

Access Control
Row level security

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

What is row level security
When RLS policies apply

Multiple policies, same table

3

Row level security policy

Determines the visibility and mutability of table rows
the predicate is calculated for each row using the initiating user’s privileges
the client can only access the rows for which the predicate is true

Predicate for existing rows (USING)
used by SELECT, UPDATE, DELETE commands
policy violation does not trigger an error
(unless the row_security parameter is unset)

Predicate for new rows (WITH CHECK)
used by INSERT, UPDATE commands
if omitted, the first predicate is used
policy violation triggers an error

Row level security (RLS) policies allow the system administrator to control
user access to a table at the level of individual rows. This mechanism is also
known as Fine-Grained Access Control.
It it a supplemental tool, as the role must have necessary privileges to
access the table in the first place.
Row level security policies determine if a certain user should be able to
read or modify a certain row by calculating one of two predicates (binary
expressions) for each of the queried rows. The predicate result determines
if the user would be allowed to access the row.
The first predicate is used for existing rows. It is used by the commands
SELECT, UPDATE, and DELETE. If the predicate for a given row does not
return true (that is, the function returns false or NULL), the row isn't included
into the client's result set. As a gross oversimplification, you can imagine
that the predicate is simply appended to the WHERE clause of the query.
In reality, however, it is more complicated.
If the row_security parameter value is set to off, a false predicate for even a
single row will result in an query error. This is useful when making a logical
backup to ensure that all rows of all tables got in.
The second predicate determines the visibility of new rows. It is used by the
INSERT and UPDATE commands and always throws an error if the policy is
violated.
https://postgrespro.com/docs/postgresql/13/ddl-rowsecurity

4

When RLS policies apply

Policy applies
to the table for which RLS is enabled
for specified roles and operators
(SELECT, INSERT, UPDATE, DELETE)

Policy does not apply
during integrity constraints verification
for superusers and roles with the BYPASSRLS attribute
for the owner (unless enabled explicitly)

In order for row level security policies to start working, this mechanism must
be explicitly enabled for each table.
When creating a RLS policy, you can specify what roles (by default, all) and
what operators (by default, also all) will the policy apply to.
Policies are not applied during integrity constraints verification: PostgreSQL
must guarantee data integrity regardless of security configurations.
Policies are not applied for superusers (as with any other security checks)
and for roles with the BYPASSRLS attribute.
For the owner of the table, the policies do not apply by default, but can be
enabled if necessary.

Row	level	security	policy	example

=>	CREATE	DATABASE	access_rls;

CREATE	DATABASE

=>	\c	access_rls

You	are	now	connected	to	database	"access_rls"	as	user	"student".

Alice	and	Bob	work	in	different	departments	of	the	same	company.

student=#	CREATE	ROLE	alice	LOGIN;

CREATE	ROLE

student=#	CREATE	ROLE	bob	LOGIN;

CREATE	ROLE

student=#	CREATE	TABLE	users_depts(
		login	text,
		department	text
);

CREATE	TABLE

student=#	INSERT	INTO	users_depts	VALUES	('alice','PR'),	('bob','Sales');

INSERT	0	2

They	work	with	the	same	table	that	contains	information	from	different	departments.	However,	both	Alice	and	Bob	must
only	see	the	data	from	their	own	departments.

student=#	CREATE	TABLE	revenue(
		department	text,
		amount	numeric(10,2)
);

CREATE	TABLE

student=#	INSERT	INTO	revenue	SELECT	'PR',			-random()*	100.00	FROM	generate_series(1,100000);

INSERT	0	100000

student=#	INSERT	INTO	revenue	SELECT	'Sales',	random()*1000.00	FROM	generate_series(1,10000);

INSERT	0	10000

Define	an	appropriate	policy	and	enable	it:

student=#	CREATE	POLICY	departments	ON	revenue
		USING	(department	=	(SELECT	department	FROM	users_depts	WHERE	login	=	current_user));

CREATE	POLICY

student=#	ALTER	TABLE	revenue	ENABLE	ROW	LEVEL	SECURITY;

ALTER	TABLE

Grant	Alice	and	Bob	the	privileges:

student=#	GRANT	SELECT	ON	users_depts,	revenue	TO	alice,	bob;

GRANT

The	superuser	(and	also	the	owner,	in	this	case)	sees	all	the	rows,	as	they	ignore	the	policy	restrictions:

student=#	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4995446.82
	Sales						|		5042529.14
(2	rows)

What	do	Alice	and	Bob	see?

student=#	\c	-	alice

You	are	now	connected	to	database	"access_rls"	as	user	"alice".

alice=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4995446.82
(1	row)

=>	\c	access_rls	bob

You	are	now	connected	to	database	"access_rls"	as	user	"bob".

bob=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|				sum					
------------+------------
	Sales						|	5042529.14
(1	row)

6

Multiple policies

Permissive policies
visibility must be allowed by at least one permissive policy
if no policy allows visibility, the row is not visible

Restrictive policies
visibility must be allowed by all restrictive policies, unless none exist

Multiple policies can be defined on a single table. In this case, all predicates
will be considered.
By default, created policies are permissive. For a row to be visible, at least
one of the predicates of these policies must be true.
But if row level security is enabled and no permissive policy is defined, not a
single row will be available.
Additionally, you can define restrictive policies. If such policies are defined,
all of them must return true for the row to be visible.
In other words, if only permissive policies are defined and the predicates are
P1, …, PN, then for each row the following expression is evaluated:

P1 OR … OR PN.

And if restrictive policies R1, ..., RM are also defined, then the evaluated
expression will be

(P1 OR ... OR PN) AND R1 AND ... AND RM.

The bottom line is, visibility must be allowed by at least one permissive
policy and by all restrictive policies.

Multiple	policies

Allow	Bob	to	add	rows	to	the	table,	but	only	for	his	department	and	only	under	100	USD:

the	first	restriction	will	apply	automatically	(the	same	predicate	works	for	both	existing	and	newly	created	rows),
the	second	restriction	needs	a	new	policy	created	for	it.

alice=>	\c	-	student

You	are	now	connected	to	database	"access_rls"	as	user	"student".

student=#	CREATE	POLICY	amount	ON	revenue	AS	RESTRICTIVE
		USING	(true)																								--	all	existing	rows	are	visible
		WITH	CHECK	(abs(amount)	<=	100.00);	--	must	be	true	for	new	rows

CREATE	POLICY

student=#	GRANT	INSERT	ON	revenue	TO	bob;

GRANT

Verify:

bob=>	INSERT	INTO	revenue	VALUES	('Sales',	42.00);

INSERT	0	1

bob=>	INSERT	INTO	revenue	VALUES	('PR',	42.00);

ERROR:		new	row	violates	row-level	security	policy	for	table	"revenue"

bob=>	INSERT	INTO	revenue	VALUES	('Sales',	1000.00);

ERROR:		new	row	violates	row-level	security	policy	"amount"	for	table	"revenue"

To	see	what	policies	exist	for	a	given	object,	use	psql	commands	\d	(object	description)	and	\dp	(privilege	description),	for
example:

student=#	\d	revenue

																			Table	"public.revenue"
			Column			|					Type						|	Collation	|	Nullable	|	Default	
------------+---------------+-----------+----------+---------
	department	|	text										|											|										|	
	amount					|	numeric(10,2)	|											|										|	
Policies:
				POLICY	"amount"	AS	RESTRICTIVE
						USING	(true)
						WITH	CHECK	((abs(amount)	<=	100.00))
				POLICY	"departments"
						USING	((department	=	(SELECT	users_depts.department
			FROM	users_depts
		WHERE	(users_depts.login	=	CURRENT_USER))))

This	data	is	also	available	in	the	pg_policies	view	in	the	system	catalog.

8

Takeaways

Privileges control access to tables and columns,
row level security policies control access to rows

Policies are easier to set up and work more efficiently than
view and trigger based implementations

9

Practice

1. Continuing the example from the demo, create a role for Charlie
and assign him two departments in the user table.

2. Define row level security policies in such a way that:
- roles can only see the rows from their departments,
- roles associated with a single department could add rows with the amount
of up to $100,
- roles associated with multiple departments could add rows with any
amount.

3. Verify that the policies are set up correctly.
4. Estimate the overhead costs of row level security policies by

running the same query as a regular user and as a superuser.

1.	Roles	and	tables

=>	CREATE	DATABASE	access_rls;

CREATE	DATABASE

=>	\c	access_rls

You	are	now	connected	to	database	"access_rls"	as	user	"student".

student=#	CREATE	ROLE	alice	LOGIN;

CREATE	ROLE

student=#	CREATE	ROLE	bob	LOGIN;

CREATE	ROLE

student=#	CREATE	ROLE	charlie	LOGIN;

CREATE	ROLE

student=#	CREATE	TABLE	users_depts(
		login	text,
		department	text
);

CREATE	TABLE

student=#	INSERT	INTO	users_depts	VALUES	
		('alice',		'PR'),
		('bob',				'Sales'),
		('charlie','PR'),
		('charlie','Sales');

INSERT	0	4

student=#	CREATE	TABLE	revenue(
		department	text,
		amount	numeric(10,2)
);

CREATE	TABLE

student=#	INSERT	INTO	revenue	SELECT	'PR',			-random()*	100.00	FROM	generate_series(1,100000);

INSERT	0	100000

student=#	INSERT	INTO	revenue	SELECT	'Sales',	random()*1000.00	FROM	generate_series(1,10000);

INSERT	0	10000

2.	Policies	and	privileges

student=#	CREATE	POLICY	departments	ON	revenue
		USING	(department	IN	(SELECT	department	FROM	users_depts	WHERE	login	=	current_user));

CREATE	POLICY

student=#	CREATE	POLICY	amount	ON	revenue	AS	RESTRICTIVE
		USING	(true)
		WITH	CHECK	(
				(SELECT	count(*)	FROM	users_depts	WHERE	login	=	current_user)	>	1
				OR	abs(amount)	<=	100.00
);

CREATE	POLICY

student=#	ALTER	TABLE	revenue	ENABLE	ROW	LEVEL	SECURITY;

ALTER	TABLE

student=#	GRANT	SELECT	ON	users_depts	TO	alice,	bob,	charlie;

GRANT

student=#	GRANT	SELECT,	INSERT	ON	revenue	TO	alice,	bob,	charlie;

GRANT

3.	Verify

Alice:

student=#	\c	-	alice

You	are	now	connected	to	database	"access_rls"	as	user	"alice".

alice=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4991269.96
(1	row)

alice=>	INSERT	INTO	revenue	VALUES	('PR',	100.00);

INSERT	0	1

alice=>	INSERT	INTO	revenue	VALUES	('PR',	101.00);

ERROR:		new	row	violates	row-level	security	policy	"amount"	for	table	"revenue"

Bob:

alice=>	\c	-	bob

You	are	now	connected	to	database	"access_rls"	as	user	"bob".

bob=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|				sum					
------------+------------
	Sales						|	4994106.05
(1	row)

bob=>	INSERT	INTO	revenue	VALUES	('Sales',	100.00);

INSERT	0	1

bob=>	INSERT	INTO	revenue	VALUES	('Sales',	101.00);

ERROR:		new	row	violates	row-level	security	policy	"amount"	for	table	"revenue"

Charlie:

bob=>	\c	-	charlie

You	are	now	connected	to	database	"access_rls"	as	user	"charlie".

charlie=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4991169.96
	Sales						|		4994206.05
(2	rows)

charlie=>	INSERT	INTO	revenue	VALUES	('PR',	1000.00);

INSERT	0	1

charlie=>	INSERT	INTO	revenue	VALUES	('Sales',	1000.00);

INSERT	0	1

4.	Overhead

Run	the	query	several	times	to	get	the	average	execution	time.

charlie=>	\timing	on

Timing	is	on.

First	as	charlie:

charlie=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	95.967	ms

charlie=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	100.821	ms

charlie=>	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	102.398	ms

Now	do	that	again	as	the	owner	of	the	table,	who	is	unaffected	by	the	policies	by	default:

charlie=>	\c	-	student

You	are	now	connected	to	database	"access_rls"	as	user	"student".

student=#	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	73.021	ms

student=#	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	70.803	ms

student=#	SELECT	department,	sum(amount)	FROM	revenue	GROUP	BY	department;

	department	|					sum					
------------+-------------
	PR									|	-4990169.96
	Sales						|		4995206.05
(2	rows)

Time:	70.908	ms

The	overhead	isn't	dramatic	in	this	case,	but	not	negligible	either.

