

Architecture
Isolation and MVCC

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Multiversion concurrency control
Data snapshot
Isolation levels
Locking

3

Multiversion concurrency control

Storing multiple versions of the same row
versions have different time frames
timestamp = transaction ID (IDs are given in ascending order)

Row:

xid
x1 x2 x3 x4

DELETEINSERT

UPDATE

version 1 version 2 version 3

UPDATE

When multiple sessions are running at the same time, two transactions may
access the same row at the same time. If both transactions are just reading
the row, there is no problem. If both transactions try to write, no problem
either (in this case, they line up and make the changes one after the other).
The tricky part is when one transaction wants to read a row and another
one wants to change it at the same time.
There are two simple ways about it. You can let such transactions block
each other, but then performance suffers. Otherwise, you can let the
reading transaction immediately see the changes made by the writing
transaction, even if they are not committed (this is called a “dirty read”).
This is dangerous, because the changes can be rolled back.
PostgreSQL goes the hard way and utilizes what is known as Multiversion
concurrency control. In essence, the system stores multiple versions of
each row. This allows transactions to see different versions of the same row,
while only one transaction can modify a version at a time.
To distinguish between the versions, PostgreSQL marks each one with two
timestamps, which together specify a version’s “time frame”.
The timestamps are essentially just transaction IDs, which always come in
ascending order. (In reality, the whole thing is a bit more complicated, but
not worth getting into right now.) Upon creation, a row version is marked
with the ID if the transaction that executed the INSERT command. When
deleted, the version is marked with the the ID if the transaction that did the
DELETE command (but is not physically deleted). An UPDATE command is
a DELETE and an INSERT executed back to back.
https://postgrespro.com/docs/postgresql/13/mvcc-intro

4

Data snapshot

A representation of database data in a consistent state
at a specific point in time

a transaction ID defines a point in time
a list of active transactions helps the system
to exclude changes that have not been committed

record 3:

xid
snapshot

record 2:

record 1:

PostgreSQL uses snapshot-based transaction isolation.
A transaction accessing a table should see only one of the versions of each
record (or none at all). To achieve this, PostgreSQL presents the transaction
with a data snapshot created at a certain point in time. The snapshot
includes the most recent versions of all committed records but does not
include any non-committed changes from active transactions. In other
words, the snapshot takes the version of each record that corresponds to
the moment when the snapshot was created.
A snapshot is not a physical copy of the data, but just a few numbers:
● the number of the last recorded transaction at the time of snapshot

(determines an exact moment in time),
● list of active transactions at that point in time.
The list is needed in order to exclude from the snapshot any changes those
transactions may have made but not yet committed.
With just these numbers, we can always tell which record version will be
visible in the snapshot. Sometimes it will be the current (most recent)
version, as with record 1 in the diagram. Sometimes not: record 2 has been
deleted after the snapshot has been created (and the change has already
been committed), but the transaction still continues to see it while working
with the snapshot. This is the correct behavior, the snapshot gives a
consistent representation of data at the selected point in time.
Some records will not get into the snapshot at all: record 3 was deleted
before the snapshot was made, so it is not included.

5

Isolation levels

Read Uncommitted
not supported by PostgreSQL: works as Read Committed

Read Committed (default)
the snapshot is created as of the time a statement starts
the same queries may receive different data each time

Repeatable Read
the snapshot is created as of the time the first transaction statement starts
a transaction may fail with a serialization error

Serializable
total isolation, but additional overhead
a transaction may fail with a serialization error

The SQL standard defines four isolation levels: the stricter the level, the
less concurrent transactions affect each other. At the time when the
standard was adopted, it was believed that the stricter the level, the more
difficult it is to implement and the stronger its impact on performance (since
then, these views have changed somewhat).
The most lax level of Read Uncommitted allows dirty reads. It is not
supported by PostgreSQL, because it is of no practical value and does not
give a performance gain.
The Read Committed level is the default isolation level
in PostgreSQL. At this level, data snapshots are created at the beginning of
each SQL statement execution. Thus, the statement works with an
unchanged and consistent data snapshot, but two identical queries
following one after the other may show different data.
At the Repeatable Read level, the snapshot is built at the beginning of a
transaction (when executing the first statement). This makes all queries
inside the same transaction see the same data. This level is convenient, for
example, for generating reports from several queries.
The Serializable level guarantees total isolation. At this level, you can
safely issue any statements as if the transaction is running alone. The
drawback is that some transactions will fail, and your application must be
able to repeat such transactions.
https://postgrespro.com/docs/postgresql/13/transaction-iso

Row	version	visibility

Let’s	see	how	the	same	row	can	have	multiple	versions	of	itself.

Create	a	table:

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

Insert	a	row.	Note	that	if	you	don’t	preface	your	command	with	the	keyword	BEGIN,	then	psql	will	execute	the	command
immediately	and	return	the	output:

=>	INSERT	INTO	t	VALUES	('Version	one');

INSERT	0	1

Let’s	begin	a	transaction	and	select	its	ID:

=>	BEGIN;

BEGIN

=>	SELECT	pg_current_xact_id();

	pg_current_xact_id	

																502
(1	row)

The	transaction	sees	the	first	(the	only,	for	now)	row	version:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|				0
(1	row)

This	additionally	shows	the	transactions	which	determine	the	row	version’s	visibility.	The	row	was	created	by	the	last
transaction,	and	xmax=0	means	that	this	is	the	most	up-to-date	version.

Let’s	open	another	session	and	begin	a	new	transaction:

=>	BEGIN;

BEGIN

=>	SELECT	pg_current_xact_id();

	pg_current_xact_id	

																503
(1	row)

The	transaction	sees	the	only	existing	version:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|				0
(1	row)

But	when	the	second	transaction	modifies	the	row...

=>	UPDATE	t	SET	s	=	'Version	two';

UPDATE	1

We	get	this:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		503	|				0
(1	row)

And	this	is	what	the	first	transaction	sees:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|		503
(1	row)

Because	the	change	hasn’t	been	committed	yet,	the	first	transaction	still	sees	the	original	version.

Note	the	xmax	value:	it	shows	that	another	transaction	is	currently	modifying	the	row.	Strictly	speaking,	this	“peeking”
breaks	isolation.	That’s	why	the	xmin	and	xmax	fields	are	hidden	and	should	not	be	used	in	production.

Now,	let’s	commit	the	changes.

=>	COMMIT;

COMMIT

This	changes	what	the	first	transaction	sees:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		503	|				0
(1	row)

Both	transactions	see	the	same	row	version,	i.e.	version	two.

After	committing,	version	one	is	no	longer	visible	to	either	transaction.

=>	COMMIT;

COMMIT

7

Locking

Row locks
reading never locks rows
changing rows locks them for changes, but not for reads

Table locks
prohibit changing or deleting a table while it is being worked on
prohibit reading the table when rebuilding or moving
etc.

Lock lifetime
set as needed or manually
lifted automatically upon transaction completion

What does MVCC do? It allows the system to do only the most necessary
minimum of locks, thereby increasing performance.
The main locks are set at the row level. Reading never blocks either reading
or writing transactions. Changing a row does not lock it for reading. The only
case when a transaction will wait for the lock to be released is if it tries to
change a row that has already been changed by another transaction that
has not been committed yet.
Locks can also be set at a higher level, particularly on tables. They are
needed so that no one can delete the table while other transactions are
reading data from it, or to prohibit access to the table being rebuilt. Such
locks generally do not cause problems, since deleting or rebuilding tables is
only done once in a while.
All necessary locks are set automatically and automatically released at the
end of the transaction. You can also set additional custom locks, but this is
rarely necessary.
https://postgrespro.com/docs/postgresql/13/explicit-locking

Locks

Let’s	try	this	again,	but	now	have	both	transactions	attempt	to	change	the	value.

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	three';

UPDATE	1

And	in	the	other	transaction:

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	four';

The	second	transaction	hangs	up.	It	can’t	change	the	row	value	until	the	first	transaction	releases	the	lock.

=>	COMMIT;

COMMIT

Now,	the	second	transaction	can	do	its	thing:

UPDATE	1

=>	COMMIT;

COMMIT

9

Transaction status

Transaction status (clog)
service information; two bits per transaction
stored in files on disk
cached in shared memory

Commit
the “transaction committed” bit is set

Termination
the “transaction aborted” bit is set
performed as fast as commit (no data rollback needed)

For multiversion concurrency control to work, the server needs to
understand the status of transactions. A transaction can be active or
finished. A transaction can end either in a commit or in an abort. Therefore,
only two bits are required to represent the state of each transaction.
Transaction statuses (commit log, clog) are stored in special service files in
the PGDATA/pg_xact directory and worked upon in the server's shared
memory, as to avoid constantly accessing the disk.
At any transaction completion (either successful or not), it is enough to set
the appropriate status bits. Both transaction commit and abort occur equally
quickly.
If an aborted transaction managed to create new row versions, these
versions are not destroyed (there is no “physical” rollback of data). Thanks
to the status information, other transactions will see that the transaction that
created or deleted the row versions was actually aborted, and will not take
changes made by it into account.

10

Takeaways

Multiple versions of each row can be stored
in data files
Transactions work with a data snapshot, a representation of
database data in a consistent state at a specific point in time
Writers don’t block readers, readers don’t block anyone
Isolation levels differ in snapshot creation times

11

Practice

1. Create a table with one row.

Begin a transaction at the Read Committed isolation level and
query the table.
In another session, delete the row and commit the changes.
How many rows will the first transaction see after executing the
same query again? Try and see.

Complete the first transaction.
2. Repeat the same thing, but now let the transaction work at the

isolation level Repeatable Read:

BEGIN ISOLATION LEVEL REPEATABLE READ;

Explain the differences.

1.	Read	Committed	isolation	level

Create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Make	a	query	from	one	transaction	(Read	Committed	is	the	isolation	level	by	default):

=>	BEGIN;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Remove	the	row	in	another	transaction	and	commit:

=>	DELETE	FROM	t;

DELETE	1

Retry	the	query:

=>	SELECT	*	FROM	t;

	n	

(0	rows)

The	first	transaction	sees	the	changes.

=>	COMMIT;

COMMIT

2.	Repeatable	Read	isolation	level

Put	the	row	back	in:

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Query	from	the	first	transaction:

=>	BEGIN	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Remove	the	row	in	the	second	transaction	and	commit:

=>	DELETE	FROM	t;

DELETE	1

Retry	the	query:

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

On	this	isolation	level,	the	first	transaction	does	not	see	the	changes.

=>	COMMIT;

COMMIT

12

Practice+

1. Begin a transaction and create a new table with one row. Without
completing the transaction, open a second session and query the
table in it. Check what the transaction will return in the second
session.

Commit the transaction in the first session and repeat the query
to the table in the second session.

2. Repeat task 1, but roll back rather than commit the transaction in
the first session. What has changed?

3. In the first session, start a transaction and make a query
to the previously created table. Will it be possible to delete this
table in the second session before the transaction is completed?
Try and see.

1.	Transactions	and	DDL	commands.	Commit

Start	a	transaction	and	create	a	table:

=>	BEGIN;

BEGIN

=>	CREATE	TABLE	t1(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t1	VALUES	(42);

INSERT	0	1

In	another	transaction,	query	the	table:

=>	SELECT	*	FROM	t1;

ERROR:		relation	"t1"	does	not	exist
LINE	1:	SELECT	*	FROM	t1;
																						^

Until	the	initial	transaction	is	completed,	no	other	transactions	can	see	the	table.

It	will	only	be	visible	when	the	transaction	that	created	it	has	completed:

=>	COMMIT;

COMMIT

=>	SELECT	*	FROM	t1;

	n		

	42
(1	row)

2.	Transactions	and	DDL	commands.	Rollback

Again,	start	a	transaction	and	create	a	table:

=>	BEGIN;

BEGIN

=>	CREATE	TABLE	t2(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t2	VALUES	(42);

INSERT	0	1

The	other	transaction	does	not	see	the	table,	as	expected:

=>	SELECT	*	FROM	t2;

ERROR:		relation	"t2"	does	not	exist
LINE	1:	SELECT	*	FROM	t2;
																						^

When	the	first	transaction	is	rolled	back,	so	is	the	table	creation	command:

=>	ROLLBACK;

ROLLBACK

=>	SELECT	*	FROM	t2;

ERROR:		relation	"t2"	does	not	exist
LINE	1:	SELECT	*	FROM	t2;
																						^

DDL	commands	in	PostgreSQL	are	transactional.

3.	Table	locks

Start	a	transaction	and	query	the	table:

=>	BEGIN;

BEGIN

=>	SELECT	*	FROM	t1;

	n		

	42
(1	row)

When	another	transaction	attempts	to	remove	the	table,	it	will	be	locked,	because	you	are	not	allowed	to	remove	a	table
that	is	being	used.

=>	DROP	TABLE	t1;

The	table	will	be	removed	only	when	the	first	transaction	is	completed:

=>	COMMIT;

COMMIT

DROP	TABLE

