Data organization
Tablespaces

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

Tablespaces and catalogs
Creating, modifying, and deleting tablespaces
Storing data in the file system

Moving data

o)) PROFESSIONAL

Tablespaces Posigres

pg_global object I
tablespace gl
ﬁL appdb %7 postgres
o " Tt e default
| object i | object 4 tablespace
tpgtﬁdefaun ‘ object m ‘ object m ‘ object m ‘ object m ‘
aplespace
tablespace ‘ obi m ‘ i m ‘ i m || ‘
ject object object object
~
default pg_catalog public schema pg_catalog public
tablespace
T

Tablespaces are used to organize the physical storage of data and
determine the location of data in the file system.

For example, one tablespace can be used on slow disks for archived data,
and another on fast disks with frequent activity.

On cluster initialization, two tablespaces are created: pg_default and
pg_global.

A tablespace can be used by multiple databases, and a database can use
multiple tablespaces at once.

Each database has a default tablespace where all database objects are
created (unless specified otherwise). System catalog objects are also stored
in the default tablespace. Databases will use the pg_default tablespace as
their default, unless another one is set by the user.

The pg_global tablespace is special as it stores only those objects that are
shared by the whole cluster.

https://postgrespro.com/docs/postgresgl/13/manage-ag-tablespaces

o)) PROFESSIONAL

Directories Posigres

pg_glObal object 1
tablespace || > PGDATA/global/
Cobject | | | object |
pg_default object | object || rrrrrrrrrrrr i
tablespace | - > PGDATA/base/dboid/
Ellegpaze || || """""""""""" > PGDATA/pg_tblspc/tsoid -,
"‘*/path—to—catalog/ver/dboid/
appdb postgres
L|:

Essentially, a tablespace is a reference to the directory in which the data is
located. The standard tablespaces pg_global and pg_default are always
located in PGDATA/global/ and PGDATA/base/, respectively. When a
custom tablespace is created, an arbitrary directory can be specified.

For convenience, PostgreSQL also creates a symbolic link to the directory in
PGDATA/pg_tblspc/.

The PGDATA/base/ directory comprises different directories for each
database (unlike PGDATA/global/, which stores data referring to the whole
cluster).

Inside a custom tablespace directory, there is another level of directories for
different PostgreSQL server versions. This is helpful during server upgrade.

Finally, these directories are where the actual objects are stored, one or
more files per object.

Service tablespaces

Upon a cluster creation, two tablespaces are generated:

=> SELECT * FROM pg_tablespace;

oid | spcname | spcowner | spcacl | spcoptions
------ B T S R
1663 | pg_default | 10 | |

1664 | pg global | 10 | |

(2 rows)

e pg global — shared cluster objects,
e pg default — the tablespace to be used as default.

Custom tablespaces

A new tablespace needs an empty directory owned by the user postgres.
student$ sudo mkdir /var/lib/postgresql/ts_dir

student$ sudo chown postgres /var/lib/postgresql/ts_dir

Now, a new tablespace can be created:

=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir';
CREATE TABLESPACE

The following psql command returns a list of all tablespaces:

=> \db
List of tablespaces
Name | Owner | Location

............ o
pg default | postgres |

pg global | postgres |

ts | student | /var/lib/postgresql/ts dir
(3 rows)

Each database has a “default” tablespace. Let’s create a database and assign ts as its default:

=> CREATE DATABASE appdb TABLESPACE ts;

CREATE DATABASE

This makes all tables and indexes created within the database fall into ts, unless specified otherwise.
Connect to the database:

=> \c appdb

You are now connected to database "appdb" as user "student".

Create a table:

=> CREATE TABLE t1(
id integer GENERATED ALWAYS AS IDENTITY,
name text

);

CREATE TABLE
When creating objects, you may explicitly specify a tablespace for it:

=> CREATE TABLE t2(
n numeric
) TABLESPACE pg_default;

CREATE TABLE

=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

t1 |
t2 | pg_default
(2 rows)

An empty tablespace field means that the default tablespace is used. The second table has this field filled in.

Another way to assign a tablespace without defining it at object creation is to preemptively set it as the default tablespace
parameter value.

A single tablespace may contain objects from multiple databases.

=> CREATE DATABASE configdb;

CREATE DATABASE

This database’s default tablespace will be pg default.

=> \c configdb

You are now connected to database "configdb" as user "student".

=> CREATE TABLE t(
n integer
) TABLESPACE ts;

CREATE TABLE

Managing objects within tablespaces

Tables (and other objects, such as indexes) can be moved between tablespaces.

=> \c appdb

You are now connected to database "appdb" as user "student".

=> ALTER TABLE tl1 SET TABLESPACE pg_default;

ALTER TABLE

=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

t2 | pg_default
tl | pg_default
(2 rows)

You can move all objects from one tablespace to another:

=> ALTER TABLE ALL IN TABLESPACE pg_default SET TABLESPACE ts;

ALTER TABLE

=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

tl |
(2 rows)

Keep in mind that moving objects between tablespaces (unlike moving between schemas) is a physical operation that
involves moving actual files from one catalog to another. Access to the moved objects is completely blocked for the
duration of the operation.

Tablespace size

We already know how to find the size of a database. Now, we can learn how to get the size of objects in a tablespace:
=> SELECT pg_size_pretty(pg_tablespace_size('ts'));

pg size pretty

7997 kB
(1 row)

Why is the size large, despite the tablespace containing just a few empty tables?

This is because ts is the default tablespace for the database appdb, so it is where the system catalog objects are stored,
occupying the mysterious space.

The psql command to get the size of a tablespace is:

=> \db+
List of tablespaces

Name | Owner | Location | Access privileges | Options | Size | Description
------------ ks e ik L T e
pg default | postgres | | | | 38 MB |
pg_global | postgres | | | | 575 kB |
ts | student | /var/lib/postgresql/ts dir | | | 7997 kB |
(3 rows)

Dropping a tablespace

You can only delete a tablespace that is empty:
=> DROP TABLESPACE ts;
ERROR: tablespace "ts" is not empty

Unlike with schemas, there is no keyword CASCADE in the DROP TABLESPACE command. Objects within the tablespace
may belong to multiple databases, while we are only connected to one.

You can still learn what databases contain dependant objects. This is where the system catalog comes in.
First, find and save the tablespace ID:

=> SELECT oid FROM pg_tablespace WHERE spcname = 'ts';

Next, get a list of databases which have objects in the tablespace we want to remove:

=> SELECT datname
FROM pg_database
WHERE oid IN (SELECT pg_tablespace_databases(16498));

datname

configdb
appdb
(2 rows)

Then, connect to each of the databases and get a list of objects from pg class:
=> \c configdb
You are now connected to database "configdb" as user "student".

=> SELECT relnamespace::regnamespace, relname, relkind
FROM pg_class
WHERE reltablespace = 16498;

relnamespace | relname | relkind

public t | r
(1 row)

The table is no longer needed, drop it.
=> DROP TABLE t;
DROP TABLE

Now, for the second database. Since ts is the default tablespace, the tablespace ID of the objects in pg class equals zero.
These are the system catalog objects, as we already know:

=> \c appdb

You are now connected to database "appdb" as user "student".

=> SELECT count(*) FROM pg_class WHERE reltablespace = 0;

You can set another tablespace as default. This will move all the tables from the old one into the new one. You need to
disconnect from the database first.

=> \c postgres

You are now connected to database "postgres" as user "student".
=> ALTER DATABASE appdb SET TABLESPACE pg_default;

ALTER DATABASE

Finally, the tablespace can be deleted.

=> DROP TABLESPACE ts;

DROP TABLESPACE

o)) PROFESSIONAL

Takeaways Pos{gres

Tablespaces organize physical data storage

Logical (databases, schemas) and physical (tablespaces) forms
of data separation are independent

o)) PROFESSIONAL

Practice Posigres

Why does pg_default become the default tablespace when creating a
database without specifying the TABLESPACE keyword?

1. Create a new tablespace.
2. Set it as the default tablespace for the templatel database.

3. Create a new database.
Check which default tablespace is set for the new database.

4. Find the symbolic link to the tablespace catalog in PGDATA.
5. Delete the created tablespace.

1. A new tablespace

student$ sudo mkdir /var/lib/postgresql/ts_dir
student$ sudo chown postgres /var/lib/postgresql/ts_dir
=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir"';

CREATE TABLESPACE

2. The default tablespace for templatel

=> ALTER DATABASE templatel SET TABLESPACE ts;

ALTER DATABASE

3. A new database, verification

=> CREATE DATABASE db;
CREATE DATABASE

=> SELECT spcname
FROM pg_tablespace
WHERE oid = (SELECT dattablespace FROM pg_database WHERE datname = 'db');

SpcCname

ts
(1 row)

The default tablespace is ts.

Conclusion: the default tablespace is determined by the template from which the new database is cloned.

4. Symbolic links

=> SELECT oid AS tsoid FROM pg_tablespace WHERE spcname = 'ts';

student$ sudo 1s -1 /var/lib/postgresql/13/main/pg_tblspc/16703

lrwxrwxrwx 1 postgres postgres 26 Mar 7 13:54 /var/lib/postgresql/13/main/pg tblspc/16703 -> /var/lib/postgresql/ts dir

5. Drop the tablespace

=> ALTER DATABASE templatel SET TABLESPACE pg_default;
ALTER DATABASE

=> DROP DATABASE db;

DROP DATABASE

=> DROP TABLESPACE ts;

DROP TABLESPACE

Practice+ Pogga’?“ég

1. Set the random_page_cost parameter for the pg_default
tablespace to 1.1.

1. Use the ALTER TABLESPACE ... SET command:
https://postgrespro.com/docs/postgresql/13/sql-altertablespace

The seq_page_cost and random_page_cost parameters are used by the
planner. They refer to the approximate cost of reading one page of data from
disk with sequential and random access, respectively.

The lower the ratio between these parameters, the more often the planner
will prefer index access over sequential table scanning.

The parameters *_cost and, more specifically, random_page_cost are
discussed in more detail in the “Query performance tuning” course (QPT).

1. Setting the random_page_cost for a tablespace

The default seq page cost and random page cost values are better suited for slower HDD drives. It is assumed that
random page access is four times as costly as sequential page access:

=> SELECT name, setting
FROM pg_settings
WHERE name IN ('seq_page_cost','random_page_cost');

name | setting
__________________ e
random page cost | 4
seq_page cost | 1

(2 rows)

If you use drives with different properties, you can create different tablespaces with appropriate seq page cost and
random page cost values for each. For example, quick SSD drives can have the random page cost value almost as low as
seq_page cost.

=> ALTER TABLESPACE pg_default SET (random_page_cost = 1.1);
ALTER TABLESPACE

Configuration adjustments made using the ALTER TABLESPACE command are stored in the pg tablespace table. You can
view them in psql with the command:

=> \db+
List of tablespaces
Name | Owner | Location | Access privileges | Options | Size | Description
------------ e T e T L
pg _default | postgres | | | {random_page cost=1.1} | 31 MB |
pg global | postgres | | | | 575 kB |

(2 rows)

The * cost parameters can also be set in postgresql.conf. This will apply them to all tablespaces.

