Data Organization
System catalog

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

What is the system catalog and how to access it
System catalog objects and their locations
Object naming rules

Special data types

o)) PROFESSIONAL

System catalog Pos{gres

A set of tables and views describing all objects
in a database cluster
Schemas

primary schema: pg_catalog
alternative view: information_schema (the SQL standard)

SQL access

view: SELECT

update: CREATE, ALTER, DROP
psql access

quality-of-life commands

The system catalog is a collection of tables and views that describe all
database objects. It is metadata for the contents of the cluster.

https://postgrespro.com/docs/postgresqgl/13/catalogs

You can access this metadata using regular SQL queries. SELECT
commands can give a description of an object, and DDL (Data Definition
Language) commands let you add and modify objects.

All system catalog tables and views are located in the pg_catalog schema.
There is another schema, as defined by the SQL standard:
information_schema. It is more stable and portable than pg_catalog, but
does not reflect a number of specific features of PostgreSQL.

Client programs can read the contents of the system catalog and display it
to the user in a convenient way. For example, GUI-based development and
management environments usually come with a hierarchical object
navigation tool.

The psql client also offers a number of convenient built-in commands
specifically designed for working with the system catalog. Most of these
commands start with \d (as in “describe”). For the full list of commands and
their descriptions, see:

https://postgrespro.com/docs/postaresal/13/app-psql#APP-PSQL-META-CO
MMANDS

We will look at the most commonly used ones in the demo. The course
materials also include the catalogs.pdf file that features a diagram of the
main system catalog tables and related psgl commands.

Shared cluster objects Pogga’?“e“g

shared
cluster
objects

postgres [f

! object 173 ‘ object m ‘ object m ! object 173 object ||

,,,,,,,,,,,,

,,,,,,,,,,,,

Objects in
this database

*1 object m ‘ object m ‘ object m ‘ object m ‘ object m
catalo ublic schema catalol ublic
Pg_ g p! pg_ ¢} p!

In a database cluster, each database has its own set of system catalog
tables. However, there are several system catalog objects that are shared
between all cluster databases. The most obvious example is the list of the

databases themselves.

These tables are stored outside of any single database, but at the same
time they are accessible from any database within the cluster.

Naming rules Posjgres

Object (table, view) and column name prefixes

pg_database.datname

\ﬂ—/ \ﬂ_)

common prefix column prefix
for all objects (usually derived from

the object name)

Object names are always lowercase

All system catalog tables and views begin with the prefix “pg_". In order to

avoid potential conflicts, it is not recommended to create your own objects
starting with “pg_".

Column names have a three-letter prefix, which is usually derived from the
name of the table. There is no underscore after the prefix.

Object names are always stored in lowercase.
Example of a query for tablespaces:
SELECT * FROM pg_tablespace WHERE spcname='pg_global';

All pg_tablespace columns start with "spc", and the name of the tablespace
under the WHERE clause must be in lowercase.

Some system catalog objects

Create a database and some test objects:

=> CREATE DATABASE data_catalog;

CREATE DATABASE

=> \c data_catalog

You are now connected to database "data_catalog" as user "student".

=> CREATE TABLE employees(
id integer GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
name text,
manager integer

)i

CREATE TABLE

=> CREATE VIEW top_managers AS
SELECT * FROM employees WHERE manager IS NULL;

CREATE VIEW
We are familiar with some of the system catalog tables from the previous topic, namely, databases:
=> SELECT * FROM pg_database WHERE datname = 'data_catalog' \gx

[RECORD 1 J-rnnnmmmmmmmnn

oid | 16483
datname | data catalog
datdba | 16384
encoding | 6
datcollate | en_US.UTF-8
datctype | en_US.UTF-8
datistemplate | f
datallowconn | t
datconnlimit | -1
datlastsysoid | 13484
datfrozenxid | 478
datminmxid | 1
dattablespace | 1663

datacl |

And schemas:
=> SELECT * FROM pg_namespace WHERE nspname = 'public' \gx

-[RECORD 1]--
oid | 2200
nspname | public

nspowner | 10

nspacl | {postgres=UC/postgres,=UC/postgres}

pg_class is an important table that stores descriptions for multiple types of objects: tables, views, indexes, sequences. All these objects in PostgreSQL are called relations, thus the prefix “rel” in the column
names:

=> SELECT relname, relkind, relnamespace, relfilenode, relowner, reltablespace
FROM pg_class WHERE relname ~ '~(emp|top)';

relname | relkind | relnamespace | relfilenode | relowner | reltablespace
------------------ B T T e L L s ST TR
employees id seq | S | 2200 | 16484 | 16384 | 0
employees | r | 2200 | 16486 | 16384 | 0
employees_pkey | i | 2200 | 16492 | 16384 | 0
top_managers | v | 2200 | 0| 16384 | 0

(4 rows)

The object type is defined in the relkind column.

Naturally, not every column in pg_class will make sense for every object type. It is also more convenient to look at object IDs (relnamespace, relowner, etc.) instead of at object names directly. There are
system views that show the necessary data, for example:

=> SELECT schemaname, tablename, tableowner, tablespace
FROM pg_tables WHERE schemaname = 'public’;

schemaname | tablename | tableowner | tablespace
------------ B e LT e LR
public | employees | student |

(1 row)

SELECT *
FROM pg_views WHERE schemaname = 'public’;

schemaname | viewname | viewowner | definition

top_managers | student SELECT employees.id,
employees.name,

| |
| |
| | | employees.manager
| |
| |

+ b+ o+

FROM employees
WHERE (employees.manager IS NULL);

Using psql commands

psql has a toolkit for obtaining system catalog objects. The toolkit is a set of short commands that are more convenient than making direct queries to system tables and views.

Alist of all tables is obtained with the command:

=> \dt

List of relations
Schema | Name | Type | Owner
-------- B T R
public | employees | table | student
(1 row)

This command returns a list of all views in the public schema:
=> \dv public.*

List of relations
Schema | Name | Type | Owner
-------- B LT T T
public | top managers | view | student
(1 row)

List of tables, views, indexes, and sequences:

=> \dtvis

List of relations
Schema | Name | Type | Owner | Table
-------- D L s S L T LT S
public | employees | table | student |
public | employees_id seq | sequence | student |
public | employees pkey | index | student | employees
public | top_managers | view | student |
(4 rows)

Appended with the + key, these commands will return more detailed data:

=> \dt+

List of relations
Schema | Name | Type | Owner | Persistence | Size | Description
-------- B T T R L T e LR T TP
public | employees | table | student | permanent | 8192 bytes |
(1 row)

To get detailed information about a specific object, use the \d command (without any additional letters):
=> \d top_managers

View "public.top managers"

Column | Type | Collation | Nullable | Default
--------- L e TR
id | integer |

| |
name | text | | |
manager | integer | | |

The + key still works:
=> \d+ top_managers

View "public.top_managers"

Column | Type | Collation | Nullable | Default | Storage | Description
--------- B T e L b T e
id | integer | | plain |

| |
name | text | | | | extended |
manager | integer | | | | plain |
View definition:
SELECT employees.id,
employees.name,
employees.manager
FROM employees
WHERE employees.manager IS NULL;

You can use the command not only on relations, but other objects as well, such as schemas (\dn) and functions (\df).
The S key makes the command display system objects in addition to user-generated ones. You can use wildcard patterns to filter the output:

=> \dfS pg*size

List of functions

Schema | Name | Result data type | Argument data types | Type
------------ B L e R L T T T T e s L
pg_catalog | pg column_size | integer | “any" | func
pg_catalog | pg_database size | bigint | name | func
pg_catalog | pg database size | bigint | oid | func
pg_catalog | pg_indexes_size | bigint | regclass | func
pg_catalog | pg relation size | bigint | regclass | func
pg_catalog | pg_relation_size | bigint | regclass, text | func
pg_catalog | pg table size | bigint | regclass | func
pg_catalog | pg_tablespace size | bigint | name | func
pg_catalog | pg tablespace size | bigint | oid | func
pg_catalog | pg_total relation size | bigint | regclass | func
(10 rows)

Usually, psql commands have mnemonic names. For example, \df is describe function, \sf is show function:
=> \sf pg_catalog.pg_database_size(oid)

CREATE OR REPLACE FUNCTION pg_catalog.pg database size(oid)
RETURNS bigint

LANGUAGE internal

PARALLEL SAFE STRICT

AS $function$pg_database_size oid$function$

You can get the full list of commands from the documentation or with the psql \? command.

System catalog structure
All psql commands that describe objects query system catalog tables. To see the queries psql makes, use the ECHO_HIDDEN variable:
=> \set ECHO_HIDDEN on

=> \dt employees

UERY
SELECT n.nspname as "Schema",
c.relname as "Name",
CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'm' THEN 'materialized view' WHEN 'i' THEN 'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN 'special' WHEN 'f' THEN 'fore
pg_catalog.pg_get userbyid(c.relowner) as "Owner"
FROM pg_catalog.pg class c
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
WHERE c.relkind IN ('r','p','s",""
AND n.nspname !~ '“pg toast’
AND c.relname OPERATOR(pg catalog.~) '~(employees)$' COLLATE pg catalog.default
AND pg_catalog.pg_table is visible(c.oid)
ORDER BY 1,2;

List of relations

Schema | Name | Type | Owner

-------- B L E TS S
public | employees | table | student
(1 row)

=> \unset ECHO_HIDDEN

o)) PROFESSIONAL

Special data types Pos{gres

OID — object identifier

column, ensures object distinction in system catalog tables
integer with an auto increment

Reg types
oid aliases for some system catalog tables
(regclass for pg_class, etc.)
converting the text name of an object to the oid type and vice versa

Most system catalog tables use a column with oid name and data type of
the same name as the identifier.

The PRIMARY KEY constraint is not used for system catalog tables (it was
added in PostgreSQL 14), but unique indexes are created on the oid
columns.

Prior to PostgreSQL 12, the oid columns were hidden and the regular
“SELECT *” command did not show them.

The oid (Object Identifier) type is a 32 bit integer (about 4 billion possible
values) with an auto increment.

There are several special data types (in fact, oid aliases) starting with “reg
that are used to convert object names to oid’s and back.

https://postgrespro.com/docs/postgresqgl/13/datatype-oid

oid and reg types

As shown before, table and view descriptions are stored in pg class, and column descriptions in a separate table
pg attribute. So, to get a list of columns in a specific table, you need to join pg class and pg_attribute:

=> SELECT a.attname, a.atttypid
FROM pg_attribute a
WHERE a.attrelid = (
SELECT oid FROM pg_class WHERE relname = 'employees’
)
AND a.attnum > 0;

attname | atttypid

_________ L -
id | 23
name | 25
manager | 23

(3 rows)

Using reg types, the query can be simplified by omitting the explicit query to pg class:

=> SELECT a.attname, a.atttypid

FROM pg_attribute a

WHERE a.attrelid = 'employees'::regclass
AND a.attnum > 0;

attname | atttypid

_________ e
id | 23
name | 25
manager | 23

(3 rows)

Here, the column “employees” was transformed into the oid type. Similarly, oid can be transformed into a text value:

=> SELECT a.attname, a.atttypid::regtype
FROM pg_attribute a

WHERE a.attrelid = 'employees'::regclass
AND a.attnum > 0;

attname | atttypid

_________ i
id | integer
name | text
manager | integer

(3 rows)

A list of all reg types:

=> \dT reg*
List of data types
Schema | Name | Description
____________ g
pg catalog | regclass | registered class
pg catalog | regcollation | registered collation
pg catalog | regconfig | registered text search configuration
pg catalog | regdictionary | registered text search dictionary
pg catalog | regnamespace | registered namespace
pg _catalog | regoper | registered operator
pg catalog | regoperator | registered operator (with args)
pg_catalog | regproc | registered procedure
pg catalog | regprocedure | registered procedure (with args)
pg catalog | regrole | registered role
pg catalog | regtype | registered type

(11 rows)

Takeaways Pogga’?é%

The system catalog contains metadata about the cluster.
It is stored within the cluster itself

SQL access and additional psql commands

Some system catalog tables are stored in databases, some are
shared by the entire cluster

The system catalog uses special data types

o)) PROFESSIONAL

Practice Posigres

Get a description of the pg_class table.
Get a detailed description of the pg_tables view.

Create a database and a temporary table in it.
Get a complete list of schemas in the database, including system
schemas.

4. Get a list of views in the information_schema schema.

5. What queries does the following psql command perform?
\d+ pg_views

10

1. Description of pg_class

=> \d pg_class

Table "pg catalog.pg class"

Column | Type | Collation | Nullable | Default
--------------------- B R T TP
oid | oid | | not null |
relname | name | | not null |
relnamespace | oid | | not null |
reltype | oid | | not null |
reloftype | oid | | not null |
relowner | oid | | not null |
relam | oid | | not null |
relfilenode | oid | | not null |
reltablespace | oid | | not null |
relpages | integer | | not null |
reltuples | real | | not null |
relallvisible | integer | | not null |
reltoastrelid | oid | | not null |
relhasindex | boolean | | not null |
relisshared | boolean | | not null |
relpersistence | “char" | | not null |
relkind | "char" | | not null |
relnatts | smallint | | not null |
relchecks | smallint | | not null |
relhasrules | boolean | | not null |
relhastriggers | boolean | | not null |
relhassubclass | boolean | | not null |
relrowsecurity | boolean | | not null |
relforcerowsecurity | boolean | | not null |
relispopulated | boolean | | not null |
relreplident | “char" | | not null |
relispartition | boolean | | not null |
relrewrite | oid | | not null |
relfrozenxid | xid | | not null |
relminmxid | xid | | not null |
relacl | aclitem[] | | |
reloptions | textl[] | C | |
relpartbound | pg_node tree | C | |
Indexes:

"pg_class_oid_index" UNIQUE, btree (oid)
"pg_class_relname nsp_index" UNIQUE, btree (relname, relnamespace)
"pg_class_tblspc_relfilenode_index" btree (reltablespace, relfilenode)

2. Detailed description of pg_tables

=> \d+ pg_tables

View "pg_catalog.pg_tables"

Column | Type | Collation | Nullable | Default | Storage | Description

------------- B R T T T e e LT
schemaname | name | | | | plain |
tablename | name | | | | plain |
tableowner | name | | | | plain |
tablespace | name | | | | plain |
hasindexes | boolean | | | | plain |
hasrules | boolean | | | | plain |
hastriggers | boolean | | | | plain |
rowsecurity | boolean | | | | plain |

View definition:
SELECT n.nspname AS schemaname,
c.relname AS tablename,
pg_get_userbyid(c.relowner) AS tableowner,
t.spcname AS tablespace,
c.relhasindex AS hasindexes,
c.relhasrules AS hasrules,
c.relhastriggers AS hastriggers,
c.relrowsecurity AS rowsecurity
FROM pg_class c
LEFT JOIN pg namespace n ON n.oid = c.relnamespace
LEFT JOIN pg_tablespace t ON t.oid = c.reltablespace
WHERE c.relkind = ANY (ARRAY['r'::"char", 'p'::"char"]);

3. A list of all schemas

=> CREATE DATABASE data_catalog;

CREATE DATABASE

=> \c data_catalog

You are now connected to database "data catalog" as user "student".
=> CREATE TEMP TABLE t(n integer);

CREATE TABLE

=> \dnS

List of schemas
Name | Owner

information_schema | postgres
pg_catalog | postgres
pg_temp_4 | postgres
pg_toast | postgres
pg_toast temp_4 | postgres
public | postgres
(6 rows)

Temporary tables are stored in schemas named pg_temp N, where N is a number. Such schemas are created for each session in which temporary objects appear, so there can be multiple schemas. To get the
name of the schema for the current session, use the following system function:

=> SELECT pg_my_temp_schema() : : regnamespace;

pg_my_temp_schema

pg_temp 4
(1 row)

In general, the exact name of the schema is not required: you can access temporary objects in your session by using just pg_temp:

=> SELECT * FROM pg_temp.t;

n

(0 rows)

We already know what some of the schemas are there for, and we will learn more about the rest (pg toast*) in a later topic.

4. A list of views in information_schema

Use the template:

=> \dv information_schema.*

Schema

information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
information_schema
(61 rows)

List of relations
Name

_pg_foreign_data wrappers
_pg_foreign_servers
_pg_foreign_table_columns
_pg_foreign_tables
_pg_user_mappings
administrable role authorizations
applicable_roles
attributes

character_sets
check_constraint_routine_usage
check_constraints
collation_character set applicability
collations
column_column_usage
column_domain_usage
column_options
column_privileges
column_udt_usage

columns
constraint_column_usage
constraint_table_usage
data_type privileges
domain_constraints
domain_udt_usage

domains

element_types
enabled_roles

foreign data wrapper_options
foreign_data_wrappers
foreign_server options
foreign_servers

foreign_ table options
foreign_tables
information schema catalog name
key_column_usage
parameters

referential constraints
role_column_grants
role_routine grants
role_table grants

role _udt_grants

role usage grants

routine privileges
routines

schemata

sequences
table_constraints
table_privileges

tables

transforms
triggered_update columns
triggers

udt_privileges
usage_privileges
user_defined types
user_mapping options
user_mappings

view column_usage

view routine_usage

view table_usage

views

5. Queries to the system catalog

To see the queries that psql makes, use the ECHO_HIDDEN parameter.

=> \set ECHO_HIDDEN on

=> \d+ pg_views

Type

view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view
view

Owner

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

QUERY

SELECT c.oid,

n.nspname,

c.relname
FROM pg_catalog.pg_class c

LEFT JOIN pg catalog.pg namespace n ON n.oid = c.relnamespace

WHERE c.relname OPERATOR(pg catalog.~) '~(pg_views)$' COLLATE pg_catalog.default

AND pg_catalog.pg table is visible(c.oid)
ORDER BY 2, 3;

QUERY
SELECT c.relchecks, c.relkind, c.relhasindex, c.relhasrules, c.relhastriggers, c.relrowsecurity, c.relforcerowsecurity, false AS relhasoids, c.relispartition, pg_catalog.array_to_strin
, c.reltablespace, CASE WHEN c.reloftype = © THEN '' ELSE c.reloftype::pg catalog.regtype::pg catalog.text END, c.relpersistence, c.relreplident, am.amname
FROM pg_catalog.pg_class c
LEFT JOIN pg catalog.pg class tc ON (c.reltoastrelid = tc.oid)
LEFT JOIN pg_catalog.pg am am ON (c.relam = am.oid)
WHERE c.oid = '12109';

QUERY
SELECT a.attname,
pg_catalog.format_type(a.atttypid, a.atttypmod),
(SELECT pg_catalog.pg get expr(d.adbin, d.adrelid, true)
FROM pg_catalog.pg_attrdef d
WHERE d.adrelid = a.attrelid AND d.adnum = a.attnum AND a.atthasdef),
a.attnotnull,
(SELECT c.collname FROM pg catalog.pg collation c, pg catalog.pg type t
WHERE c.oid = a.attcollation AND t.oid = a.atttypid AND a.attcollation <> t.typcollation) AS attcollation,
a.attidentity,
a.attgenerated,
a.attstorage,
pg_catalog.col description(a.attrelid, a.attnum)
FROM pg_catalog.pg attribute a
WHERE a.attrelid = '12109' AND a.attnum > © AND NOT a.attisdropped
ORDER BY a.attnum;

QUERY
SELECT pg catalog.pg get viewdef('12109'::pg catalog.oid, true);

QUERY
SELECT r.rulename, trim(trailing ';' from pg catalog.pg get ruledef(r.oid, true))
FROM pg_catalog.pg_rewrite r
WHERE r.ev class = '12109' AND r.rulename != ' RETURN' ORDER BY 1;

View "pg_catalog.pg views"

Column | Type | Collation | Nullable | Default | Storage | Description
------------ B S s e T e
schemaname | name | | | | plain |
viewname | name | | | | plain |
viewowner | name | | | | plain |
definition | text | | | | extended |

View definition:
SELECT n.nspname AS schemaname,
c.relname AS viewname,
pg_get_userbyid(c.relowner) AS viewowner,
pg_get_viewdef(c.oid) AS definition
FROM pg_class c
LEFT JOIN pg namespace n ON n.oid = c.relnamespace
WHERE c.relkind = 'v'::"char";

psql made five queries to display this result.

=> \set ECHO_HIDDEN off

