

Data organization
Tablespaces

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Tablespaces and catalogs
Creating, modifying, and deleting tablespaces

Storing data in the file system
Moving data

3

Tablespaces

appdb

pg_catalog public

postgres

pg_catalog publicschema

pg_global
tablespace

tablespace

pg_default
tablespace

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

tabletableobject

default
tablespace

default
tablespace

Tablespaces are used to organize the physical storage of data and
determine the location of data in the file system.
For example, one tablespace can be used on slow disks for archived data,
and another on fast disks with frequent activity.
On cluster initialization, two tablespaces are created: pg_default and
pg_global.
A tablespace can be used by multiple databases, and a database can use
multiple tablespaces at once.
Each database has a default tablespace where all database objects are
created (unless specified otherwise). System catalog objects are also stored
in the default tablespace. Databases will use the pg_default tablespace as
their default, unless another one is set by the user.
The pg_global tablespace is special as it stores only those objects that are
shared by the whole cluster.
https://postgrespro.com/docs/postgresql/13/manage-ag-tablespaces

4

Directories

appdb postgres

pg_global
tablespace

tablespace

pg_default
tablespace

tabletableobject

tabletableobject

tabletableobject tabletableobject

tabletableobject

tabletableobject tabletableobject

PGDATA/global/

PGDATA/base/dboid/

PGDATA/pg_tblspc/tsoid

/path-to-catalog/ver/dboid/

Essentially, a tablespace is a reference to the directory in which the data is
located. The standard tablespaces pg_global and pg_default are always
located in PGDATA/global/ and PGDATA/base/, respectively. When a
custom tablespace is created, an arbitrary directory can be specified.
For convenience, PostgreSQL also creates a symbolic link to the directory in
PGDATA/pg_tblspc/.
The PGDATA/base/ directory comprises different directories for each
database (unlike PGDATA/global/, which stores data referring to the whole
cluster).
Inside a custom tablespace directory, there is another level of directories for
different PostgreSQL server versions. This is helpful during server upgrade.
Finally, these directories are where the actual objects are stored, one or
more files per object.

Service	tablespaces

Upon	a	cluster	creation,	two	tablespaces	are	generated:

=>	SELECT	*	FROM	pg_tablespace;

	oid		|		spcname			|	spcowner	|	spcacl	|	spcoptions	
------+------------+----------+--------+------------
	1663	|	pg_default	|							10	|								|	
	1664	|	pg_global		|							10	|								|	
(2	rows)

pg_global	—	shared	cluster	objects,
pg_default	—	the	tablespace	to	be	used	as	default.

Custom	tablespaces

A	new	tablespace	needs	an	empty	directory	owned	by	the	user	postgres.

student$	sudo	mkdir	/var/lib/postgresql/ts_dir

student$	sudo	chown	postgres	/var/lib/postgresql/ts_dir

Now,	a	new	tablespace	can	be	created:

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

The	following	psql	command	returns	a	list	of	all	tablespaces:

=>	\db

																List	of	tablespaces
				Name				|		Owner			|										Location										
------------+----------+----------------------------
	pg_default	|	postgres	|	
	pg_global		|	postgres	|	
	ts									|	student		|	/var/lib/postgresql/ts_dir
(3	rows)

Each	database	has	a	“default”	tablespace.	Let’s	create	a	database	and	assign	ts	as	its	default:

=>	CREATE	DATABASE	appdb	TABLESPACE	ts;

CREATE	DATABASE

This	makes	all	tables	and	indexes	created	within	the	database	fall	into	ts,	unless	specified	otherwise.

Connect	to	the	database:

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

Create	a	table:

=>	CREATE	TABLE	t1(
		id	integer	GENERATED	ALWAYS	AS	IDENTITY,
		name	text
);

CREATE	TABLE

When	creating	objects,	you	may	explicitly	specify	a	tablespace	for	it:

=>	CREATE	TABLE	t2(
		n	numeric
)	TABLESPACE	pg_default;

CREATE	TABLE

=>	SELECT	tablename,	tablespace	FROM	pg_tables	WHERE	schemaname	=	'public';

	tablename	|	tablespace	
-----------+------------
	t1								|	
	t2								|	pg_default
(2	rows)

An	empty	tablespace	field	means	that	the	default	tablespace	is	used.	The	second	table	has	this	field	filled	in.

Another	way	to	assign	a	tablespace	without	defining	it	at	object	creation	is	to	preemptively	set	it	as	the	default_tablespace
parameter	value.

A	single	tablespace	may	contain	objects	from	multiple	databases.

=>	CREATE	DATABASE	configdb;

CREATE	DATABASE

This	database’s	default	tablespace	will	be	pg_default.

=>	\c	configdb

You	are	now	connected	to	database	"configdb"	as	user	"student".

=>	CREATE	TABLE	t(
		n	integer
)	TABLESPACE	ts;

CREATE	TABLE

Managing	objects	within	tablespaces

Tables	(and	other	objects,	such	as	indexes)	can	be	moved	between	tablespaces.

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

=>	ALTER	TABLE	t1	SET	TABLESPACE	pg_default;

ALTER	TABLE

=>	SELECT	tablename,	tablespace	FROM	pg_tables	WHERE	schemaname	=	'public';

	tablename	|	tablespace	
-----------+------------
	t2								|	pg_default
	t1								|	pg_default
(2	rows)

You	can	move	all	objects	from	one	tablespace	to	another:

=>	ALTER	TABLE	ALL	IN	TABLESPACE	pg_default	SET	TABLESPACE	ts;

ALTER	TABLE

=>	SELECT	tablename,	tablespace	FROM	pg_tables	WHERE	schemaname	=	'public';

	tablename	|	tablespace	
-----------+------------
	t2								|	
	t1								|	
(2	rows)

Keep	in	mind	that	moving	objects	between	tablespaces	(unlike	moving	between	schemas)	is	a	physical	operation	that
involves	moving	actual	files	from	one	catalog	to	another.	Access	to	the	moved	objects	is	completely	blocked	for	the
duration	of	the	operation.

Tablespace	size

We	already	know	how	to	find	the	size	of	a	database.	Now,	we	can	learn	how	to	get	the	size	of	objects	in	a	tablespace:

=>	SELECT	pg_size_pretty(pg_tablespace_size('ts'));

	pg_size_pretty	

	7997	kB
(1	row)

Why	is	the	size	large,	despite	the	tablespace	containing	just	a	few	empty	tables?

This	is	because	ts	is	the	default	tablespace	for	the	database	appdb,	so	it	is	where	the	system	catalog	objects	are	stored,
occupying	the	mysterious	space.

The	psql	command	to	get	the	size	of	a	tablespace	is:

=>	\db+

																																											List	of	tablespaces
				Name				|		Owner			|										Location										|	Access	privileges	|	Options	|		Size			|	Description	
------------+----------+----------------------------+-------------------+---------+---------+-------------
	pg_default	|	postgres	|																												|																			|									|	38	MB			|	
	pg_global		|	postgres	|																												|																			|									|	575	kB		|	
	ts									|	student		|	/var/lib/postgresql/ts_dir	|																			|									|	7997	kB	|	
(3	rows)

Dropping	a	tablespace

You	can	only	delete	a	tablespace	that	is	empty:

=>	DROP	TABLESPACE	ts;

ERROR:		tablespace	"ts"	is	not	empty

Unlike	with	schemas,	there	is	no	keyword	CASCADE	in	the	DROP	TABLESPACE	command.	Objects	within	the	tablespace
may	belong	to	multiple	databases,	while	we	are	only	connected	to	one.

You	can	still	learn	what	databases	contain	dependant	objects.	This	is	where	the	system	catalog	comes	in.

First,	find	and	save	the	tablespace	ID:

=>	SELECT	oid	FROM	pg_tablespace	WHERE	spcname	=	'ts';

		oid		

	16498
(1	row)

Next,	get	a	list	of	databases	which	have	objects	in	the	tablespace	we	want	to	remove:

=>	SELECT	datname
FROM	pg_database
WHERE	oid	IN	(SELECT	pg_tablespace_databases(16498));

	datname		

	configdb
	appdb
(2	rows)

Then,	connect	to	each	of	the	databases	and	get	a	list	of	objects	from	pg_class:

=>	\c	configdb

You	are	now	connected	to	database	"configdb"	as	user	"student".

=>	SELECT	relnamespace::regnamespace,	relname,	relkind
FROM	pg_class
WHERE	reltablespace	=	16498;

	relnamespace	|	relname	|	relkind	
--------------+---------+---------
	public							|	t							|	r
(1	row)

The	table	is	no	longer	needed,	drop	it.

=>	DROP	TABLE	t;

DROP	TABLE

Now,	for	the	second	database.	Since	ts	is	the	default	tablespace,	the	tablespace	ID	of	the	objects	in	pg_class	equals	zero.
These	are	the	system	catalog	objects,	as	we	already	know:

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

=>	SELECT	count(*)	FROM	pg_class	WHERE	reltablespace	=	0;

	count	

			350
(1	row)

You	can	set	another	tablespace	as	default.	This	will	move	all	the	tables	from	the	old	one	into	the	new	one.	You	need	to
disconnect	from	the	database	first.

=>	\c	postgres

You	are	now	connected	to	database	"postgres"	as	user	"student".

=>	ALTER	DATABASE	appdb	SET	TABLESPACE	pg_default;

ALTER	DATABASE

Finally,	the	tablespace	can	be	deleted.

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

6

Takeaways

Tablespaces organize physical data storage
Logical (databases, schemas) and physical (tablespaces) forms
of data separation are independent

7

Practice

Why does pg_default become the default tablespace when creating a
database without specifying the TABLESPACE keyword?

1. Create a new tablespace.
2. Set it as the default tablespace for the template1 database.
3. Create a new database.

Check which default tablespace is set for the new database.
4. Find the symbolic link to the tablespace catalog in PGDATA.
5. Delete the created tablespace.

1.	A	new	tablespace

student$	sudo	mkdir	/var/lib/postgresql/ts_dir

student$	sudo	chown	postgres	/var/lib/postgresql/ts_dir

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

2.	The	default	tablespace	for	template1

=>	ALTER	DATABASE	template1	SET	TABLESPACE	ts;

ALTER	DATABASE

3.	A	new	database,	verification

=>	CREATE	DATABASE	db;

CREATE	DATABASE

=>	SELECT	spcname
FROM	pg_tablespace
WHERE	oid	=	(SELECT	dattablespace	FROM	pg_database	WHERE	datname	=	'db');

	spcname	

	ts
(1	row)

The	default	tablespace	is	ts.

Conclusion:	the	default	tablespace	is	determined	by	the	template	from	which	the	new	database	is	cloned.

4.	Symbolic	links

=>	SELECT	oid	AS	tsoid	FROM	pg_tablespace	WHERE	spcname	=	'ts';

	tsoid	

	16703
(1	row)

student$	sudo	ls	-l	/var/lib/postgresql/13/main/pg_tblspc/16703

lrwxrwxrwx	1	postgres	postgres	26	Mar		7	13:54	/var/lib/postgresql/13/main/pg_tblspc/16703	->	/var/lib/postgresql/ts_dir

5.	Drop	the	tablespace

=>	ALTER	DATABASE	template1	SET	TABLESPACE	pg_default;

ALTER	DATABASE

=>	DROP	DATABASE	db;

DROP	DATABASE

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

8

Practice+

1. Set the random_page_cost parameter for the pg_default
tablespace to 1.1.

1. Use the ALTER TABLESPACE ... SET command:
https://postgrespro.com/docs/postgresql/13/sql-altertablespace
The seq_page_cost and random_page_cost parameters are used by the
planner. They refer to the approximate cost of reading one page of data from
disk with sequential and random access, respectively.
The lower the ratio between these parameters, the more often the planner
will prefer index access over sequential table scanning.
The parameters *_cost and, more specifically, random_page_cost are
discussed in more detail in the “Query performance tuning” course (QPT).

1.	Setting	the	random_page_cost	for	a	tablespace

The	default	seq_page_cost	and	random_page_cost	values	are	better	suited	for	slower	HDD	drives.	It	is	assumed	that
random	page	access	is	four	times	as	costly	as	sequential	page	access:

=>	SELECT	name,	setting
FROM	pg_settings	
WHERE	name	IN	('seq_page_cost','random_page_cost');

							name							|	setting	
------------------+---------
	random_page_cost	|	4
	seq_page_cost				|	1
(2	rows)

If	you	use	drives	with	different	properties,	you	can	create	different	tablespaces	with	appropriate	seq_page_cost	and
random_page_cost	values	for	each.	For	example,	quick	SSD	drives	can	have	the	random_page_cost	value	almost	as	low	as
seq_page_cost.

=>	ALTER	TABLESPACE	pg_default	SET	(random_page_cost	=	1.1);

ALTER	TABLESPACE

Configuration	adjustments	made	using	the	ALTER	TABLESPACE	command	are	stored	in	the	pg_tablespace	table.	You	can
view	them	in	psql	with	the	command:

=>	\db+

																																									List	of	tablespaces
				Name				|		Owner			|	Location	|	Access	privileges	|								Options									|		Size		|	Description	
------------+----------+----------+-------------------+------------------------+--------+-------------
	pg_default	|	postgres	|										|																			|	{random_page_cost=1.1}	|	31	MB		|	
	pg_global		|	postgres	|										|																			|																								|	575	kB	|	
(2	rows)

The	*_cost	parameters	can	also	be	set	in	postgresql.conf.	This	will	apply	them	to	all	tablespaces.

