Access control
Privileges

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics po%a?;g

Types of privileges for different objects

Role categories in terms of access control
Group privileges

Granting, revoking and transferring privileges
Default privileges

Access control examples

Privileges POQSFFS%

Privileges define the access rights of roles to objects

Tables and views

SELECT read data

INSERT insert rows

UPDATE change rows can be set at the column level
REFERENCES foreign key

DELETE delete rows

TRUNCATE empty a table

TRIGGER create triggers

Privileges define the relationships between cluster objects and roles. They
limit the actions the roles can perform on the objects.

The list of possible privileges depends on the object type. Privileges for the
main object types are listed on this and the following slide.

Most privileges are defined for tables and views. Some of them can be
defined not only for the entire relation, but also for individual columns.

https://postgrespro.com/docs/postgresql/13/ddl-priv
https://postgrespro.com/docs/postgresgl/13/sgl-grant

o)) PROFESSIONAL

Privileges Posigres

Tablespaces, database

databases, schemas

4

TEMPORARY
CREATE
USAGE
/4

table @, } object m ‘ object m
space ‘ ‘

schema pg_temp

Sequences
SELECT currval
UPDATE nextval setval
USAGE currval nextval

Sequences have a somewhat unexpected set of privileges. They serve to
allow or restrict access to the three control functions.

For tablespaces, there is a CREATE privilege that allows the creation of
objects in this tablespace.

For databases, the CREATE privilege allows you to create schemas in this
database, and for a schema, the CREATE privilege allows you to create
objects in this schema.

Since the exact name of the schema for temporary objects is unknown in
advance, the privilege to create temporary tables has been moved to the
database level (TEMPORARY).

The USAGE schema privilege allows access to objects in this schema.
The CONNECT database privilege allows connection to this database.

Role categories Pogga’?“ég

Superusers

full access to all objects, no checks performed

Owners
access within privileges
(initially receives all privileges)
actions that are not regulated by privileges, such as
deleting objects, granting and revoking privileges, etc.

Other roles

access exclusively within the granted privileges

Generally speaking, a role’s ability to access an object is defined by the
role's privileges. However, there are three categories of roles that function
differently in that regard.

1. Roles with the superuser attribute are the most straightforward: they can
do anything and bypass all access control checks.

2. The owner of an object immediately receives a full set of privileges for the
object. Technically, these privileges can be revoked, but the owner always
retains inherent rights to the object that are not regulated by any privileges.
In particular, the owner can grant and revoke privileges (including to and
from themselves), delete the object, etc.

3. All other roles have access to the object only as far as the privileges
granted to them allow it.

o)) PROFESSIONAL

Privilege management Posigres

Granting privileges
alice=> GRANT privileges ON object TO bob;

. rivileges
on an object

the same privilege can be independently granted by multiple roles

Revoking privileges
alice=> REVOKE privileges ON object FROM bob;

The owner of an object (and the superuser) has the right to grant and
revoke privileges on the object.

The syntax of the GRANT and REVOKE commands is quite complex. You
can specify both individual and all possible privileges, both individual objects
and groups of objects included in certain schemas, etc.

https://postgrespro.com/docs/postgresgl/13/sgl-grant
https://postgrespro.com/docs/postgresgl/13/sgl-revoke

Privileges

student=# CREATE DATABASE access_privileges;
CREATE DATABASE
student=# \c access_privileges
You are now connected to database "access privileges" as user "student".
In this example, Alice will own several objects in her schema.
student=# CREATE ROLE alice LOGIN;
CREATE ROLE
student=# CREATE SCHEMA alice;
CREATE SCHEMA
student=# GRANT CREATE, USAGE ON SCHEMA alice TO alice;
GRANT
student=# \c - alice
You are now connected to database "access privileges" as user "alice".
Alice creates two tables.
alice=> CREATE TABLE tl(n integer);
CREATE TABLE
alice=> CREATE TABLE t2(n integer, m integer);
CREATE TABLE
The second role, Bob, will try to access Alice’s objects.
alice=> \c - student
You are now connected to database "access privileges" as user "student".
student=# CREATE ROLE bob LOGIN;
CREATE ROLE
Bob tries to access t1.
student$ psql -U bob -d access_privileges
| bob=> SELECT * FROM alice.tl;
ERROR: permission denied for schema alice

LINE 1: SELECT * FROM alice.tl;

A

Why does Bob get the error?

Bob has no right to access the table, since he is not a superuser, not the owner of the schema, and does not have the
required privileges.

student=# \dn+ alice

List of schemas
Name | Owner | Access privileges | Description

alice | student | student=UC/student+]|
| | alice=UC/student |
(1 row)

In each access privileges row is a role, its privileges and the user who granted them:
role=privileges/granter
Privilege names are denoted by single letters. Schema privileges:

e U = usage
e C = create

Alice must grant Bob access to her schema.

student=# \c - alice

You are now connected to database "access privileges" as user "alice".
alice=> GRANT CREATE, USAGE ON SCHEMA alice TO bob;

WARNING: no privileges were granted for "alice"
GRANT

Why couldn’t Alice grant the privilege?

Because Alice does not own the schema.
alice=> \dn+ alice

List of schemas
Name | Owner | Access privileges | Description

alice | student | student=UC/student+]|
| | alice=UC/student |
(1 row)

Make Alice the owner:

alice=> \c - student

You are now connected to database "access privileges" as user "student".
student=# ALTER SCHEMA alice OWNER TO alice;

ALTER SCHEMA

student=# \dn+ alice

List of schemas

Name | Owner | Access privileges | Description
------- B s e S
alice | alice | alice=UC/alice |

(1 row)

Now, Alice can grant access to Bob:

student=# \c - alice

You are now connected to database "access privileges" as user "alice".
alice=> GRANT CREATE, USAGE ON SCHEMA alice TO bob;

GRANT

Bob tries to access the table again:

| bob=> SELECT * FROM alice.tl;

| ERROR: permission denied for table tl1

What’s the problem this time?

Bob has access to the schema, but not to the table.
| bob=> \dp alice.tl

Access privileges
Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B T T S L T
alice | t1 | table | | |
(1 row)

The empty access privileges field means that the owner has the full set of privileges, and nobody else has any.

Alice must grant Bob the right to read the table:
alice=> GRANT SELECT ON t1 TO bob;

GRANT

Let’s see how the privileges have changed:

alice=> \dp tl

Access privileges
Schema | Name | Type | Access privileges | Column privileges

alice | t1 | table | alice=arwdDxt/alice+|
| | | bob=r/alice |

The empty field has filled up, showing that Alice has the full set of privileges. Below are denotations for table privileges
(some are not as obvious as the others):

e a = insert

e 1 = select

e w = update

o d = delete

e D = truncate
e x = reference
e t = trigger

Finally, Bob can access the table:
| bob=> SELECT * FROM alice.tl;

n

(0 rows)

But he still cannot add row into it:

| bob=> INSERT INTO alice.tl VALUES (42);

| ERROR: permission denied for table tl
Some privileges can be granted for specific columns:
alice=> GRANT INSERT(n,m) ON t2 TO bob;
GRANT

alice=> GRANT SELECT(m) ON t2 TO bob;

GRANT

alice=> \dp t2

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- R e e ek TR
alice | t2 | table | | n: +|

| | | | bob=a/alice +|

I | | | m: +|

I |

bob=ar/alice |

Now, Bob can add rows into t2:

| bob=> INSERT INTO alice.t2(n,m) VALUES (1,2);
| INSERT 0 1

And can only read one column:

| bob=> SELECT * FROM alice.t2;

| ERROR: permission denied for table t2

| bob=> SELECT m FROM alice.t2;

m

2
(1 row)

If necessary, Alice can grant Bob all the privileges, without the need to list them individually.
alice=> GRANT ALL ON t1 TO bob;

GRANT

alice=> \dp tl1

Access privileges
Schema | Name | Type | Access privileges | Column privileges

alice | t1 | table | alice=arwdDxt/alice+|
| | | bob=arwdDxt/alice |

Now, Bob can do anything with the table. For example, delete rows:
| bob=> DELETE FROM alice.tl;

| DELETE o

Maybe, drop the whole table?

| bob=> DROP TABLE alice.tl;

| ERROR: must be owner of table tl

Only the table owner (or the superuser) can delete a table. There is no special privilege to allow this.

o)) PROFESSIONAL

Group privileges Pos{gres

A role gets the privileges of the group roles it is a member of

the INHERIT attribute makes privileges inherited automatically

with the NOINHERIT attribute, an explicit transition of privileges with the
SET ROLE command is required

The pseudo-role public

implicitly includes all other roles

A role can receive privileges to access an object not only directly, but also
from group roles in which it is included. In order to simplify administration,
you can grant the necessary set of privileges to a group role and then
include users into that role, providing them with the entire set of privileges
at once. A group role can be viewed as a privilege in itself, and group
management is done by the same GRANT and REVOKE commands as
privilege management.

A role with the INHERIT attribute (on by default) will automatically have the
privileges of all the groups it belongs to. This also applies to the pseudo-role
public, which implicitly includes all roles.

If a role is created with the NOINHERIT attribute explicitly added, then it will
have to use the SET ROLE command to switch to the group role in order to
benefit from its privileges. In this case, all actions will be performed on
behalf of the group role (for example, the group role will own any created
objects).

https://postgrespro.com/docs/postgresql/13/role-membership

Default roles POQSFF@%

pg_signal_backend — terminate sessions and cancel queries
pg_read_all_settings — read configuration parameters =
P g_read_all_stats — access statistics 'g
pg_stat_scan_tables — access statistics that block access | &
I
pg_read_server_iles — read files on the server %‘3
pg_write_server_iles — write files on the server

pg_execute_server_programs — run programs on the server

PostgreSQL has a number of default roles that possess special privileges
required to perform tasks that usually can only be performed by a superuser.
The last three roles were first added in PostgreSQL 11.

A complete list of all roles, including default system roles, can be viewed in
psqgl with the \duS command.

https://postgrespro.com/docs/postgresql/13/default-roles

Similarly, custom group roles can be created, for example, to manage
backups.

Group privileges

Alice grants public the privilege to modify t2:
alice=> GRANT UPDATE ON t2 TO public;
GRANT

alice=> \dp t2

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B e i it s S
alice | t2 | table | alice=arwdDxt/alice+| n: +|

| | | =w/alice bob=a/alice +|

|

|
| | | m: +|
| bob=ar/alice |
(1 row)

The empty role (left from the = sign) represents public.

Check if Bob can use the privilege.
| bob=> UPDATE alice.t2 SET n = n + 1;
| ERROR: permission denied for table t2

Why the error?

Before updating t2, required rows need to be selected, and to do that, the role must have the privilege to read the data (at
least the column n from the query). Bob, however, may only read the column m.

alice=> GRANT SELECT ON t2 TO bob;
GRANT
alice=> \dp t2

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B e i it s S
alice | t2 | table | alice=arwdDxt/alice+| n: +|

| | | =w/alice +| bob=a/alice +|

| | | bob=r/alice | m: +|

I

| | | bob=ar/alice |
(1 row)

Now, Bob can update the table:
| bob=> UPDATE alice.t2 SET n = n + 1;

| UPDATE 1

Right to re-grant Posiies

Granting privileges with the right to re-grant
alice=> GRANT privileges ON object TO bob WITH GRANT OPTION;

. privileges charlie
Plivileges > dave

Revoking privileges
alice=> REVOKE privileges ON object FROM bob CASCADE;

Revoking the right to re-grant required

if the privilege
was granted

alice=> REVOKE GRANT OPTION FOR o s
privileges ON object FROM bob CASCADE;

11

When granting certain privileges to a role, you can allow the role to grant (or
revoke) these privileges to other roles down the line. This is done with the
GRANT ... WITH GRANT OPTION command (a similar construction WITH
ADMIN OPTION for attributes was discussed in the topic “Roles” before).

If a role uses this right to re-grant, a hierarchy of roles is formed.

Privileges are revoked with the REVOKE command. A role can revoke only
those privileges that it has granted to others itself. In the example shown on
the slide, alice cannot revoke the privilege directly from charlie or
dave.

However, if the privilege is revoked from bob, it will be automatically
revoked from all the roles down the line in the hierarchy. This requires the
CASCADE keyword (if the hierarchy is not empty, then attempting to revoke
without the CASCADE keyword will return an error).

The right to re-grant can be revoked without revoking the privilege itself.
This is done with the REVOKE GRANT OPTION FOR command. The
CASCADE keyword works here similarly to when revoking a privilege.

o)) PROFESSIONAL

Question Pos{gres

Alice granted the privileges on table T to Bob.

If Alice runs the command
REVOKE ALL ON T FROM bob CASCADE,
what privileges will Charlie and Dave have?

selecton T
,,
public
dave
alice select, update on T o bob update on T % charlie

select on T

‘Pax0AaI aq [|IM S804 Jay1o 01 gog Ag palueub sabajiaud ||v "oT1gnd wouy
paAladal Aayl reys absjiaud peal ayl yum dn pus [jIm aneq pue allreyd ylog

Transferring privileges

Create a new role for Charlie and let Bob grant Charlie the privileges for t1, which is owned by Alice.
alice=> \c - student

You are now connected to database "access privileges" as user "student".

student=# CREATE ROLE charlie LOGIN;

CREATE ROLE

Bob has full access to t1:

| bob=> \dp alice.tl

Access privileges
Schema | Name | Type | Access privileges | Column privileges | Policies

alice | tl1 | table | alice=arwdDxt/alice+| |
| | | bob=arwdDxt/alice | |
(1 row)

But he cannot transfer the privileges to Charlie:
| bob=> GRANT SELECT ON alice.tl TO charlie;

WARNING: no privileges were granted for "tl1"
GRANT

Alice must give Bob permission to do that.

student=# \c - alice

You are now connected to database "access privileges" as user "alice".
alice=> GRANT SELECT,UPDATE ON t1 TO bob WITH GRANT OPTION;

GRANT

alice=> \dp alice.tl

Access privileges
Schema | Name | Type | Access privileges | Column privileges

alice | t1 | table | alice=arwdDxt/alice+|
| | | bob=ar*w*dDxt/alice |
(1 row)

The asterisks to the right of each privilege character show the right to re-grant them.

Now, Bob can grant the privileges to Charlie, including the right to re-grant them:
| bob=> GRANT SELECT ON alice.tl TO charlie WITH GRANT OPTION;

| GRANT

| bob=> GRANT UPDATE ON alice.tl TO charlie;

| GRANT

| bob=> \dp alice.tl

Access privileges
Schema | Name | Type | Access privileges | Column privileges | Policies

t1	table	alice=arwdDxt/alice+	
		bob=ar*w*dDxt/alice+	
		charlie=r*w/bob	

A role may be granted the same privilege by multiple other roles. Note that when a privilege is granted by a superuser, it
is granted on behalf of the object’s owner:

alice=> \c - student

You are now connected to database "access privileges" as user "student".

student=# GRANT UPDATE ON alice.tl TO charlie;
GRANT
student=# \dp alice.tl

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B e i it s S
alice | t1 | table | alice=arwdDxt/alice+|

| | | bob=ar*w*dDxt/alice+|

| | | charlie=r*w/bob +| |

I I

| | charlie=w/alice |
(1 row)

A role can revoke privileges only from those roles it itself granted them to. For example, Alice cannot revoke the privilege
to re-grant from Charlie, because it wasn’t Alice who granted that privilege to Charlie in the first place.

student=# \c - alice

You are now connected to database "access privileges" as user "alice".
alice=> REVOKE GRANT OPTION FOR SELECT ON alice.tl FROM charlie;
REVOKE

No error is returned, but no privileges are revoked either:

alice=> \dp alice.tl

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B e e T R R PR
alice | t1 | table | alice=arwdDxt/alice+| |

| | | bob=ar*w*dDxt/alice+| |

| | | charlie=r*w/bob +| |

I I

| | charlie=w/alice |

At the same time, Alice cannot just revoke privileges from Bob if Bob has granted them to someone else:
alice=> REVOKE GRANT OPTION FOR SELECT ON alice.tl FROM bob;

ERROR: dependent privileges exist
HINT: Use CASCADE to revoke them too.

In this situation, Alice must revoke them hierarchically. This is done with the CASCADE keyword:
alice=> REVOKE GRANT OPTION FOR SELECT ON alice.tl FROM bob CASCADE;

REVOKE

alice=> \dp alice.tl

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B L T S L R
alice | t1 | table | alice=arwdDxt/alice+| |

| | | bob=arw*dDxt/alice +| |

| | | charlie=w/bob +| |

| | | charlie=w/alice | |
(1 row)
Here, Bob lost his privilege to re-grant, and Charlie lost the privilege itself.
Privileges can be revoked hierarchically in a similar manner.
alice=> REVOKE SELECT ON alice.tl FROM bob CASCADE;
REVOKE
alice=> \dp alice.tl

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- R e e T R
alice | t1 | table | alice=arwdDxt/alice+| |

| | | bob=aw*dDxt/alice +| |

| | | charlie=w/bob +| |

I I

| | charlie=w/alice |
(1 row)

o)) PROFESSIONAL

Routines Posigres

The only privilege for functions and procedures

EXECUTE execution

Security features

SECURITY INVOKER executed with the calling role’s rights
(by default)

SECURITY DEFINER executed with the owner’s rights

14

The privilege EXECUTE allows users to execute routines (functions and
procedures).

The user on behalf of which the routine is executed is important. If a routine
is declared as a SECURITY INVOKER (by default), it is executed with the
rights of the user that executes it. In this case, the operators inside the
routine can access only those objects that the user has the rights to access.

On the other hand, if declared with the SECURITY DEFINER keyword, the
routine will use the rights of its owner. This is a way to allow certain users
perform certain actions on objects they personally have no access to.

https://postgrespro.com/docs/postgresql/13/sql-createfunction
https://postgrespro.com/docs/postgresqgl/13/sqgl-createprocedure

o)) PROFESSIONAL

public role privileges Pos{gres

By default, the public role gets a number of privileges

for databases CONNECT (connect to databases)
TEMPORARY (create temporary tables)

for the public schema CREATE (create objects)
USAGE (access objects)

for pg_catalog USAGE (access objects)
and information_schema

for routines EXECUTE (run routines)

Convenient, but not really secure

15

By default, the pseudo-role public has a number of privileges (this means
that all roles get them):

e connecting and creating temporary tables for all databases,

* using the public schema and creating objects in it,

* using schemas pg_catalog and information_schema,

« executing all functions and procedures.

(In PostgreSQL 15, the public role loses the right to create objects.)

Such behavior may be undesirable. In this case, you must explicitly revoke
some of the privileges from public. You can also do so in the template
database templatel, so that the changes persist in any newly created
databases. However, revoking routine rights demands the use of the default
privileges mechanism, which will be discussed below.

Subroutines

Alice creates a simple function that returns the number of rows in the table t1:

alice=> CREATE FUNCTION foo() RETURNS bigint AS $$%
SELECT count(*) FROM tl1;
$$ LANGUAGE sql;

CREATE FUNCTION
alice=> INSERT INTO t1 VALUES (1);
INSERT 0 1

alice=> SELECT foo();

The public pseudo-role is automatically granted the EXECUTE privilege for any created function. This is why, for example,
Bob may immediately execute the function created by Alice.

This is partially kept in check by the default (or explicitly added) keyword SECURITY INVOKER that makes the function
execute with the rights of the user who executes it:

| bob=> SET search_path = public, alice;
| SET
| bob=> SELECT foo();

ERROR: permission denied for table tl
CONTEXT: SQL function "foo" statement 1

Therefore, Bob cannot access any objects he does not have the privileges to access.

Since the function does not explicitly define the schema for the table t1, Bob can create his own t1, and the function will
work with the table first found in the search path:

| bob=> CREATE TABLE t1(n numeric);
| CREATE TABLE

| bob=> SELECT foo();

A function can also be made to run with the rights of its creator (SECURITY DEFINER):

alice=> ALTER FUNCTION foo() SECURITY DEFINER;

ALTER FUNCTION

In this case, the function will always run on behalf of the role that has created it. So, Bob can drop his table:
| bob=> DROP TABLE t1;

| DROP TABLE

And now have access to Alice’s:

| bob=> SELECT foo();

This is where you really have to keep an eye on what privileges are granted to whom. A good idea is to revoke the
EXECUTE privilege from public and grant it explicitly to roles that need it.

alice=> REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA alice FROM public;
REVOKE
| bob=> SELECT foo();

| ERROR: permission denied for function foo

Default privileges Pogga’?“é“g

A way to grant or revoke privileges when creating an object

ALTER DEFAULT PRIVILEGES
[FOR ROLE target_roles_list]
[IN SCHEMA schema]
GRANT privileges ON object_class TO role;

ALTER DEFAULT PRIVILEGES
REVOKE privileges ON object_class FROM role;

REVOKE
EXECUTE ON ROUTINES
FROM public

17

You can define additional privileges to be granted or revoked when creating
an object. This is done with the ALTER DEFAULT PRIVILEGES command.

The default privileges mechanism triggers when a target_role (the current
user by default) creates an object that belongs to the specified object class
(i. e. a table or a function) in the specified schema (or in any schema by
default). The GRANT clause here means that the created object should be
granted the specified privileges for the specified role. The REVOKE clause,
on the other hand, is used to revoke the privileges.

The default privileges mechanism grants public the privilege to execute
routines when they are created. To avoid this behavior, run the command

ALTER DEFAULT PRIVILEGES
FOR ROLE ...
REVOKE EXECUTE ON ROUTINES FROM public;

Note that under the FOR ROLE clause, all the roles that can create routines
must be listed.

https://postgrespro.com/docs/postgresql/13/sql-alterdefaultprivileges

Default privileges

To avoid having the public pseudo-role acquiring the right to execute any newly created function, we need to revoke this
privilege from it.

Check the current configuration:
alice=> \ddp

Default access privileges
Owner | Schema | Type | Access privileges

(0 rows)

The table looks empty, but we already know that empty fields represent the default values. To see the values, check the
documentation or use the following command:

alice=> SELECT acldefault('function', 'alice'::regrole);

acldefault

{=X/alice,alice=X/alice}
(1 row)

This is the value that allows public to execute functions. Revoke it:

alice=> ALTER DEFAULT PRIVILEGES
REVOKE EXECUTE ON ROUTINES FROM public;

ALTER DEFAULT PRIVILEGES
Now the field is no longer empty, and the execute privilege for public is gone:
alice=> \ddp

Default access privileges

Owner | Schema | Type | Access privileges
------- e R
alice | | function | alice=X/alice

(1 row)

Now, when Alice creates new functions, Bob will no longer be able to execute them:

alice=> CREATE FUNCTION bar() RETURNS integer AS $$
SELECT 1;
$$ LANGUAGE sql SECURITY DEFINER;

CREATE FUNCTION
| bob=> SELECT bar();

| ERROR: permission denied for function bar

Example 1 POQSFFS%

alice
alice 77777777777777777777777777 Creat,e,il,lisélgie 777777777777777777777777777777777777777 ’L‘
se}%q
Pt bOb
77777777777777777777777777 C’r’e’aft,e;’},lis’age:“:’7777777:77:77777:7777::::
- eet | L=
anderson
e D e Eﬂ

19

Access control mechanisms (roles, attributes and privileges, and schemas)
are flexible enough to let you organize any sort of operations conveniently.

Here’s a simple example.

Professor Anderson and his students Alice and Bob are engaged in
research. They store their research data in a database.

On the university database server, the administrator created a user and a
schema under the same name for each of them. The default research path
was never modified. No group roles are used.

Each user owns the objects they create in their schemas. In addition to that,
Alice and Bob grant access to some of their tables to Professor Anderson so
that he can review their data.

o)) PROFESSIONAL

Example 2 Posjgres

T

inventory

0

e
=

financials

fin

20

A more complex example.

A dedicated DB server runs an ERP system. It comprises an inventory
module and a financial module.

Each module has a schema (inv and fin) and a group role (inventory

and financials). The group roles own all objects in their corresponding
schemas.

The warehouse employs Mr Picker and Mr Putter. Each have a user
included into inventory.

The financial department employs Mrs Rich and Mr Sterling. Each have a
user included into financials.

There is also a user for the CEO included into both roles on the off chance
that he'd try and use the system.

Example 3 Poggaﬁs%

web users

application | (.o] usage
server

application

,,,,,,,,,,,,,,,,,,,,,,,,,,, selectonall tables L

21

User authentication is often set up on an application server outside of the
actual database. With thousands of users and online sign-up functionality,
it is more efficient to offload user management from the database to an
external service.

In this case, the application server connects to the database under one pre-
configured role, and the information about the user is translated as context,
If necessary.

But even in this case, the database still needs some roles: A tech support
role, for example, that will need the rights to read main server tables to
troubleshoot possible issues.

o)) PROFESSIONAL

Takeaways Pos{gres

Privileges define the access rights of roles to objects

Roles, attributes and privileges, and schemas together form
a flexible mechanism that allows you to set up access control
in different ways

easy to allow access to everything for everyone
can restrict access heavily, if necessary

22

o)) PROFESSIONAL

Practice Posigres

Set up privileges so that some users have full access to the tables,
while others can only query, but not modify the data.

1.
2.

Create a new database and two roles: writer and reader.

Revoke all privileges for the schema public from the role public,
grant both privileges to writer, and only the usage privilege to
reader.

Set up the default privileges so that reader gets read access to the
tables owned by writer in the schema public.

Create users wl in the writer group and r1 in the reader group.
Aswriter, create a table.

Verify that r1 has read-only access to the table, and w1l has full access
to it, including the ability to remove it.

23

1. Database and roles

=> CREATE DATABASE access_privileges;
CREATE DATABASE

=> CREATE USER writer;

CREATE ROLE

=> CREATE USER reader;

CREATE ROLE
2. Privileges

=> \c access_privileges

You are now connected to database "access privileges" as user "student".
=> REVOKE ALL ON SCHEMA public FROM public;

REVOKE

=> GRANT ALL ON SCHEMA public TO writer;

GRANT

=> GRANT USAGE ON SCHEMA public TO reader;

GRANT

3. Default privileges

=> ALTER DEFAULT PRIVILEGES

FOR ROLE writer

IN SCHEMA public

GRANT SELECT ON TABLES TO reader;

ALTER DEFAULT PRIVILEGES

4. Users

Writer role:

=> CREATE ROLE wl LOGIN IN ROLE writer;

CREATE ROLE

The IN ROLE keyword immediately adds the new role into the specified one. It is equivalent to:
CREATE ROLE wl LOGIN;

GRANT writer TO wl;

Reader role:

=> CREATE ROLE rl LOGIN IN ROLE reader;

CREATE ROLE

5. Table

=> \c - writer
You are now connected to database "access privileges" as user "writer".
=> CREATE TABLE t(n integer);

CREATE TABLE

6. Verification

w1 can write:
=> \c - wl

You are now connected to database "access privileges" as user "wl".

=> INSERT INTO t VALUES (42);

INSERT 0 1

rl can read the table:

=> \c - rl

You are now connected to database "access privileges" as user "rl".
=> SELECT * FROM t;

n

42
(1 row)

But cannot modify:

=> UPDATE t SET n = n + 1;

ERROR: permission denied for table t

w1l can drop the table:

=> \c - wl

You are now connected to database "access privileges" as user "wl".
=> DROP TABLE t;

DROP TABLE

PostgreSQL 14 adds a pre-configured role pg read all data that automatically has read access to all data.

Practice+ Pogga’?é%

1. Create the role alice. Create a table.
Grant alice the privilege to read the table and the privilege to
change it with the right to re-grant.

2. View the access rights to the created table using the
table_privileges view in the information schema.
Compare with the \dp command output.

3. View the access rights to the created table using the
has_table_privileges function.

24

2. Other views of the information schema:
https://postgrespro.com/docs/postgresgl/13/information-schema

3. Other functions for checking privileges:

https://postgrespro.com/docs/postgresqgl/13/functions-info#FUNCTIONS-INF
O-ACCESS-TABLE

1. Role, table, privileges

=> CREATE DATABASE access_privileges;

CREATE DATABASE

=> CREATE USER alice;

CREATE ROLE

=> \c access_privileges

You are now connected to database "access privileges" as user "student".
=> CREATE TABLE test(id integer);

CREATE TABLE

=> GRANT SELECT ON test TO alice;

GRANT

=> GRANT UPDATE ON test TO alice WITH GRANT OPTION;

GRANT
2. Privileges in the information schema

=> SELECT grantee, grantor, privilege_type, is_grantable
FROM information_schema.table_privileges
WHERE table_name = 'test’;

grantee | grantor | privilege type | is grantable
--------- E T T
student | student | INSERT | YES

student | student | SELECT | YES

student | student | UPDATE | YES

student | student | DELETE | YES

student | student | TRUNCATE | YES

student | student | REFERENCES | YES

student | student | TRIGGER | YES

alice | student | SELECT | NO

alice | student | UPDATE | YES

(9 rows)

The psql command displays the same information differently:
=> \dp test

Access privileges
Schema | Name | Type | Access privileges | Column privileges

public | test | table | student=arwdDxt/student+|
| | | alice=rw*/student |
(1 row)

3. Functions to check privileges

=> SELECT has_table_privilege('alice', 'test', 'SELECT') AS has_select,
has_table_privilege('alice', 'test', 'UPDATE') AS has_update,
has_table_privilege('alice', 'test', 'DELETE') AS has_delete;

has select | has update | has delete

