Architecture

Buffer cache and WAL

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

Buffer cache overview

Replacement algorithm

Write-ahead log

Checkpoint

Processes related to the buffer cache and WAL

o)) PROFESSIONAL

Buffer cache Posigres

Buffer array — PostgreSQL
data page (8 KB) J— e
. . . ¥y X) <
additional information backend
“Dirty” buffers ':% balckgrouhd processes
dirty
asynchronous write shared memory buﬂer>
buffer cache [[]E;ﬂ[][]E;ﬂ[JE’EE/IjATJ\‘g
Locks in memory

for shared access

(

/A/) o
ma)OC

cache

The buffer cache is used to smooth out the difference between the RAM and
disk speed. It consists of an array of buffers that contain data pages and
some additional information (for example, the file name and the position of
the page inside this file).

The page size is usually 8 KB; the size can only be changed when building
PostgreSQL.

Any work with data pages goes through the buffer cache. If any process is
going to work with the page, it first tries to find it in the cache. If the page
does not exist, the process requests the operating system to read this page
and places it in the buffer cache. (Note that the OS can read the page either
from disk or from its own cache.)

After the page gets into the buffer cache, it can be accessed repeatedly
without the overhead of operating system calls.

If a process has changed the data in the page, the corresponding buffer is
called “dirty”. The modified page must be written on disk, but for
performance reasons, the recording occurs asynchronously and may be
delayed.

The buffer cache, like other shared memory structures, is protected by locks
to control concurrent access. Although locks are implemented effectively,
access to the buffer cache is not nearly as fast as simply accessing RAM.
Therefore, in general, the less data a query reads and modifies, the faster it
will work.

o)) PROFESSIONAL

Replacement Posigres

Least Recently Used postmaster || oreset
replacement | - E—
. . T BT 2
dirty buffer is backend
written on disk H:% background processes
another page is read

into the vacant space

buffer cache [DDDD@DDD]

shared memory

(

: .
ma)OC

cache

The buffer cache size is usually not so large as to fit the entire database.
It is limited by the available RAM, and also the larger the buffer cache, the
greater the overhead. Therefore, when reading the next page, sooner or
later the buffer cache will run out of space. In this case, page replacement
occurs.

Page replacement selects a page in the cache that has been used less
often than others. If the selected buffer is dirty, the page is written on disk
first to store the changes. Then a new page gets into the buffer.

This is called the Least Recently Used replacement, or LRU. It keeps the
most frequently accessed data in the cache. Such “hot” blocks of data are
not very common, and this approach helps to significantly reduce the
number of requests to OS (and disk operations), provided enough cache
memory.

The effect of buffer cache on query execution

Create a table:

=> CREATE TABLE t(n integer);

CREATE TABLE

Populate it with rows:

=> INSERT INTO t SELECT id FROM generate_series(1,100000) AS id;
INSERT 0 100000

=> VACUUM ANALYZE t;

VACUUM

The shared buffers parameter indicates the buffer cache size:

=> SHOW shared_buffers;

shared buffers

The default value is too low. In the real world, you should increase it immediately after server installation (it will apply
after a restart).

Restart the server to wipe the cache clean.
student$ sudo pg_ctlcluster 13 main restart
student$ psql

Now, let’s compare the behaviour of the system as we run a query once, and then the same query again. Query execution
plans are not the topic of this course, but we will peek into them every now and again. The EXPLAIN ANALYZE command
used below will execute the query as well as display the execution plan and some extra details:

=> EXPLAIN (analyze, buffers, costs off, timing off)
SELECT * FROM t;

QUERY PLAN
Seq Scan on t (actual rows=100000 loops=1)
Buffers: shared read=443
Planning:
Buffers: shared hit=12 read=7 dirtied=1
Planning Time: 0.364 ms
Execution Time: 48.785 ms
(6 rows)

The “Buffers: shared” line shows the buffer utilization.
e read is the number of buffers that pages from disk were written into.

=> EXPLAIN (analyze, buffers, costs off, timing off)
SELECT * FROM t;

QUERY PLAN
Seq Scan on t (actual rows=100000 loops=1)
Buffers: shared hit=443
Planning Time: 0.170 ms
Execution Time: 56.388 ms
(4 rows)

e hit is the number of buffers that contained any of the queried pages.

Note that on the second query execution, not only the execution time went down, but the planning time too (because
system catalog pages are cached as well).

Write-ahead log (WAL) Pos{gres

Problem: when a crash occurs, data from RAM that is not
written on disk is lost

WAL

a stream of records of the actions being performed; can be used to
re-trace the steps lost during the crash

the records are stored on disk before the actual changes are

The log tracks changes to

pages in tables, indexes and other objects
transaction status (clog)

The log does not track changes to

temporary and unlogged tables

Having a buffer cache (and other RAM buffers) increases performance at
the cost of reliability. When a crash happens, all buffer cache content is lost.
If the crash occurs on the OS or hardware level, the content of OS buffers
will also be lost (the OS may have its own failsafes for this).

To increase reliability, PostgreSQL uses the Write-ahead log. When
performing any operation, the log records minimum necessary information
about the operation to be able to perform it again. The record must be
written into non-volatile memory before the data modified by the operation is
(that's why it's called Write-ahead log).

WAL files are located in the PGDATA/pg_wal directory.

All objects that are being worked on in RAM have their operations logged.
These include tables, indexes and other objects, and transaction statuses.

Operations with temporary tables (tables which exist only during the scope
of a session or a transaction and are only available to the user who has

created them) aren’t logged. You can also set a regular table to be explicitly
unlogged. The table will be quicker to work with, but will be wiped on crash.

https://postgrespro.com/docs/postgresgl/13/wal-intro

Write-ahead log (WAL)

You can imagine WAL as a continuous stream of records. Each record has a 64-bit Log Sequence Number, or LSN — an
offset from the beginning of the log, in bytes.

The current log position can be seen with pg current wal lsn:
=> SELECT pg_current_wal_lsn();

pg_current wal 1sn

0/34598B0
(1 row)

The position is displayed as two 32-bit numbers separated by a slash. Let’s save it for future reference.
Now let’s perform a bunch of operations and see what’s changed.

=> UPDATE t SET n = 100001 WHERE n = 1;

UPDATE 1

=> SELECT pg_current_wal_lsn();

pg current wal lsn

0/345C8E0Q
(1 row)

It’s not the absolute values we're interested in, but the distance between them, as it shows the size of generated log
entries in bytes:

=> SELECT '0/345C8E0'::pg_lsn - '0/34598B0'::pg_lsn AS bytes;

The log is stored in files in a separate catalog (PGDATA/pg wal). By default, the files are 16 MB each, but you can change
that during cluster initialization.

In addition to browsing the files by means of the OS, you can also display them by the following command:
=> SELECT * FROM pg_ls_waldir() ORDER BY name;

name | size | modification

000000010000000000000003 | 16777216 | 2024-03-07 13:49:17+03
000000010000000000000004 | 16777216 | 2024-03-07 13:49:10+03
(2 rows)

o)) PROFESSIONAL

Checkpoint Pos{gres

Regular flushing of all dirty buffers to disk

ensures that all data changes before the checkpoint get to the disk
limits the size of the log required for recovery

Crash recovery

starts from the last checkpoint
WAL records are replayed one-by-one to restore data consistency

recovery
start

required WAL files

- .
® t ® : » xid
checkpoint checkpoint crash

When PostgreSQL crashes, it enters the recovery mode on the next start.
The data on disk at this point is inconsistent. Changes to hot pages were in
the buffer cache and are now lost, while some of the later changes have
been flushed to disk already.

To restore consistency, PostgreSQL reads the WAL log and sequentially
reads the records, replaying the changes that did not make it to the disk.
This way, the state of all transactions at the time of the crash is restored.
Then, any transactions that haven’t been logged as committed are aborted.

However, logging all changes throughout a server’s lifetime and replaying
everything from day 1 after each crash is impractical, if not impossible.
Instead, PostgreSQL uses checkpoints. Every now and then, it forces all
dirty buffers to disk (including clog buffers with transaction statuses) to
ensure that all data changes up to this point are safe in non-volatile memory.

This state is called a checkpoint. The “point” in checkpoint is the moment in
time when the flushing of all data to disk is started. However, you only have
a valid checkpoint when the flushing is complete, and it may take a bit of
time.

Now, when a crash occurs, you can start recovery from the closest
checkpoint. Consequently, it’s sufficient to store WAL files only as far back
as the last checkpoint goes.

WAL and crash recovery

So far, current page changes are in the buffer cache, but not on disk. On a regular shutdown, the server will perform a
checkpoint and write all dirty pages to disk. Instead, let’s simulate a crash by sending the following command to
postmaster:

student$ sudo head -n 1 /var/lib/postgresql/13/main/postmaster.pid
129095

student$ sudo kill -QUIT 129095

When the server comes back up, it should begin recovery:

student$ sudo pg ctlcluster 13 main start

student$ psql

=> SELECT min(n), max(n) FROM t;

min | max
_____ .

2 | 100001
(1 row)

All the changes have been recovered.

After performing a checkpoint, PostgreSQL automatically deletes log files that are no longer necessary for recovery.

o)) PROFESSIONAL

Performance Posigres

Synchronous mode PostgreSQL
. . postmaster
write on commit —
backend S o I
backend walwriter | | checkpointer

Asynchronous mode = J

write in background T

walwriter WAL | | clog [buffer cache]

cache j oS

(
=60 [mal

10

The WAL approach is faster than working directly with disk without a buffer
cache. Firstly, a WAL record is smaller than an entire page of data.
Secondly, the log is written sequentially (and usually not read until a crash
occurs), which is better for basic hard disk drives.

Various configurations also affect WAL performance. If the records are
stored to disk immediately (synchronous mode), this guarantees that the
committed operation will get to disk one way or the other. But recording to
disk is expensive, and forces the committing process to wait in line. To
prevent log entries from being “stuck” in the OS cache, PostgreSQL calls
the fsync function, which forces the data into non-volatile storage.

There is also asynchronous mode, which has a background process
(walwriter) constantly sending WAL records to disk with a certain delay. It’s
more efficient at the cost of some reliability, but still ensures consistency
after crash recovery.

In fact, both modes work together. Long transaction log records are written
asynchronously (to free up WAL buffers). And if a pages is getting flushed to
disk and the corresponding log record isn’t there yet, it will immediately be
recorded in synchronous mode.

o)) PROFESSIONAL

Main processes Pos{gres

WAL Writer PostgreSQL

postmaster

Checkpo inter [ez
flush all dirty buffers backend walwriter | | checkpointer | | bgwriter
Background writer
shared memory

flush some dirty buffers @ @ [i e]
Backend

flush the replaced dirty buffer

[cache j oS

b (@al

11

Let’s take a step back and look at the processes that maintain the buffer
cache and the WAL.

First, there is walwriter. This process writes WAL records to disk in
asynchronous mode. In synchronous mode, this job is handled by the
process that commits the transaction.

Second, checkpointer, the checkpoint process. It periodically flushes all dirty
buffers to disk.

Third, bgwriter (or background writer). It operates similarly to checkpointer,
but it only flushes some of the dirty buffers, prioritizing the ones which are at
a high risk of being replaced soon. It frees up buffer space so that when a
background worker selects a buffer to put a new page in, it doesn’t have to
flush the old contents of the buffer to disk itself.

Fourth, there are backends that put data into the buffer cache.
Whenever a buffer being replaced is still dirty (despite the efforts of
checkpointer and bgwriter), the background process will flush it to disk.

o)) PROFESSIONAL

Log levels Pos{gres

Minimal

guarantees crash recovery
Replica (default)

backup

replication: transfer and replay of the log on another server
Logical

logical replication: information about adding, changing, and deleting
table rows

12

WAL was developed as a data protection tool to mitigate the risk of data loss
due to crashes.

However, the WAL mechanism turned out to have other applications, if its
records are supplemented with additional info.

The amount of data stored in each WAL record is controlled by the wal_level
parameter.

* The minimal level is sufficient to recover after a crash, and nothing else.

* The replica level stores additional information that allows it to be used for
backup (see the Backup module) and replication (see the Replication
module). During replication, WAL records are streamed to the replica and
applied there, creating an exact copy of the original server.

* At the logical level, information is added to the log that allows decoding
“physical” log entries and forming “logical” records of adding, changing
and deleting table rows. This is logical replication (also discussed in the
“Replication” module).

Takeaways Pogga’??é

Buffer cache increases performance by reducing the number of
disk operations

WAL increases reliability
WAL size is kept in check by checkpoints
WAL has multiple uses:

crash recovery
backup
replication

13

o)) PROFESSIONAL

Practice Posigres

1. Using the OS tools, find the processes responsible for the buffer
cache and the WAL.

2. Stop PostgreSQL in fast mode; start it again.
Check the server message log.

3. Now stop PostgreSQL in immediate mode; start it again.
Check the server message log and compare with the
previous one.

14

2. To stop in fast mode, use the command

pg_ctlcluster 13 main stop

This makes the server abort all open connections and perform a checkpoint
before shutting down, so that all data is flushed to disk and consistent.

In this mode, the shutdown may take some time, but on startup the server
will be good to go right away.

3. To stop in immediate mode, use the command

pg_ctlcluster 13 main stop -m immediate --skip-systemctl-redirect
The server will also abort open connections, but will not perform a
checkpoint. Data on disk will be inconsistent, like after a crash. In this mode,

the server shuts down quickly, but will enter recovery mode on startup and
will use the WAL to reach consistency.

If your PostgreSQL is compiled from source code, the fast stop command
will be

pg_ctl stop

and the immediate stop command will be
pg_ctl stop -m immediate

1. Operating system processes

First, we need to get the postmaster process ID. It is stored in the first line of the postmaster.pid file. The file is located in the data catalog and is created each time the server starts.

student$ sudo cat /var/lib/postgresql/13/main/postmaster.pid

147963
/var/lib/postgresql/13/main
1709808788
5432
/var/run/postgresql
localhost

655375 98351
ready

Check all the child processes of postmaster:

student$ sudo ps -o pid,command --ppid 147963

PID COMMAND

147965 postgres: 13/main: checkpointer
147966 postgres: 13/main: background writer

147967 postgres: 13/main: walwriter

147969 postgres: 13/main: stats collector

147970 postgres: 13/main: logical replication launcher
150288 postgres: 13/main: autovacuum launcher

Processes that maintain the buffer cache and WAL include:

« checkpointer;
e background writer;
« walwriter.

2. Stopping the server in the fast mode

In order to easily separate new log messages from old ones, we will simply delete the log file before we start the server. Of course, this is not a good idea to do in production.

student$ sudo rm /var/log/postgresql/postgresql-13-main.log

student$ sudo pg_ctlcluster 13 main restart

Server message log:

student$ cat /var/log/postgresql/postgresql-13-main.log

2024-03-07 13:53:44.314 MSK [150498]
2024-03-07 13:53:44.315 MSK [150498]
2024-03-07 [150498]
2024-03-07 [150499]
2024-03-07 13:53:44.354 MSK [150498]

LOG:
LOG:
LOG:
LOG:
LOG:

starting PostgreSQL 13.11 (Ubuntu 13.11-1.pgdg22.04+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 11.3.0-lubuntul~22.04) 11.3.0, 64-bit
listening on IPv4 address "127.0.0.1", port 5432

listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"

database system was shut down at 2024-03-07 13:53:43 MSK

database system is ready to accept connections

3. Stopping the server in the immediate mode

student$ sudo rm /var/log/postgresql/postgresql-13-main.log

student$ sudo pg_ctlcluster 13 main stop -m immediate --skip-systemctl-redirect

student$ sudo pg_ctlcluster 13 main start

Server message log:

student$ cat /var/log/postgresql/postgresql-13-main.log

2024-03-07 13:53:47.575 MSK [150604]
2024-03-07 13: .576 MSK [150604]
2024-03-07 13 579 MSK [150604]
2024-03-07 13: .589 MSK [150605]
2024-03-07 13: .684 MSK [150605]
2024-03-07 13 689 MSK [150605]
2024-03-07 13: .689 MSK [150605]
2024-03-07 13: .730 MSK [150604]

LOG:
LOG:
LOG:
LOG:
LOG:
LOG:
LOG:
LOG:

starting PostgreSQL 13.11 (Ubuntu 13.11-1.pgdg22.04+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 11.3.0-lubuntul~22.04) 11.3.0, 64-bit
listening on IPv4 address "127.0.0.1", port 5432

listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"

database system was interrupted; last known up at 2024-03-07 13:53:44 MSK

database system was not properly shut down; automatic recovery in progress

invalid record length at 0/DA@D2D8: wanted 24, got O

redo is not required

database system is ready to accept connections

Before getting ready to receive queries, the system performed an automatic recovery (automatic recovery in progress).

