role creates any objects in a database, it becomes their owner.

In addition to that, any members of this role also become owners of these
objects.

If necessary, the owner of an object can be changed with the ALTER
command for the object with the OWNER TO clause.

The concept of ownership is especially important when discussing
privileges, the next topic of this module.

Owners

When Alice creates a database object, she becomes its owner.
alice=> CREATE TABLE test(id integer);

CREATE TABLE

An owner of an object is listed under the owner column in the table:
alice=> \dt test

List of relations

Schema | Name | Type | Owner
-------- B T LR
public | test | table | alice
(1 row)

Dropping roles

A role can be dropped only if does not own any objects.

alice=> \c - student

You are now connected to database "access roles" as user "student".
student=# DROP ROLE alice;

ERROR: role "alice" cannot be dropped because some objects depend on it
DETAIL: owner of table test

To drop the role alice, you must first transfer ownership of her objects to another role:
student=# REASSIGN OWNED BY alice TO bob;

REASSIGN OWNED

student=# \dt test

List of relations

Schema | Name | Type | Owner
-------- B T LR
public | test | table | bob
(1 row)

student=# DROP ROLE alice;

DROP ROLE

Or you can just drop the owned objects:
student=# DROP OWNED BY bob;

DROP OWNED

student=# DROP ROLE bob;

DROP ROLE

Remember that a role may own objects across different databases.

o)) PROFESSIONAL

Takeaways Pos{gres

Roles can be considered as both users and groups of users
The properties of a role are defined by its attributes
Roles can be members of other roles

Each database object has an owner role

10

o)) PROFESSIONAL

Practice Posigres

1. Create a role swan without login privileges, but with the rights to
create databases and roles.

Create a user duckling with login privileges.
2. Verify that duckling cannot create a database.

3. Grant duckling membership in the swan group.
Create a new database as swan.

11

1. Create roles

student=# CREATE ROLE swan WITH CREATEDB CREATEROLE;
CREATE ROLE
student=# CREATE ROLE duckling WITH LOGIN;

CREATE ROLE
2. Check if the role Duckling can create databases

student=# \c - duckling
You are now connected to database "student" as user "duckling".
duckling=> CREATE DATABASE access_roles;

ERROR: permission denied to create database

3. Grant membership

duckling=> \c - student

You are now connected to database "student" as user "student".
student=# GRANT swan TO duckling;

GRANT ROLE

student=# \c - duckling

You are now connected to database "student" as user "duckling".
duckling=> SET ROLE swan;

SET

duckling=> CREATE DATABASE access_roles;

CREATE DATABASE

Practice+ Pogga’?é%

1. Create roles alice and bob with login privileges.
Create a table on behalf of alice.

2. Set it up so that both roles could modify the table structure
(for example, add columns with the ALTER TABLE command).

12

2. Only the owners of a table can change its structure. You need to get not
only Alice, but also Bob to be an owner of the table.

1. Table and roles

student=# CREATE ROLE alice WITH LOGIN;

CREATE ROLE

student=# CREATE ROLE bob WITH LOGIN;

CREATE ROLE

student=# \c access_roles alice

You are now connected to database "access roles" as user "alice".
alice=> CREATE TABLE test (id integer);

CREATE TABLE

2. Adding a table owner

For Bob to be able to modify the structure of the table, he must become its owner. This can be achieved by including bob
into the role of alice. Alice can do it with the following command:

alice=> GRANT alice TO bob;
GRANT ROLE
alice=> \du alice|bob

List of roles
Role name | Attributes | Member of

bob | | {alice}

Now, Bob can add new columns to the table:

alice=> \c - bob

You are now connected to database "access roles" as user "bob".
bob=> ALTER TABLE test ADD description text;

ALTER TABLE

Or even drop the table:

bob=> DROP TABLE test;

DROP TABLE

