

Basic tools
Using psql

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Launching psql and connecting to the database
Getting help
Working with psql
Configuration

3

Purpose of psql

Terminal client for working with PostgreSQL
Comes with the DBMS
Used by administrators and developers for interactive work and
script execution

There are other third-party tools available, but they are not considered in the
scope of the course.

The psql terminal client will be used throughout the course. Those who are
used to working with GUI tools may find it uncomfortable at first.
Nevertheless, it is very powerful if you get used to it.

This is the only client supplied with the DBMS. The knowledge of psql will be
useful to both developers and DB administrators, regardless of which tool
they choose to work with at the end of the day.

https://postgrespro.com/docs/postgresql/13/app-psql.html

4

Connection

Launch
$ psql -d database -U user -h node -p port

New connection in psql
=>\c[onnect] database user node port

Information about the current connection
=> \conninfo

When starting psql, you need to specify the connection parameters.
The required connection parameters include: database name, user name,
server name, port number. If these parameters are not specified, psql will try
to connect using the default values:
● database — matches the user name,
● user — matches the OS user name,
● node — local connection,
● port — usually 5432.
To make a new connection without leaving psql, run the \connect
command.
The \conninfo command provides information about the current
connection.
Additional information about connection configuration options:

https://postgrespro.com/docs/postgresql/13/libpq-envars.html
https://postgrespro.com/docs/postgresql/13/libpq-pgservice.html
https://postgrespro.com/docs/postgresql/13/libpq-pgpass.html

5

Getting help

In the OS command line
$ psql --help
$ man psql

In psql
=> \? list of psql commands
=> \? variables psql variables
=> \h[elp] list of SQL commands
=> \h command syntax of the SQL command
=> \q quit

Reference information on psql can be obtained not only
from the documentation, but also from within the system directly.

psql with the --help key displays a startup help message. If the
documentation package is installed with the system, you can view the
manual for psql using the man psql command.

psql can execute SQL commands as well as its own commands.

Inside psql, you can get a list and a brief description of all psql commands.
All psql commands start with a backslash.

The \help command provides a list of SQL commands that the server
supports, as well as the syntax of an SQL command (if specified).

Another command that is useful to know, although it has nothing to do with
the help, is \q, used to exit psql. Alternatively, you can also use the exit
and quit commands to quit.

Executing	SQL	commands	and	formatting	the	output

Run	psql:

student$	psql	

Check	the	connection:

=>	\conninfo

You	are	connected	to	database	"student"	as	user	"student"	via	socket	in	"/var/run/postgresql"	at	port	"5432".

Using	the	default	parameters,	we’ve	connected	to	the	student	database	as	the	student	user.	You’ll	learn	more	about	databases	and	users	in	later	modules.

The	\c[onnect]	command	creates	a	new	connection	without	leaving	psql.

psql	can	give	output	in	different	formats.	Here	are	some	of	them:

aligned,
non-aligned,
extended.

SQL	commands,	unlike	psql	ones,	may	span	multiple	rows.	To	send	an	SQL	command,	end	it	with	a	semicolon:

=>	SELECT	schemaname,	tablename,	tableowner	
FROM	pg_tables	
LIMIT	5;

	schemaname	|							tablename							|	tableowner	
------------+-----------------------+------------
	pg_catalog	|	pg_statistic										|	postgres
	pg_catalog	|	pg_type															|	postgres
	pg_catalog	|	pg_foreign_table						|	postgres
	pg_catalog	|	pg_authid													|	postgres
	pg_catalog	|	pg_statistic_ext_data	|	postgres
(5	rows)

The	aligned	format	is	the	default.	It	sets	each	column’s	width	based	on	its	contents.	There’s	also	the	header	and	the	total	row.

psql	commands	to	switch	display	modes:

\a	—	switches	between	aligned	and	non-aligned,
\t	—	switches	the	header	and	the	total	row	on	and	off.

Let’s	switch	to	non-aligned,	turn	the	header	and	the	total	row	off,	and	use	a	whitespace	as	the	separator:

=>	\t	\a

Tuples	only	is	on.
Output	format	is	unaligned.

=>	\pset	fieldsep	'	'

Field	separator	is	"	".

=>	SELECT	schemaname,	tablename,	tableowner	FROM	pg_tables	LIMIT	5;

pg_catalog	pg_statistic	postgres
pg_catalog	pg_type	postgres
pg_catalog	pg_foreign_table	postgres
pg_catalog	pg_authid	postgres
pg_catalog	pg_statistic_ext_data	postgres

=>	\t	\a

Tuples	only	is	off.
Output	format	is	aligned.

The	extended	format	is	convenient	for	displaying	multiple	columns	for	one	or	several	records:

=>	\x

Expanded	display	is	on.

=>	SELECT	*	FROM	pg_tables	WHERE	tablename	=	'pg_class';

-[RECORD	1]-----------
schemaname		|	pg_catalog
tablename			|	pg_class
tableowner		|	postgres
tablespace		|	
hasindexes		|	t
hasrules				|	f
hastriggers	|	f
rowsecurity	|	f

=>	\x

Expanded	display	is	off.

The	extended	mode	can	be	set	only	for	a	single	query.	To	do	that,	add	\gx	at	the	end	instead	of	a	semicolon:

=>	SELECT	*	FROM	pg_tables	WHERE	tablename	=	'pg_proc'	\gx

-[RECORD	1]-----------
schemaname		|	pg_catalog
tablename			|	pg_proc
tableowner		|	postgres
tablespace		|	
hasindexes		|	t
hasrules				|	f
hastriggers	|	f
rowsecurity	|	f

You	can	see	all	the	formatting	options	by	using	the	\pset	command.	If	used	with	no	parameters,	it	will	display	the	parameters	currently	set:

=>	\pset

border																			1
columns																		0
csv_fieldsep													','
expanded																	off
fieldsep																	'	'
fieldsep_zero												off
footer																			on
format																			aligned
linestyle																ascii
null																					''
numericlocale												off
pager																				1
pager_min_lines										0
recordsep																'\n'
recordsep_zero											off
tableattr																
title																				
tuples_only														off
unicode_border_linestyle	single
unicode_column_linestyle	single
unicode_header_linestyle	single

Interfacing	with	the	OS

psql	can	run	shell	commands:

=>	\!	pwd

/home/student

It	can	set	environment	variables:

=>	\setenv	TEST	Hello

=>	\!	echo	$TEST

Hello

It	can	write	output	into	a	file	with	the	\o[ut]	command:

=>	\o	dba1_log

=>	SELECT	schemaname,	tablename,	tableowner	FROM	pg_tables	LIMIT	5;

There’s	nothing	on	the	screen!	Let’s	check	the	file:

=>	\!	cat	dba1_log

	schemaname	|							tablename							|	tableowner	
------------+-----------------------+------------
	pg_catalog	|	pg_statistic										|	postgres
	pg_catalog	|	pg_type															|	postgres
	pg_catalog	|	pg_foreign_table						|	postgres
	pg_catalog	|	pg_authid													|	postgres
	pg_catalog	|	pg_statistic_ext_data	|	postgres
(5	rows)

Let’s	get	set	the	output	to	back	to	the	screen:

=>	\o

Executing	scripts

Another	way	to	run	a	query	is	with	the	\g	command.	You	can	specify	parameters	for	this	query	alone	in	the	brackets.	Note	the	file	name	to	output	into	at	the
end	of	the	command.

=>	SELECT	format('SELECT	count(*)	FROM	%I;',	tablename)
FROM	pg_tables	LIMIT	3
\g	(tuples_only=on	format=unaligned)	dba1_log

Here	are	the	file	contents:

=>	\!	cat	dba1_log

SELECT	count(*)	FROM	pg_statistic;
SELECT	count(*)	FROM	pg_type;
SELECT	count(*)	FROM	pg_foreign_table;

You	can	reroute	the	output	to	the	OS	with	\g	|	cmd

We	can	run	the	commands	using	\i[nclude]:

=>	\i	dba1_log

	count	

			402
(1	row)

	count	

			411
(1	row)

	count	

					0
(1	row)

Other	ways	to	run	a	command	from	a	file:

psql	<	filename
psql	-f	filename

You	can	skip	creating	a	file	in	the	last	example	if	you	end	the	query	with	\gexec:

=>	SELECT	format('SELECT	count(*)	FROM	%I;',	tablename)
FROM	pg_tables	LIMIT	3
\gexec

	count	

			402
(1	row)

	count	

			411
(1	row)

	count	

					0
(1	row)

gexec	considers	the	contents	of	each	column	of	each	row	an	SQL-operator,	and	tries	to	execute	them	one	by	one.

psql	variables	and	control	structures

Not	unlike	shell,	psql	has	its	own	variables,	including	some	pre-defined	ones	(integral	to	psql).

Set	a	variable:

=>	\set	TEST	Hi!

Use	a	colon	to	get	its	value:

=>	\echo	:TEST

Hi!

Unset	a	value:

=>	\unset	TEST

=>	\echo	:TEST

:TEST

You	can	set	a	variable’s	value	as	a	query	output	using	the	’gset	command:

=>	SELECT	now()	AS	curr_time	\gset

=>	\echo	:curr_time

2024-03-07	13:48:29.961792+03

The	query	must	return	only	one	record.

If	used	with	no	parameters,	\set	displays	all	currently	set	variables	and	their	values:

=>	\set

AUTOCOMMIT	=	'on'
COMP_KEYWORD_CASE	=	'preserve-upper'
DBNAME	=	'student'
ECHO	=	'none'
ECHO_HIDDEN	=	'off'
ENCODING	=	'UTF8'
ERROR	=	'false'
FETCH_COUNT	=	'0'
HIDE_TABLEAM	=	'off'
HISTCONTROL	=	'none'
HISTFILE	=	'hist'
HISTSIZE	=	'500'
HOST	=	'/var/run/postgresql'
IGNOREEOF	=	'0'
LAST_ERROR_MESSAGE	=	''
LAST_ERROR_SQLSTATE	=	'00000'
ON_ERROR_ROLLBACK	=	'off'
ON_ERROR_STOP	=	'off'
PORT	=	'5432'
PROMPT1	=	'%/%R%x%#	'
PROMPT2	=	'%/%R%x%#	'
PROMPT3	=	'>>	'
QUIET	=	'off'
ROW_COUNT	=	'1'
SERVER_VERSION_NAME	=	'13.11	(Ubuntu	13.11-1.pgdg22.04+1)'
SERVER_VERSION_NUM	=	'130011'
SHOW_CONTEXT	=	'errors'
SINGLELINE	=	'off'
SINGLESTEP	=	'off'
SQLSTATE	=	'00000'
USER	=	'student'
VERBOSITY	=	'default'
VERSION	=	'PostgreSQL	13.11	(Ubuntu	13.11-1.pgdg22.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	11.3.0-1ubuntu1~22.04)	11.3.0,	64-bit'
VERSION_NAME	=	'13.11	(Ubuntu	13.11-1.pgdg22.04+1)'
VERSION_NUM	=	'130011'
curr_time	=	'2024-03-07	13:48:29.961792+03'

Conditional	operators	can	be	used	with	command	files.

For	example,	let’s	check	if	working_dir	has	a	value,	and	if	it	doesn’t,	set	it	as	the	current	directory	name.	The	following	command	checks	if	the	value	is	set	and
returns	a	Boolean	value:

=>	\echo	:{?working_dir}

FALSE

This	conditional	psql	operator	checks	if	the	variable	exists	and	sets	the	default	value	if	needed:

=>	\if	:{?working_dir}
			--	the	variable	is	defined
\else
			--	set	the	value	as	the	output	of	the	OS	command
			\set	working_dir	`pwd`
\endif

Now	we	can	be	sure	that	the	working_dir	variable	is	defined:

=>	\echo	:working_dir

/home/student

system	catalog	commands

There	is	a	set	of	commands	(mostly	starting	with	\d)	used	to	quickly	and	conveniently	collect	information	about	database	objects.

Example:

=>	\d	pg_tables

														View	"pg_catalog.pg_tables"
			Column				|		Type			|	Collation	|	Nullable	|	Default	
-------------+---------+-----------+----------+---------
	schemaname		|	name				|											|										|	
	tablename			|	name				|											|										|	
	tableowner		|	name				|											|										|	
	tablespace		|	name				|											|										|	
	hasindexes		|	boolean	|											|										|	
	hasrules				|	boolean	|											|										|	
	hastriggers	|	boolean	|											|										|	
	rowsecurity	|	boolean	|											|										|	

We	will	see	more	of	these	commands	later.

Configuring	psql

On	startup,	psql	runs	two	scripts	(if	they	exist):

first,	the	common	script	psqlrc,
next,	the	user	configuration	.psqlrc.

The	user	configuration	file	must	be	in	the	home	directory.	The	system	script’s	location	can	be	discovered	with	the	following	command:

student$	pg_config	--sysconfdir

/etc/postgresql-common

Neither	file	exists	by	default.

You	can	use	the	files	to	configure	your	session	parameters:

psql	prompt;
desired	page-by-page	output	viewing	application;
variables	to	store	frequently	used	commands.

For	example,	let’s	store	a	query	that	returns	5	largest	tables	in	a	variable	top5:

=>	\set	top5	'SELECT	tablename,	pg_total_relation_size(schemaname||''.''||tablename)	AS	bytes	FROM	pg_tables	ORDER	BY	bytes	DESC	LIMIT	5;'

Now	we	can	execute	the	query	by	just	typing:

=>	:top5

			tablename				|		bytes		
----------------+---------
	pg_depend						|	1130496
	pg_proc								|	1048576
	pg_rewrite					|		704512
	pg_attribute			|		671744
	pg_description	|		581632
(5	rows)

If	you	write	the	\set	command	into	the	~/.psqlrc	file,	the	top5	variable	will	be	available	immediately	after	psql	startup.

Thanks	to	readline	support,	psql	can	autocomplete	keywords	and	object	names,	and	also	stores	the	command	history.	The	name	and	the	size	of	the	history	file
are	set	by	HISTFILE	and	HISTSIZE	variables.

7

Takeaways

psql is a terminal client for working with PostgreSQL
Connection parameters are required at startup
Executes SQL and psql commands
Includes tools for interactive work, as well as for preparing and
executing scripts

8

Practice

1. Run psql and check the current connection information.
2. Output all rows of the pg_tables table.
3. Set the parameter less -XS to display output page by page,

then display pg_tables contents again.
4. The default prompt shows the name of the database. Configure

the prompt to display additional information about the user:
role@base=#

5. Configure psql to display the execution time for all commands.
Make sure that this setting is saved when you restart.

1. When starting psql, if you omit the connection parameters, the default
values will apply.

3. You can set the PSQL_PAGER environment variable in the .psqlrc file.
Use the \setenv command to set it. This will make the less -XS
parameter apply to only psql output. For all other OS commands, the OS
settings will be used (for example, from the .profile file).

4. Prompt customization is described in the documentation:

https://postgrespro.com/docs/postgresql/13/app-psql#APP-PSQL-PROMPTI
NG

5. The psql command to output the duration of a query execution can be
found in the PostgreSQL documentation or within psql itself with the \?
command.

1.	Running	psql	and	displaying	connection	information

student$	psql	

=>	\conninfo

You	are	connected	to	database	"student"	as	user	"student"	via	socket	in	"/var/run/postgresql"	at	port	"5432".

2.	pg_tables	table

Limit	the	output	to	5	rows.	Note	that	if	the	records	are	too	wide	to	fit	on	the	screen,	they	will	be	wrapped	to	new	lines.	This
makes	them	harder	to	read.

=>	SELECT	*	FROM	pg_tables	LIMIT	5;

	schemaname	|							tablename							|	tableowner	|	tablespace	|	hasindexes	|	hasrules	|	hastriggers	|	rowsecurity	
------------+-----------------------+------------+------------+------------+----------+-------------+-------------
	pg_catalog	|	pg_statistic										|	postgres			|												|	t										|	f								|	f											|	f
	pg_catalog	|	pg_type															|	postgres			|												|	t										|	f								|	f											|	f
	pg_catalog	|	pg_foreign_table						|	postgres			|												|	t										|	f								|	f											|	f
	pg_catalog	|	pg_authid													|	postgres			|	pg_global		|	t										|	f								|	f											|	f
	pg_catalog	|	pg_statistic_ext_data	|	postgres			|												|	t										|	f								|	f											|	f
(5	rows)

3.	Configuring	page	view	in	.psqlrc

student$	echo	"\setenv	PSQL_PAGER	'less	-XS'"	>>	~/.psqlrc

When	displaying	output	with	the	less	command,	you	can	use	the	up,	down,	left	and	right	keys	to	scroll.	The	h	command
display	the	help	file.	The	q	command	exits	the	display	mode.

4.	Configuring	the	prompt

To	add	role	information	to	the	prompt,	add	%n@	in	front	of	the	variables	PROMPT1	and	PROMPT2.

student$	echo	"\set	PROMPT1	'%n@%/%R%x%#	'"	>>	~/.psqlrc

student$	echo	"\set	PROMPT2	'%n@%/%R%x%#	'"	>>	~/.psqlrc

The	PROMPT1	variable	declares	the	prompt	for	the	first	row	of	the	query.	If	the	query	spans	several	rows,	every	row	after
the	first	will	start	with	the	prompt	defined	by	PROMPT2.	Both	variables	have	the	same	value	by	default,	but	you	can
configure	them	differently.	The	PROMPT3	variable	is	used	only	for	the	COPY	command.

5.	Displaying	SQL	command	execution	times

student$	echo	"\timing	on"	>>	~/.psqlrc

The	full	.psqlrc	file	will	look	like	this:

student$	cat	~/.psqlrc

\setenv	PSQL_PAGER	'less	-XS'
\set	PROMPT1	'%n@%/%R%x%#	'
\set	PROMPT2	'%n@%/%R%x%#	'
\timing	on

For	the	changes	to	take	effect,	you	need	to	relog	to	psql.

=>	\q

student$	psql	

After	relogging,	check:

the	prompt	(should	include	the	role	name),
how	the	query	for	pg_tables	is	displayed,
if	command	execution	times	are	displayed.

9

Practice+

1. Open a transaction and execute a command that ends with any
error. Make sure that no other commands can be executed inside
this transaction.

2. Set the ON_ERROR_ROLLBACK parameter to ON and make
sure that after the error, you can continue executing commands
inside the transaction.

1. To open a transaction, run the command
BEGIN;

2. Setting the ON_ERROR_ROLLBACK parameter to ON causes psql
to create a SAVEPOINT before each SQL command inside an open
transaction and, in case of an error, roll back to this savepoint.

https://postgrespro.com/docs/postgresql/13/sql-savepoint

1.	psql	and	in-transaction	errors

student$	psql	

The	psql	tool	autocommits	transactions	by	default,	so	each	SQL	command	is	executed	within	a	separate	transaction.

To	start	a	transaction	explicitly,	the	BEGIN	command	is	used:

student@student=#	BEGIN;

BEGIN

Note	that	the	psql	prompt	has	changed.	The	asterisk	character	shows	that	the	transaction	is	currently	open.

student@student=*#	CREATE	TABLE	t	(id	int);

CREATE	TABLE

Consider	that	we	have	made	a	typo	in	the	following	command:

student@student=*#	INSERTINTO	t	VALUES(1);

ERROR:		syntax	error	at	or	near	"INSERTINTO"
LINE	1:	INSERTINTO	t	VALUES(1);
								^

The	asterisk	will	change	to	an	exclamation	mark,	indicating	an	error.	Now,	rewrite	the	command:

student@student=!#	INSERT	INTO	t	VALUES(1);

ERROR:		current	transaction	is	aborted,	commands	ignored	until	end	of	transaction	block

But	PostgreSQL	cannot	roll	back	just	a	single	command,	so	it	terminates	and	rolls	back	the	whole	transaction.	To	continue,
we	must	send	a	command	that	says	that	the	transaction	is	complete.	It	can	be	either	COMMIT	or	ROLLBACK,	since	the
transaction	is	already	cancelled.

student@student=!#	COMMIT;

ROLLBACK

Creating	the	table	was	cancelled,	so	there	is	no	such	table	in	the	database:

student@student=#	SELECT	*	FROM	t;

ERROR:		relation	"t"	does	not	exist
LINE	1:	SELECT	*	FROM	t;
																						^

2.	The	ON_ERROR_ROLLBACK	variable

We	can	change	how	psql	behaves	here.

student@student=#	\set	ON_ERROR_ROLLBACK	on

Now,	before	every	transaction	command,	there	will	be	a	checkpoint	created.	In	case	of	an	error,	it	will	roll	back	to	the	last
checkpoint.	This	way,	transaction	commands	can	continue	executing.

student@student=#	BEGIN;

BEGIN

student@student=*#	CREATE	TABLE	t	(id	int);

CREATE	TABLE

student@student=*#	INSERTINTO	t	VALUES(1);

ERROR:		syntax	error	at	or	near	"INSERTINTO"
LINE	1:	INSERTINTO	t	VALUES(1);
								^

student@student=*#	INSERT	INTO	t	VALUES(1);

INSERT	0	1

student@student=*#	COMMIT;

COMMIT

student@student=#	SELECT	*	FROM	t;

	id	

		1
(1	row)

The	ON_ERROR_ROLLBACK	variable	can	be	set	to	interactive.	This	will	make	such	behavior	work	only	in	the	interactive
mode,	but	not	when	executing	scripts.

