Backup
Overview

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

OOOOOOOOOOOO

Topics Pos{gres

Logical backup
Physical backup

Logical backup

What is logical backup
Table backup
Database backup
Cluster backup

o)) PROFESSIONAL

Logical backup Pos{gres

SQL commands to restore data from scratch

+ can backup a separate object or database

+ can recover on a cluster running another major PostgreSQL version
+ can recover on a different architecture

— low speed

There are two types of backup: logical and physical.

Logical backup is a set of SQL commands that restores a cluster (or a
database, or a separate object) from scratch.

Such a backup is, in fact, a plain text file, which gives a certain flexibility.
For example, you can make a copy of only those objects that are needed;
you can edit the file by changing the names or data types, etc.

In addition, SQL commands can be executed on a different version of the
DBMS (if there is compatibility at the command level) or on a different
architecture (so binary compatibility is not required).

However, for a large database, this mechanism is inefficient, since executing
all the commands will take a long time. Moreover, it is possible to restore the
system from such a backup only to the moment at which the backup was
made.

https://postgrespro.com/docs/postgresgl/13/backup-dump

COPY: table backup Pogga’?“é“g

Backup

output a table or a query into a file, console or another program

Recovery

insertion of rows from a file or console into an existing table

Server variant Client variant
SQL COPY command psql \COPY command
the file must be accessible the file must be accessible
to the postgres user to the user who has launched psql
on the server on the client

If you want to save only the contents of one table, you can use the COPY
command.

The command writes a table (or the result of an arbitrary query) either to a
file or to the console, or sends it as input to another program. You can
specify parameters such as format (plain text, csv or binary), field
separators, NULL representation etc.

The alternative variant of the COPY command reads fields from a file or the
console and inserts them into a table. The table isn’t truncated, the new
rows are simply appended to the existing ones.

The COPY command is significantly faster than similar INSERT commands,
because the client does not need to access the server repeatedly, and the
server does not have to parse the commands multiple times.

https://postgrespro.com/docs/postgresql/13/sqgl-copy

In psql, there is a client version of the COPY command with a similar syntax.
Unlike the server version, which is an SQL command, the client version is a
psql command.

The file name in the SQL command corresponds to a file on the database
server. The user running PostgreSQL (usually postgres) must have access
to this file. In the client version, the file is accessed on the client, and only
the content is transmitted to the server.

https://postgrespro.com/docs/postgresqgl/13/app_psal

COPY

Create a database and a table in it.

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

You are now connected to database "backup overview" as user "student".
=> CREATE TABLE t(id numeric, s text);

CREATE TABLE

=> INSERT INTO t VALUES (1, 'Hello!'), (2, ''), (3, NULL);

INSERT 0 3

=> SELECT * FROM t;

(3 rows)

Here is what the COPY command shows:

=> COPY t TO STDOUT;

1 Hello!
2
3 \N

Note that an empty string and NULL are different things, despite the output not telling us that.

You can input the data:
=> TRUNCATE TABLE t;
TRUNCATE TABLE

=> COPY t FROM STDIN;
1 Hi there!

2

3 \N

\.

COPY 3

Verify:

=> \pset null '<pull>’
Null display is "<null>".

=> SELECT * FROM t;

id | s
ceeed e
1 | Hi there!
2|
3 | <null>

(3 rows)

o)) PROFESSIONAL

pg_dump: database backup Posgares

Backup

outputs either an SQL script or an archive in a special format with a TOC
outputs either to the console or to a file
supports parallel execution

can define what objects to backup
(tables, schemas, only DML or only DDL, etc.)

Recovery

SQL script via psql
custom format archive via pg_restore
(can define what objects to recover and supports parallel execution)

the new database must be created from template0O database roles and
tablespaces must be created in advance

The pg_dump utility creates a full-scale database backup. Depending on the
parameters, it provides either an SQL script containing commands that
create the required objects, or an archive in a custom format with a table of
contents.

Restoring using an SQL script is as simple as executing it in psql.
https://postgrespro.com/docs/postgresgl/13/app-pgdump

Restoring from an archive is done using the pg_restore tool. It reads the
archive and translates it into regular psgl commands. The advantage is that
it allows you to specify what objects to restore at the recovery stage, not just
at the backup stage. Moreover, this type of backup and recovery supports
parallel execution.

https://postgrespro.com/docs/postgresqgl/13/app-pgrestore

The database for recovery must be created from the database templateO,
since all changes made in templatel will also be backed up. In addition, the
necessary roles and tablespaces must be created in advance, since these
objects belong to the entire cluster. After recovery, it is recommended to run
the ANALYZE command to collect fresh statistics.

o)) PROFESSIONAL

pg_dumpall: cluster backup Posgares

Backup

makes a backup of the entire cluster, including roles and tablespaces
outputs an SQL script to the console or to a file

parallel execution is not supported, but you can dump only the global objects
and then use pg_dump

Recovery
via psql

pg_dumpall creates a backup of the entire cluster, including roles and
tablespaces.

Since pg_dumpall requires access to all objects of all databases, it should
be ran by the superuser. pg_dumpall connects to each database in the
cluster one by one and makes a backup using pg_dump. In addition, it also
stores data related to the cluster as a whole.

The result of pg_dumpall is a script for psql. Other formats are not
supported. This means that pg_dumpall does not support parallel execution,
which can be a problem for larger clusters. In this case, you can use the
--globals-only key to backup only roles and tablespaces, and then backup all
the databases using pg_dump.

https://postgrespro.com/docs/postgresql/13/app-pg-dumpall

pg_dump tool

Take a look at pg dump output in a plain text format. Note the way data from the table is saved.

If any changes were made to templatel, they too will make it into the backup. Therefore, when recovering a database, it is
best to create one on the target from templateO (the --create key adds the necessary commands automatically).

student$ pg_dump -d backup_overview --create

-- PostgreSQL database dump

-- Dumped from database version 13.11 (Ubuntu 13.11-1.pgdg22.04+1)
-- Dumped by pg dump version 13.11 (Ubuntu 13.11-1.pgdg22.04+1)

SET statement timeout = 0;

SET lock timeout = 0;

SET idle in transaction session timeout = 0;

SET client encoding = 'UTF8';

SET standard conforming strings = on;

SELECT pg catalog.set config('search path', '', false);
SET check function bodies = false;

SET xmloption = content;

SET client min messages = warning;

SET row security = off;

-- Name: backup overview; Type: DATABASE; Schema: -; Owner: student

CREATE DATABASE backup_overview WITH TEMPLATE = template® ENCODING = 'UTF8' LOCALE = 'en_US.UTF-8';

ALTER DATABASE backup overview OWNER TO student;
\connect backup_overview

SET statement timeout = 0;

SET lock timeout = 0;

SET idle _in_transaction_session_timeout = 0;

SET client encoding = 'UTF8';

SET standard _conforming strings = on;

SELECT pg catalog.set config('search path', '', false);
SET check function bodies = false;

SET xmloption = content;

SET client min _messages = warning;

SET row_security = off;

SET default_tablespace = '';

SET default table access method = heap;

-- Name: t; Type: TABLE; Schema: public; Owner: student

CREATE TABLE public.t (
id numeric,
s text

)

ALTER TABLE public.t OWNER TO student;

-- Data for Name: t; Type: TABLE DATA; Schema: public; Owner: student

COPY public.t (id, s) FROM stdin;
1 Hi there!

2
3 \N
\.

-- PostgreSQL database dump complete

As an example, let’s copy the table into another database.

=> CREATE DATABASE backup_overview?2;

CREATE DATABASE

student$ pg_dump -d backup_overview --table=t | psql -d backup_overview2

SET
SET
SET
SET
SET
set config

(1 row)

SET

SET

SET

SET

SET

SET

CREATE TABLE
ALTER TABLE
COPY 3

student$ psql -d backup_overview2

| => SELECT * FROM t;

(3 rows)

Physical backup

What is physical backup
Cold and hot backups
Replication protocol
Standalone backup

Continuous WAL archiving

10

o)) PROFESSIONAL

Physical backup Pos{gres

Crash recovery mode: base backup + WAL

+ recovery speed

+ can recover to a certain point in time

— cannot recover a separate database, only the cluster as a whole

— can recover only on the same architecture and major PostgreSQL version

11

Physical backup uses the crash recovery mechanism. This requires:
» acopy of cluster files (base backup),
* a set of write-ahead logs needed to restore consistency.

If the file system is already consistent (the backup was made when the
server was stopped correctly), then the WALs are not required.

However, with WALSs together with the base backup, you can recover the
system state at any point in time. This way, the database can be recovered
to the state right before the crash (or at any moment before that, if needed).

High recovery speed and the ability to create a backup on the fly without
stopping the server make physical backup the main choice for routine
backup needs.

https://postgrespro.com/docs/postaresal/13/backup-file

https://postgrespro.com/docs/postgresgl/13/continuous-archiving

Hot or cold Pogga’?“ég

Cold backup Hot backup
The file system is the server is off the server was shut the server
backed up when... down incorrectly is running
required
WALSs not required required after the last required for the
checkpoint duration of the
backup creation
file system server must not
delete WALs too soon
12

Physical backup creates a copy of the file system at some point.

If the copy is created while the server is stopped, it’'s called a “cold backup”.
A cold backup either contains consistent data (if the server was shut down
correctly), or contains all the logs necessary for recovery (for example, if the
OS has done a data snapshot). This simplifies recovery, but requires that
the server is stopped.

If a copy is created while the server is running (which requires certain
additional actions since you can't copy files just like that), it is called a “hot
backup”. The process is more complicated, but can be performed without
stopping the server.

During a hot backup, the file system will be inconsistent. However, the crash
recovery mechanism can also be successfully applied to backup recovery.
This will require the WALSs for at least the time it takes to back up the OS
files.

o)) PROFESSIONAL

Standalone backup Posigres

A standalone backup contains both data files and WALs
Backup via pg_basebackup

connects to the server over the replication protocol

performs a checkpoint

copies the file system into a specified directory

saves all WAL segments generated during the copying process
Recovery

deploy the standalone backup
start the server

13

Hot backups are created with the pg_basebackup tool.
First, it performs a checkpoint. Then, the cluster file system is copied.

All WAL files generated by the server during the time from the checkpoint to
the end of file copying are also added to the backup. The resulting backup is
called standalone because it contains all the data necessary for recovery.

All you need to restore using a standalone backup is to deploy the backup
and start the server. It will use the WALSs to recover consistency on startup if
necessary, and will be ready to go.

https://postgrespro.com/docs/postgresql/13/app-pgbasebackup

o)) PROFESSIONAL

Replication protocol Pos{gres

Protocol

receiving the WAL stream
backup and recovery control commands

Managed by the wal_sender process
wal_level = replica

Replication slot

a server object that consumes WAL records
remembers which record was read last
WAL segments are not deleted until fully read through the slot

14

The replication protocol allows processes to connect to the server and
collect all WAL files generated during file copying. Despite the name, the
protocol is used not only for replication (which will be discussed in the next
topic), but also for backup. The protocol can stream WAL entries while data
files are being copied.

To prevent the server from deleting WAL files too early, the replication slot
can be employed.

Establishing a connection over the replication protocol requires a certain
configuration.

First, the initiating role must have the REPLICATION attribute (or be a
superuser). This role must also have the necessary permission in the
pg_hba.conf configuration file.

Second, the max_wal_senders parameter must be set sufficiently high. This
parameter limits the number of simultaneously running wal_sender
processes serving replication protocol connections.

Third, the wal_level parameter, which determines the amount of information
in the WAL, must be set to replica.

Starting from PostgreSQL 10, the default settings already satisfy all these
requirements (for a local connection).

https://postgrespro.com/docs/postaresqgl/13/protocol-replication

o)) PROFESSIONAL

Standalone backup Posigres

main server

select, insert o
update, delete &

A=]
(D N\

WAL segments @
base backup

+

wae [T]
HNIENER
LI T

15

The image on the left shows the main server. It processes incoming queries.
At the same time, WAL records are formed and the state of the databases
changes (first in the buffer cache, then on disk). WAL segments are
cyclically overwritten (that is, old segments are deleted as new ones are
created, since the file names are unique).

At the bottom of the picture is a backup archive (usually located on another
server). It contains a base copy of the data and a set of WAL files.

Standalone backup

The default configuration is sufficient for replication:

=> SELECT name, setting
FROM pg_settings
WHERE name IN ('wal_level', 'max_wal_senders');

name | setting
_________________ B
max_wal_senders | 10
wal level | replica
(2 rows)

The local connection permission for the replication protocol is also on in pg _hba.conf by default (not for all package
distributions):

=> SELECT type, database, user_name, address, auth_method
FROM pg_hba_file_rules()
WHERE 'replication' = ANY(database);

type | database | user name | address | auth method
------- L e LT T IS
local | {replication} | {all} | <null> | trust

host | {replication} | {all} | 127.0.0.1 | md5

host | {replication} | {all} | ::1 | md5

(3 rows)

Another database cluster, replica, has been initiated on the port 5433. Ubuntu has a stock tool we can use to verify that
the cluster is stopped:

student$ pg_lsclusters

Ver Cluster Port Status Owner Data directory Log file
13 main 5432 online postgres /var/lib/postgresql/13/main /var/log/postgresql/postgresql-13-main.log
13 replica 5433 down postgres /var/lib/postgresql/13/replica /var/log/postgresql/postgresql-13-replica.log

Create a backup. Use the default format (plain):

student$ sudo rm -rf /home/student/basebackup

student$ pg_basebackup --pgdata=/home/student/basebackup

Move the new backup into replica cluster directory (after making sure the cluster is stopped):
student$ sudo pg ctlcluster 13 replica status

pg ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/13/replica

student$ sudo mv /home/student/basebackup/ /var/lib/postgresql/13/replica
The cluster files must belong to the postgres user.

student$ sudo chown -R postgres:postgres /var/lib/postgresql/13/replica
Verify the contents:

student$ sudo 1s -1 /var/lib/postgresql/13/replica

total 336

SrW------- 1 postgres postgres 224 Mar 7 13:51 backup label
SrwW------- 1 postgres postgres 262059 Mar 7 13:51 backup manifest
drwx------ 8 postgres postgres 4096 Mar 7 13:51 base
drwx------ 2 postgres postgres 4096 Mar 7 13:51 global
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg commit ts
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg dynshmem
drwx------ 4 postgres postgres 4096 Mar 7 13:51 pg logical
drwx------ 4 postgres postgres 4096 Mar 7 13:51 pg multixact
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg notify
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg replslot
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg serial
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg_snapshots
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg_stat
drwx------ 2 postgres postgres 4096 Mar 7 13:51 pg stat tmp

postgres
postgres
postgres
postgres
postgres
postgres
postgres

postgres
postgres
postgres
postgres
postgres
postgres
postgres

4096
4096
4096

4096
4096
88

Mar
Mar
Mar
Mar
Mar
Mar
Mar

NN NN

13:
13:
13:
13:
13:
13:
13:

51
51
51
51
51
51
51

pg_subtrans
pg_tblspc
pg_twophase
PG_VERSION

pg wal

pg xact
postgresql.auto.conf

Recovery POQSF?%

main server backup server

—

select, insert select, insert
update, delete update, delete
AL] 1

WAL segments @ &
base backup

+

wae [T]
HNIENER
LI T

Y’
VAN

17

During recovery, the base backup, including the necessary WAL files, is
deployed, for example, on another server (shown on the right).

After the server starts, it restores consistency and is ready to go.
The system is recovered to the point in time when the backup was made.
Of course, the main server can go far ahead in the meantime.

Recovery from backup

When started, the cluster will begin recovery.
student$ sudo pg ctlcluster 13 replica start
Now both servers run concurrently and independently.
Main server

=> INSERT INTO t VALUES (4, 'Main server');
INSERT 0 1

=> SELECT * FROM t;

<null>

Server recovered from the backup:

student$ psql -p 5433 -d backup_overview
| => INSERT INTO t VALUES (4, 'Backup');
| INSERT 0 1

| => SELECT * FROM t;

WAL archive Po&a?s&

File archive

WAL segments are archived as they are filled
controlled by the server
archiving happens with a delay

Streaming archive

a stream of WAL records is continuously recorded into the archive
external tools required
delays are minimal

19

The hot backup concept can be improved upon even further. Since we have
a copy of the file system and WALSs, then by constantly saving new logs, we
will be able to restore the system not only at the time of copying files, but
also at any point in time after that.

There are two ways to go about it. The first is to archive old WAL files before
reusing them. There's a server setting for that. Unfortunately, with this
option, an incomplete WAL file will not be archived until the server switches
to writing to another WAL file.

The second way is to continuously read WAL entries using the replication
protocol and write them into the same archive. This way, delays are minimal,
but a separate tool is needed to receive the data stream and archive it.

WAL file archive Posigres

archiver process
Parameters

archive_mode = on

archive_command a shell command to copy a WAL segment
to a separate storage

Algorithm

when switching to a new WAL segment, the archive_command command is
called for the filled segment

if the command terminates with the status 0, the segment is deleted

if the command returns anything else (in particular, if the command is not
specified), the segment remains until the attempt is successful

20

The WAL files archive is managed by the archiver background process.

An arbitrary shell command to be used for copying can be defined in the
archive_command parameter. The mechanism itself is enabled by the
parameter archive_mode = on.

The algorithm goes as follows. When a WAL segment is filled, the copy
command is called. If it terminates with a 0 status, the segment can be
deleted safely. Otherwise, the segment (and the ones following it) will not be
deleted, and the server will periodically try to execute the command until it
returns O.

https://postgrespro.com/docs/postaresal/13/continuous-archiving

WAL file archive Posigres

main server

select, insert
update, delete
A= T
(archive_command

WAL archive m

+
base backup @

This figure shows the main server with continuous archiving set up. Filled
WAL segments are copied to a separate archive using the command defined
by the archive_command parameter. Usually, the archive is located on a
separate server, and it also stores the base backup (or several, from
multiple points in time).

21

Streamed WAL archive Posigres

pg_receivewal
connects over the replication protocol (can use a replication slot)
and streams WAL records into segment files

the starting position is the beginning of the segment following the last filled
segment in the directory, or the start of current segment, if the directory is
empty

unlike the file archive, records are added continuously

parameters have to be reconfigured when changing servers

22

Another solution is to use the pg_receivewal utility to write segments to the
archive using the stream replication protocol.

pg_receivewal usually runs on a separate “archive” server and connects to
the main server with the parameters specified in the command line keys.

It can (and should) use the replication slot in order to ensure that records
are not lost.

pg_receivewal generates files in the same way as the server does, and
writes them to the specified directory. Segments that have not yet been filled
up are written with the .partial prefix.

Archiving always starts from the beginning of the segment following the last
filled archive segment. If the archive is empty (first run), archiving starts
from the beginning of the current segment.

When switching to a new server, pg_receivewal must be stopped and
restarted with new parameters.

Note that the utility itself does not start automatically (as a service) and does
not run as a daemon.

https://postgrespro.com/docs/postgresql/13/app-pgreceivewal

Streamed WAL archive po%a?sg

main server
select, insert wal sender
update, delete
=]

LI T
gEENINEIN

WAL segments
u
(]
(T TT]
(LTI T
(LTI T]
LTI TT]
(T TTT]
(L ITTIT]

WAL archive

23

pg_receivewal connects to the server over the stream replication protocol.
The connection is handled by a separate wal sender process (this must be
taken into account when setting the max_wal_senders parameter).

pg_receivewal records data without waiting for the entire segment to be
received.

o)) PROFESSIONAL

Backup + archive Posigres

Configured continuous WAL archiving

Backup via pg_basebackup

connects to the server over the replication protocol

performs a checkpoint
are not required

copies the file system into a specified directory

Recovery

deploy the backup

set configuration parameters
(command to read WAL from the archive, set the target recovery point)

create a recovery.signal file

start the server

24

To create a backup with continuous archiving configured, the same
pg_basebackup tool is used, only with a different set of parameters. The
only difference is that the WAL files are not saved to the backup, since they
are already in the archive.

Recovery is more complicated in this case. In addition to deploying the base
backup, some recovery settings must be specified:

* restore_command parameter (inverse of archive_command, copies files
from the archive to the server),

* target recovery point.

In addition, a recovery.signal file is needed. If present at server startup, the
file tells the server to enter the managed recovery mode (the contents of the
file are ignored).

o)) PROFESSIONAL

Recovery Posggres

main server backup server
didn’t make it
into the archive

restore_command

LTI (T TT]
LI LTI
WAL segments D:‘DE
LTI

LTI

WAL archive

+
base backup @

The recovery procedure (for example, after main server crash) is performed
as follows. A base backup is deployed on another (or the same) server and
a recovery.signal file is created. The server starts up and starts reading WAL
segments from the archive using restore_command and applying them.

Note that during file archiving, the last unfilled WAL segment at the main
server will not be archived. However, the segment can be manually added to
the pg_wal directory on the backup server, if necessary. Of course, there
may be several such unarchived segments, but only in case of some kind of
failure during archiving.

25

o)) PROFESSIONAL

Recovery Posggres

main server backup server

= =

target
recovery point ﬁ
restore_command

LTI [T ITH I TTT 1]
LI LTI
WAL segments D:‘DE
LTI T
LTI

WAL archive D:‘jj:‘m

+
base backup @

The backup server reads WAL segments from the pg_wal directory and
applies them (in the absence of a segment, making an attempt to copy it
from the archive), ultimately bringing the state of the databases up to date.
The maximum possible loss is the last unfilled WAL segment that has not
been archived, and only if it cannot be copied manually for some reason.

By default, all available log entries are applied. If a target recovery point is
specified, recovery will stop after reaching it.

26

o)) PROFESSIONAL

Recovery Posggres

main server backup server

select, insert
update, delete

(] N\
archive_command \
CITTETIT] [TTTTTT] 4

waarchve L LT 1TT]

+
base backup @

After that, the backup server goes into normal operation: processing
incoming queries, archiving new WAL segments, and so on.

The recovered server can act as the primary server from now on, but in this
case it should be deployed on sufficiently powerful hardware in the first
place to avoid performance degradation.

27

o)) PROFESSIONAL

Takeaways Pos{gres

Logical backup
creates SQL commands to recover the state of database objects

copy command, pg_dump and pg_dumpall utilities

Physical backup
creates a copy of the cluster files + a set of WAL files

pg_basebackup utility

WAL segments archive

file or stream
can restore the system to an arbitrary point in time

28

Practice Pogga’?é%

1. Create a database and a table in it with several rows.
2. Make a logical backup of the database using pg_dump.
Delete the database and restore it from the backup you made.

3. Make an standalone physical backup of the cluster using
pg_basebackup.

Modify the table.

Recover into a new cluster from the backup you made and verify
that the recovered database does not contain any of the later
changes.

29

3. Areplica cluster has already been created in the training VM on port
5433. Use this cluster to recover into.

The cluster directory is located at /var/lib/postgresql/13/replica.
To connect, specify the port number: psql -p 5433

1. Database and table

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

You are now connected to database "backup overview" as user "student".
=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (1), (2), (3);

INSERT 0 3

2. Logical backup

Create a backup:

student$ pg_dump -f ~/backup_overview.dump -d backup_overview --create
Delete the database and restore it from the backup:

=> \c postgres

You are now connected to database "postgres" as user "student".

=> DROP DATABASE backup_overview;

DROP DATABASE

student$ psql -f ~/backup_overview.dump

SET
SET
SET
SET
SET
set config

(1 row)

SET

SET

SET

SET

CREATE DATABASE
ALTER DATABASE
You are now connected to database "backup overview" as user "student".
SET

SET

SET

SET

SET

set config

(1 row)

SET

SET

SET

SET

SET

SET

CREATE TABLE
ALTER TABLE
COPY 3

=> \c backup_overview
You are now connected to database "backup overview" as user "student".

=> SELECT * FROM t;

n

1
2
3
(3

rows)

3. Physical standalone backup

Create a backup:

student$ sudo rm -rf /home/student/basebackup

student$ pg_basebackup --pgdata=/home/student/basebackup

Make sure that the second server is stopped, then push the backup:

student$ sudo pg_ctlcluster 13 replica status

pg _ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/13/replica

student$ sudo mv /home/student/basebackup/ /var/lib/postgresql/13/replica
student$ sudo chown -R postgres:postgres /var/lib/postgresql/13/replica
Change the table:

=> DELETE FROM t;

DELETE 3

Start the server from backup:

student$ sudo pg_ctlcluster 13 replica start

student$ psql -p 5433 -d backup_overview

| => SELECT * FROM t;

n

1
2
3
(3

rows)

o)) PROFESSIONAL

Practice+ Posigres

1. Setup stream archiving on the main cluster using pg_receivewal.

2. Create an standalone backup of the main cluster (without WAL)
using pg_basebackup.

3. In the main cluster, create a database and a table in it.

4. Restore the replica cluster from the base copy using the archive.
Verify that the database and the table are also restored.

30

The replica cluster directory is /var/lib/postgresql/13/replica.

The current file recorded by pg_receivewal has the .partial suffix, and is
renamed at the end of recording. When recovering, use the partial file along
with the usual segments.

To connect to the replica cluster, specify the port number: psqgl -p 5433

1. Streaming archive

Note that some commands are executed as the postgres user, and some as student.

Create a catalog to store the WAL archive:

postgres$ mkdir /var/lib/postgresql/archive

Create a slot to avoid gaps in the archive:

postgres$ pg_receivewal --create-slot --slot=archive

Run the pg_receivewal tool in background. To do that, execute the following command in a separate terminal (or add & at the end of the command in the same terminal).
postgres$ pg_receivewal -D /var/lib/postgresql/archive --slot=archive

student$ sudo ls -1 /var/lib/postgresql/archive

total 16384

SrWe - 1 postgres postgres 16777216 Mar 7 13:55 000000010000000000000010.partial

2. Base backup without WAL

student$ pg_basebackup --wal-method=none --pgdata=/home/student/basebackup

NOTICE: WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup
3. New database and table

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

You are now connected to database "backup_overview" as user "student".
=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (1), (2), (3);

INSERT 0 3

4. Recovery configuration

Make sure that the second server is stopped and push the backup:

student$ sudo pg_ctlcluster 13 replica status

pg_ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/13/replica

student$ sudo mv /home/student/basebackup/ /var/lib/postgresql/13/replica

Use the partial segment during recovery as well:

student$ echo "restore_command = 'cp /var/lib/postgresql/archive/%f %p || cp /var/lib/postgresql/archive/%f.partial %p'" | sudo tee /var/lib/postgresql/13/replica/postgresql.auto.conf
restore command = 'cp /var/lib/postgresql/archive/%sf %p || cp /var/lib/postgresql/archive/%f.partial %p'
student$ touch /var/lib/postgresql/13/replica/recovery.signal

student$ sudo chown -R postgres:postgres /var/lib/postgresql/13/replica

Start the server and see the result:

student$ sudo pg_ctlcluster 13 replica start

student$ psql -p 5433 -d backup_overview

| => SELECT * FROM t;

n
1
2
3
3

(

rows)

Archiving is no longer necessary. Stop the tool and remove the slot so it does not get in the way of WAL recycling.
student$ sudo killall -9 pg_receivewal

postgres$ pg_receivewal --drop-slot --slot=archive

