

Access control
Privileges

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Types of privileges for different objects
Role categories in terms of access control

Group privileges
Granting, revoking and transferring privileges

Default privileges
Access control examples

3

Privileges define the access rights of roles to objects
Tables and views

SELECT read data
INSERT insert rows
UPDATE change rows
REFERENCES foreign key
DELETE delete rows
TRUNCATE empty a table
TRIGGER create triggers

Privileges

can be set at the column level

Privileges define the relationships between cluster objects and roles. They
limit the actions the roles can perform on the objects.
The list of possible privileges depends on the object type. Privileges for the
main object types are listed on this and the following slide.
Most privileges are defined for tables and views. Some of them can be
defined not only for the entire relation, but also for individual columns.
https://postgrespro.com/docs/postgresql/13/ddl-priv
https://postgrespro.com/docs/postgresql/13/sql-grant

4

Privileges

Tablespaces,
databases, schemas

Sequences
SELECT currval
UPDATE nextval setval
USAGE currval nextval

database

schema pg_temp

table
space tabletableobject

CREATE
USAGE

CREATE

tabletableobject

TEMPORARY

CREATE

CONNECT

Sequences have a somewhat unexpected set of privileges. They serve to
allow or restrict access to the three control functions.
For tablespaces, there is a CREATE privilege that allows the creation of
objects in this tablespace.
For databases, the CREATE privilege allows you to create schemas in this
database, and for a schema, the CREATE privilege allows you to create
objects in this schema.
Since the exact name of the schema for temporary objects is unknown in
advance, the privilege to create temporary tables has been moved to the
database level (TEMPORARY).
The USAGE schema privilege allows access to objects in this schema.
The CONNECT database privilege allows connection to this database.

5

Role categories

Superusers
full access to all objects, no checks performed

Owners
access within privileges
(initially receives all privileges)
actions that are not regulated by privileges, such as
deleting objects, granting and revoking privileges, etc.

Other roles
access exclusively within the granted privileges

Generally speaking, a role’s ability to access an object is defined by the
role's privileges. However, there are three categories of roles that function
differently in that regard.
1. Roles with the superuser attribute are the most straightforward: they can
do anything and bypass all access control checks.
2. The owner of an object immediately receives a full set of privileges for the
object. Technically, these privileges can be revoked, but the owner always
retains inherent rights to the object that are not regulated by any privileges.
In particular, the owner can grant and revoke privileges (including to and
from themselves), delete the object, etc.
3. All other roles have access to the object only as far as the privileges
granted to them allow it.

6

Privilege management

Granting privileges
alice=> GRANT privileges ON object TO bob;

the same privilege can be independently granted by multiple roles

Revoking privileges
alice=> REVOKE privileges ON object FROM bob;

alice bobprivileges
on an object

The owner of an object (and the superuser) has the right to grant and
revoke privileges on the object.
The syntax of the GRANT and REVOKE commands is quite complex. You
can specify both individual and all possible privileges, both individual objects
and groups of objects included in certain schemas, etc.
https://postgrespro.com/docs/postgresql/13/sql-grant
https://postgrespro.com/docs/postgresql/13/sql-revoke

Privileges

student=#	CREATE	DATABASE	access_privileges;

CREATE	DATABASE

student=#	\c	access_privileges

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

In	this	example,	Alice	will	own	several	objects	in	her	schema.

student=#	CREATE	ROLE	alice	LOGIN;

CREATE	ROLE

student=#	CREATE	SCHEMA	alice;

CREATE	SCHEMA

student=#	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	alice;

GRANT

student=#	\c	-	alice

You	are	now	connected	to	database	"access_privileges"	as	user	"alice".

Alice	creates	two	tables.

alice=>	CREATE	TABLE	t1(n	integer);

CREATE	TABLE

alice=>	CREATE	TABLE	t2(n	integer,	m	integer);

CREATE	TABLE

The	second	role,	Bob,	will	try	to	access	Alice’s	objects.

alice=>	\c	-	student

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

student=#	CREATE	ROLE	bob	LOGIN;

CREATE	ROLE

Bob	tries	to	access	t1.

student$	psql	-U	bob	-d	access_privileges

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	schema	alice
LINE	1:	SELECT	*	FROM	alice.t1;
																						^

Why	does	Bob	get	the	error?

Bob	has	no	right	to	access	the	table,	since	he	is	not	a	superuser,	not	the	owner	of	the	schema,	and	does	not	have	the
required	privileges.

student=#	\dn+	alice

																		List	of	schemas
	Name		|		Owner		|	Access	privileges		|	Description	
-------+---------+--------------------+-------------
	alice	|	student	|	student=UC/student+|	
							|									|	alice=UC/student			|	
(1	row)

In	each	access	privileges	row	is	a	role,	its	privileges	and	the	user	who	granted	them:

role=privileges/granter

Privilege	names	are	denoted	by	single	letters.	Schema	privileges:

U	=	usage
C	=	create

Alice	must	grant	Bob	access	to	her	schema.

student=#	\c	-	alice

You	are	now	connected	to	database	"access_privileges"	as	user	"alice".

alice=>	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	bob;

WARNING:		no	privileges	were	granted	for	"alice"
GRANT

Why	couldn’t	Alice	grant	the	privilege?

Because	Alice	does	not	own	the	schema.

alice=>	\dn+	alice

																		List	of	schemas
	Name		|		Owner		|	Access	privileges		|	Description	
-------+---------+--------------------+-------------
	alice	|	student	|	student=UC/student+|	
							|									|	alice=UC/student			|	
(1	row)

Make	Alice	the	owner:

alice=>	\c	-	student

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

student=#	ALTER	SCHEMA	alice	OWNER	TO	alice;

ALTER	SCHEMA

student=#	\dn+	alice

																	List	of	schemas
	Name		|	Owner	|	Access	privileges	|	Description	
-------+-------+-------------------+-------------
	alice	|	alice	|	alice=UC/alice				|	
(1	row)

Now,	Alice	can	grant	access	to	Bob:

student=#	\c	-	alice

You	are	now	connected	to	database	"access_privileges"	as	user	"alice".

alice=>	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	bob;

GRANT

Bob	tries	to	access	the	table	again:

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	table	t1

What’s	the	problem	this	time?

Bob	has	access	to	the	schema,	but	not	to	the	table.

bob=>	\dp	alice.t1

																												Access	privileges
	Schema	|	Name	|	Type		|	Access	privileges	|	Column	privileges	|	Policies	
--------+------+-------+-------------------+-------------------+----------
	alice		|	t1			|	table	|																			|																			|	
(1	row)

The	empty	access	privileges	field	means	that	the	owner	has	the	full	set	of	privileges,	and	nobody	else	has	any.

Alice	must	grant	Bob	the	right	to	read	the	table:

alice=>	GRANT	SELECT	ON	t1	TO	bob;

GRANT

Let’s	see	how	the	privileges	have	changed:

alice=>	\dp	t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=r/alice									|																			|	
(1	row)

The	empty	field	has	filled	up,	showing	that	Alice	has	the	full	set	of	privileges.	Below	are	denotations	for	table	privileges
(some	are	not	as	obvious	as	the	others):

a	=	insert
r	=	select
w	=	update
d	=	delete
D	=	truncate
x	=	reference
t	=	trigger

Finally,	Bob	can	access	the	table:

bob=>	SELECT	*	FROM	alice.t1;

	n	

(0	rows)

But	he	still	cannot	add	row	into	it:

bob=>	INSERT	INTO	alice.t1	VALUES	(42);

ERROR:		permission	denied	for	table	t1

Some	privileges	can	be	granted	for	specific	columns:

alice=>	GRANT	INSERT(n,m)	ON	t2	TO	bob;

GRANT

alice=>	GRANT	SELECT(m)	ON	t2	TO	bob;

GRANT

alice=>	\dp	t2

																												Access	privileges
	Schema	|	Name	|	Type		|	Access	privileges	|	Column	privileges	|	Policies	
--------+------+-------+-------------------+-------------------+----------
	alice		|	t2			|	table	|																			|	n:															+|	
								|						|							|																			|			bob=a/alice				+|	
								|						|							|																			|	m:															+|	
								|						|							|																			|			bob=ar/alice				|	
(1	row)

Now,	Bob	can	add	rows	into	t2:

bob=>	INSERT	INTO	alice.t2(n,m)	VALUES	(1,2);

INSERT	0	1

And	can	only	read	one	column:

bob=>	SELECT	*	FROM	alice.t2;

ERROR:		permission	denied	for	table	t2

bob=>	SELECT	m	FROM	alice.t2;

	m	

	2
(1	row)

If	necessary,	Alice	can	grant	Bob	all	the	privileges,	without	the	need	to	list	them	individually.

alice=>	GRANT	ALL	ON	t1	TO	bob;

GRANT

alice=>	\dp	t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=arwdDxt/alice			|																			|	
(1	row)

Now,	Bob	can	do	anything	with	the	table.	For	example,	delete	rows:

bob=>	DELETE	FROM	alice.t1;

DELETE	0

Maybe,	drop	the	whole	table?

bob=>	DROP	TABLE	alice.t1;

ERROR:		must	be	owner	of	table	t1

Only	the	table	owner	(or	the	superuser)	can	delete	a	table.	There	is	no	special	privilege	to	allow	this.

8

Group privileges

A role gets the privileges of the group roles it is a member of
the INHERIT attribute makes privileges inherited automatically
with the NOINHERIT attribute, an explicit transition of privileges with the
SET ROLE command is required

The pseudo-role public
implicitly includes all other roles

A role can receive privileges to access an object not only directly, but also
from group roles in which it is included. In order to simplify administration,
you can grant the necessary set of privileges to a group role and then
include users into that role, providing them with the entire set of privileges
at once. A group role can be viewed as a privilege in itself, and group
management is done by the same GRANT and REVOKE commands as
privilege management.
A role with the INHERIT attribute (on by default) will automatically have the
privileges of all the groups it belongs to. This also applies to the pseudo-role
public, which implicitly includes all roles.

If a role is created with the NOINHERIT attribute explicitly added, then it will
have to use the SET ROLE command to switch to the group role in order to
benefit from its privileges. In this case, all actions will be performed on
behalf of the group role (for example, the group role will own any created
objects).
https://postgrespro.com/docs/postgresql/13/role-membership

9

Default roles

pg_signal_backend — terminate sessions and cancel queries

pg_read_all_settings — read configuration parameters

pg_read_all_stats — access statistics

pg_stat_scan_tables — access statistics that block access

pg_read_server_iles — read files on the server

pg_write_server_iles — write files on the server

pg_execute_server_programs — run programs on the server

pg
_m

on
ito

r

PostgreSQL has a number of default roles that possess special privileges
required to perform tasks that usually can only be performed by a superuser.
The last three roles were first added in PostgreSQL 11.
A complete list of all roles, including default system roles, can be viewed in
psql with the \duS command.
https://postgrespro.com/docs/postgresql/13/default-roles
Similarly, custom group roles can be created, for example, to manage
backups.

Group	privileges

Alice	grants	public	the	privilege	to	modify	t2:

alice=>	GRANT	UPDATE	ON	t2	TO	public;

GRANT

alice=>	\dp	t2

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t2			|	table	|	alice=arwdDxt/alice+|	n:															+|	
								|						|							|	=w/alice												|			bob=a/alice				+|	
								|						|							|																					|	m:															+|	
								|						|							|																					|			bob=ar/alice				|	
(1	row)

The	empty	role	(left	from	the	=	sign)	represents	public.

Check	if	Bob	can	use	the	privilege.

bob=>	UPDATE	alice.t2	SET	n	=	n	+	1;

ERROR:		permission	denied	for	table	t2

Why	the	error?

Before	updating	t2,	required	rows	need	to	be	selected,	and	to	do	that,	the	role	must	have	the	privilege	to	read	the	data	(at
least	the	column	n	from	the	query).	Bob,	however,	may	only	read	the	column	m.

alice=>	GRANT	SELECT	ON	t2	TO	bob;

GRANT

alice=>	\dp	t2

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t2			|	table	|	alice=arwdDxt/alice+|	n:															+|	
								|						|							|	=w/alice											+|			bob=a/alice				+|	
								|						|							|	bob=r/alice									|	m:															+|	
								|						|							|																					|			bob=ar/alice				|	
(1	row)

Now,	Bob	can	update	the	table:

bob=>	UPDATE	alice.t2	SET	n	=	n	+	1;

UPDATE	1

11

Right to re-grant

Granting privileges with the right to re-grant
alice=> GRANT privileges ON object TO bob WITH GRANT OPTION;

Revoking privileges
alice=> REVOKE privileges ON object FROM bob CASCADE;

Revoking the right to re-grant
alice=> REVOKE GRANT OPTION FOR
 privileges ON object FROM bob CASCADE;

bob
charlie

alice privileges

dave

privileges

privileges

required
if the privilege
was granted
to other roles

When granting certain privileges to a role, you can allow the role to grant (or
revoke) these privileges to other roles down the line. This is done with the
GRANT ... WITH GRANT OPTION command (a similar construction WITH
ADMIN OPTION for attributes was discussed in the topic “Roles” before).
If a role uses this right to re-grant, a hierarchy of roles is formed.
Privileges are revoked with the REVOKE command. A role can revoke only
those privileges that it has granted to others itself. In the example shown on
the slide, alice cannot revoke the privilege directly from charlie or
dave.

However, if the privilege is revoked from bob, it will be automatically
revoked from all the roles down the line in the hierarchy. This requires the
CASCADE keyword (if the hierarchy is not empty, then attempting to revoke
without the CASCADE keyword will return an error).
The right to re-grant can be revoked without revoking the privilege itself.
This is done with the REVOKE GRANT OPTION FOR command. The
CASCADE keyword works here similarly to when revoking a privilege.

12

Question

public

Alice granted the privileges on table T to Bob.
If Alice runs the command
REVOKE ALL ON T FROM bob CASCADE,
what privileges will Charlie and Dave have?

alice bobselect, update on T

select on T

dave

charlie

select on T

update on T

Both Charlie and Dave will end up with the read privilege that they received
from public. All privileges granted by Bob to other roles will be revoked.

Transferring	privileges

Create	a	new	role	for	Charlie	and	let	Bob	grant	Charlie	the	privileges	for	t1,	which	is	owned	by	Alice.

alice=>	\c	-	student

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

student=#	CREATE	ROLE	charlie	LOGIN;

CREATE	ROLE

Bob	has	full	access	to	t1:

bob=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=arwdDxt/alice			|																			|	
(1	row)

But	he	cannot	transfer	the	privileges	to	Charlie:

bob=>	GRANT	SELECT	ON	alice.t1	TO	charlie;

WARNING:		no	privileges	were	granted	for	"t1"
GRANT

Alice	must	give	Bob	permission	to	do	that.

student=#	\c	-	alice

You	are	now	connected	to	database	"access_privileges"	as	user	"alice".

alice=>	GRANT	SELECT,UPDATE	ON	t1	TO	bob	WITH	GRANT	OPTION;

GRANT

alice=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=ar*w*dDxt/alice	|																			|	
(1	row)

The	asterisks	to	the	right	of	each	privilege	character	show	the	right	to	re-grant	them.

Now,	Bob	can	grant	the	privileges	to	Charlie,	including	the	right	to	re-grant	them:

bob=>	GRANT	SELECT	ON	alice.t1	TO	charlie	WITH	GRANT	OPTION;

GRANT

bob=>	GRANT	UPDATE	ON	alice.t1	TO	charlie;

GRANT

bob=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=ar*w*dDxt/alice+|																			|	
								|						|							|	charlie=r*w/bob					|																			|	
(1	row)

A	role	may	be	granted	the	same	privilege	by	multiple	other	roles.	Note	that	when	a	privilege	is	granted	by	a	superuser,	it
is	granted	on	behalf	of	the	object’s	owner:

alice=>	\c	-	student

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

student=#	GRANT	UPDATE	ON	alice.t1	TO	charlie;

GRANT

student=#	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=ar*w*dDxt/alice+|																			|	
								|						|							|	charlie=r*w/bob				+|																			|	
								|						|							|	charlie=w/alice					|																			|	
(1	row)

A	role	can	revoke	privileges	only	from	those	roles	it	itself	granted	them	to.	For	example,	Alice	cannot	revoke	the	privilege
to	re-grant	from	Charlie,	because	it	wasn’t	Alice	who	granted	that	privilege	to	Charlie	in	the	first	place.

student=#	\c	-	alice

You	are	now	connected	to	database	"access_privileges"	as	user	"alice".

alice=>	REVOKE	GRANT	OPTION	FOR	SELECT	ON	alice.t1	FROM	charlie;

REVOKE

No	error	is	returned,	but	no	privileges	are	revoked	either:

alice=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=ar*w*dDxt/alice+|																			|	
								|						|							|	charlie=r*w/bob				+|																			|	
								|						|							|	charlie=w/alice					|																			|	
(1	row)

At	the	same	time,	Alice	cannot	just	revoke	privileges	from	Bob	if	Bob	has	granted	them	to	someone	else:

alice=>	REVOKE	GRANT	OPTION	FOR	SELECT	ON	alice.t1	FROM	bob;

ERROR:		dependent	privileges	exist
HINT:		Use	CASCADE	to	revoke	them	too.

In	this	situation,	Alice	must	revoke	them	hierarchically.	This	is	done	with	the	CASCADE	keyword:

alice=>	REVOKE	GRANT	OPTION	FOR	SELECT	ON	alice.t1	FROM	bob	CASCADE;

REVOKE

alice=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=arw*dDxt/alice	+|																			|	
								|						|							|	charlie=w/bob						+|																			|	
								|						|							|	charlie=w/alice					|																			|	
(1	row)

Here,	Bob	lost	his	privilege	to	re-grant,	and	Charlie	lost	the	privilege	itself.

Privileges	can	be	revoked	hierarchically	in	a	similar	manner.

alice=>	REVOKE	SELECT	ON	alice.t1	FROM	bob	CASCADE;

REVOKE

alice=>	\dp	alice.t1

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=aw*dDxt/alice		+|																			|	
								|						|							|	charlie=w/bob						+|																			|	
								|						|							|	charlie=w/alice					|																			|	
(1	row)

14

Routines

The only privilege for functions and procedures
EXECUTE execution

Security features
SECURITY INVOKER executed with the calling role’s rights

(by default)

SECURITY DEFINER executed with the owner’s rights

The privilege EXECUTE allows users to execute routines (functions and
procedures).
The user on behalf of which the routine is executed is important. If a routine
is declared as a SECURITY INVOKER (by default), it is executed with the
rights of the user that executes it. In this case, the operators inside the
routine can access only those objects that the user has the rights to access.
On the other hand, if declared with the SECURITY DEFINER keyword, the
routine will use the rights of its owner. This is a way to allow certain users
perform certain actions on objects they personally have no access to.
https://postgrespro.com/docs/postgresql/13/sql-createfunction
https://postgrespro.com/docs/postgresql/13/sql-createprocedure

15

public role privileges

By default, the public role gets a number of privileges
for databases CONNECT (connect to databases)

TEMPORARY (create temporary tables)

for the public schema CREATE (create objects)
USAGE (access objects)

for pg_catalog USAGE (access objects)
and information_schema

for routines EXECUTE (run routines)

Convenient, but not really secure

By default, the pseudo-role public has a number of privileges (this means
that all roles get them):
● connecting and creating temporary tables for all databases,
● using the public schema and creating objects in it,
● using schemas pg_catalog and information_schema,
● executing all functions and procedures.
(In PostgreSQL 15, the public role loses the right to create objects.)
Such behavior may be undesirable. In this case, you must explicitly revoke
some of the privileges from public. You can also do so in the template
database template1, so that the changes persist in any newly created
databases. However, revoking routine rights demands the use of the default
privileges mechanism, which will be discussed below.

Subroutines

Alice	creates	a	simple	function	that	returns	the	number	of	rows	in	the	table	t1:

alice=>	CREATE	FUNCTION	foo()	RETURNS	bigint	AS	$$
		SELECT	count(*)	FROM	t1;
$$	LANGUAGE	sql;

CREATE	FUNCTION

alice=>	INSERT	INTO	t1	VALUES	(1);

INSERT	0	1

alice=>	SELECT	foo();

	foo	

			1
(1	row)

The	public	pseudo-role	is	automatically	granted	the	EXECUTE	privilege	for	any	created	function.	This	is	why,	for	example,
Bob	may	immediately	execute	the	function	created	by	Alice.

This	is	partially	kept	in	check	by	the	default	(or	explicitly	added)	keyword	SECURITY	INVOKER	that	makes	the	function
execute	with	the	rights	of	the	user	who	executes	it:

bob=>	SET	search_path	=	public,	alice;

SET

bob=>	SELECT	foo();

ERROR:		permission	denied	for	table	t1
CONTEXT:		SQL	function	"foo"	statement	1

Therefore,	Bob	cannot	access	any	objects	he	does	not	have	the	privileges	to	access.

Since	the	function	does	not	explicitly	define	the	schema	for	the	table	t1,	Bob	can	create	his	own	t1,	and	the	function	will
work	with	the	table	first	found	in	the	search	path:

bob=>	CREATE	TABLE	t1(n	numeric);

CREATE	TABLE

bob=>	SELECT	foo();

	foo	

			0
(1	row)

alice=>	SELECT	foo();

	foo	

			1
(1	row)

A	function	can	also	be	made	to	run	with	the	rights	of	its	creator	(SECURITY	DEFINER):

alice=>	ALTER	FUNCTION	foo()	SECURITY	DEFINER;

ALTER	FUNCTION

In	this	case,	the	function	will	always	run	on	behalf	of	the	role	that	has	created	it.	So,	Bob	can	drop	his	table:

bob=>	DROP	TABLE	t1;

DROP	TABLE

And	now	have	access	to	Alice’s:

bob=>	SELECT	foo();

	foo	

			1
(1	row)

This	is	where	you	really	have	to	keep	an	eye	on	what	privileges	are	granted	to	whom.	A	good	idea	is	to	revoke	the
EXECUTE	privilege	from	public	and	grant	it	explicitly	to	roles	that	need	it.

alice=>	REVOKE	EXECUTE	ON	ALL	FUNCTIONS	IN	SCHEMA	alice	FROM	public;

REVOKE

bob=>	SELECT	foo();

ERROR:		permission	denied	for	function	foo

17

Default privileges

A way to grant or revoke privileges when creating an object
ALTER DEFAULT PRIVILEGES
[FOR ROLE target_roles_list]
[IN SCHEMA schema]
 GRANT privileges ON object_class TO role;

ALTER DEFAULT PRIVILEGES
 REVOKE privileges ON object_class FROM role;

REVOKE
EXECUTE ON ROUTINES

FROM public

You can define additional privileges to be granted or revoked when creating
an object. This is done with the ALTER DEFAULT PRIVILEGES command.
The default privileges mechanism triggers when a target_role (the current
user by default) creates an object that belongs to the specified object_class
(i. e. a table or a function) in the specified schema (or in any schema by
default). The GRANT clause here means that the created object should be
granted the specified privileges for the specified role. The REVOKE clause,
on the other hand, is used to revoke the privileges.
The default privileges mechanism grants public the privilege to execute
routines when they are created. To avoid this behavior, run the command
ALTER DEFAULT PRIVILEGES
FOR ROLE …
REVOKE EXECUTE ON ROUTINES FROM public;
Note that under the FOR ROLE clause, all the roles that can create routines
must be listed.
https://postgrespro.com/docs/postgresql/13/sql-alterdefaultprivileges

Default	privileges

To	avoid	having	the	public	pseudo-role	acquiring	the	right	to	execute	any	newly	created	function,	we	need	to	revoke	this
privilege	from	it.

Check	the	current	configuration:

alice=>	\ddp

									Default	access	privileges
	Owner	|	Schema	|	Type	|	Access	privileges	
-------+--------+------+-------------------
(0	rows)

The	table	looks	empty,	but	we	already	know	that	empty	fields	represent	the	default	values.	To	see	the	values,	check	the
documentation	or	use	the	following	command:

alice=>	SELECT	acldefault('function',	'alice'::regrole);

								acldefault								

	{=X/alice,alice=X/alice}
(1	row)

This	is	the	value	that	allows	public	to	execute	functions.	Revoke	it:

alice=>	ALTER	DEFAULT	PRIVILEGES
REVOKE	EXECUTE	ON	ROUTINES	FROM	public;

ALTER	DEFAULT	PRIVILEGES

Now	the	field	is	no	longer	empty,	and	the	execute	privilege	for	public	is	gone:

alice=>	\ddp

											Default	access	privileges
	Owner	|	Schema	|			Type			|	Access	privileges	
-------+--------+----------+-------------------
	alice	|								|	function	|	alice=X/alice
(1	row)

Now,	when	Alice	creates	new	functions,	Bob	will	no	longer	be	able	to	execute	them:

alice=>	CREATE	FUNCTION	bar()	RETURNS	integer	AS	$$
SELECT	1;
$$	LANGUAGE	sql	SECURITY	DEFINER;

CREATE	FUNCTION

bob=>	SELECT	bar();

ERROR:		permission	denied	for	function	bar

19

Example 1

alice create, usage

alice

bob

anderson create, usage

anderson

select
bob create, usage

select

Access control mechanisms (roles, attributes and privileges, and schemas)
are flexible enough to let you organize any sort of operations conveniently.

Here’s a simple example.
Professor Anderson and his students Alice and Bob are engaged in
research. They store their research data in a database.
On the university database server, the administrator created a user and a
schema under the same name for each of them. The default research path
was never modified. No group roles are used.
Each user owns the objects they create in their schemas. In addition to that,
Alice and Bob grant access to some of their tables to Professor Anderson so
that he can review their data.

20

Example 2

inventory

usage

inv

fin

financials

usage

picker

carry

bigboss

rich

sterling

A more complex example.
A dedicated DB server runs an ERP system. It comprises an inventory
module and a financial module.
Each module has a schema (inv and fin) and a group role (inventory
and financials). The group roles own all objects in their corresponding
schemas.
The warehouse employs Mr Picker and Mr Putter. Each have a user
included into inventory.

The financial department employs Mrs Rich and Mr Sterling. Each have a
user included into financials.

There is also a user for the CEO included into both roles on the off chance
that he'd try and use the system.

21

Example 3

app usage

application

support select on all tables

application
server

web users

User authentication is often set up on an application server outside of the
actual database. With thousands of users and online sign-up functionality,
it is more efficient to offload user management from the database to an
external service.
In this case, the application server connects to the database under one pre-
configured role, and the information about the user is translated as context,
if necessary.
But even in this case, the database still needs some roles: A tech support
role, for example, that will need the rights to read main server tables to
troubleshoot possible issues.

22

Takeaways

Privileges define the access rights of roles to objects
Roles, attributes and privileges, and schemas together form
a flexible mechanism that allows you to set up access control
in different ways

easy to allow access to everything for everyone
can restrict access heavily, if necessary

23

Practice

Set up privileges so that some users have full access to the tables,
while others can only query, but not modify the data.
1. Create a new database and two roles: writer and reader.
2. Revoke all privileges for the schema public from the role public,

grant both privileges to writer, and only the usage privilege to
reader.

3. Set up the default privileges so that reader gets read access to the
tables owned by writer in the schema public.

4. Create users w1 in the writer group and r1 in the reader group.
5. As writer, create a table.
6. Verify that r1 has read-only access to the table, and w1 has full access

to it, including the ability to remove it.

1.	Database	and	roles

=>	CREATE	DATABASE	access_privileges;

CREATE	DATABASE

=>	CREATE	USER	writer;

CREATE	ROLE

=>	CREATE	USER	reader;

CREATE	ROLE

2.	Privileges

=>	\c	access_privileges

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

=>	REVOKE	ALL	ON	SCHEMA	public	FROM	public;

REVOKE

=>	GRANT	ALL	ON	SCHEMA	public	TO	writer;

GRANT

=>	GRANT	USAGE	ON	SCHEMA	public	TO	reader;

GRANT

3.	Default	privileges

=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	writer
IN	SCHEMA	public
GRANT	SELECT	ON	TABLES	TO	reader;

ALTER	DEFAULT	PRIVILEGES

4.	Users

Writer	role:

=>	CREATE	ROLE	w1	LOGIN	IN	ROLE	writer;

CREATE	ROLE

The	IN	ROLE	keyword	immediately	adds	the	new	role	into	the	specified	one.	It	is	equivalent	to:

CREATE	ROLE	w1	LOGIN;

GRANT	writer	TO	w1;

Reader	role:

=>	CREATE	ROLE	r1	LOGIN	IN	ROLE	reader;

CREATE	ROLE

5.	Table

=>	\c	-	writer

You	are	now	connected	to	database	"access_privileges"	as	user	"writer".

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

6.	Verification

w1	can	write:

=>	\c	-	w1

You	are	now	connected	to	database	"access_privileges"	as	user	"w1".

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

r1	can	read	the	table:

=>	\c	-	r1

You	are	now	connected	to	database	"access_privileges"	as	user	"r1".

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

But	cannot	modify:

=>	UPDATE	t	SET	n	=	n	+	1;

ERROR:		permission	denied	for	table	t

w1	can	drop	the	table:

=>	\c	-	w1

You	are	now	connected	to	database	"access_privileges"	as	user	"w1".

=>	DROP	TABLE	t;

DROP	TABLE

PostgreSQL	14	adds	a	pre-configured	role	pg_read_all_data	that	automatically	has	read	access	to	all	data.

24

Practice+

1. Create the role alice. Create a table.

Grant alice the privilege to read the table and the privilege to
change it with the right to re-grant.

2. View the access rights to the created table using the
table_privileges view in the information schema.
Compare with the \dp command output.

3. View the access rights to the created table using the
has_table_privileges function.

2. Other views of the information schema:
https://postgrespro.com/docs/postgresql/13/information-schema

3. Other functions for checking privileges:
https://postgrespro.com/docs/postgresql/13/functions-info#FUNCTIONS-INF
O-ACCESS-TABLE

1.	Role,	table,	privileges

=>	CREATE	DATABASE	access_privileges;

CREATE	DATABASE

=>	CREATE	USER	alice;

CREATE	ROLE

=>	\c	access_privileges

You	are	now	connected	to	database	"access_privileges"	as	user	"student".

=>	CREATE	TABLE	test(id	integer);

CREATE	TABLE

=>	GRANT	SELECT	ON	test	TO	alice;

GRANT

=>	GRANT	UPDATE	ON	test	TO	alice	WITH	GRANT	OPTION;

GRANT

2.	Privileges	in	the	information	schema

=>	SELECT	grantee,	grantor,	privilege_type,	is_grantable
FROM	information_schema.table_privileges
WHERE	table_name	=	'test';

	grantee	|	grantor	|	privilege_type	|	is_grantable	
---------+---------+----------------+--------------
	student	|	student	|	INSERT									|	YES
	student	|	student	|	SELECT									|	YES
	student	|	student	|	UPDATE									|	YES
	student	|	student	|	DELETE									|	YES
	student	|	student	|	TRUNCATE							|	YES
	student	|	student	|	REFERENCES					|	YES
	student	|	student	|	TRIGGER								|	YES
	alice			|	student	|	SELECT									|	NO
	alice			|	student	|	UPDATE									|	YES
(9	rows)

The	psql	command	displays	the	same	information	differently:

=>	\dp	test

																															Access	privileges
	Schema	|	Name	|	Type		|				Access	privileges				|	Column	privileges	|	Policies	
--------+------+-------+-------------------------+-------------------+----------
	public	|	test	|	table	|	student=arwdDxt/student+|																			|	
								|						|							|	alice=rw*/student							|																			|	
(1	row)

3.	Functions	to	check	privileges

=>	SELECT	has_table_privilege('alice',	'test',	'SELECT')	AS	has_select,
										has_table_privilege('alice',	'test',	'UPDATE')	AS	has_update,
										has_table_privilege('alice',	'test',	'DELETE')	AS	has_delete;

	has_select	|	has_update	|	has_delete	
------------+------------+------------
	t										|	t										|	f
(1	row)

