
  

 

Architecture
PostgreSQL overview

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is 
allowed without restrictions. Commercial use is possible only with the written 
permission of Postgres Professional. It is prohibited to make changes to the 
course materials.

Feedback
Please send your feedback, comments and suggestions to: 
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and 
losses, including loss of income, caused by direct or indirect, intentional or 
accidental use of course materials. Postgres Professional company 
specifically disclaims any warranties on course materials. Course materials 
are provided “as is,” and Postgres Professional company has no obligations 
to provide maintenance, support, updates, enhancements, or modifications. 



  

 

2

Topics

Client-server protocol
Transactionality and its implementation
Query processing and execution
Processes and memory structures
Storing data on disk and disk operations
System extensibility



  

 

3

Client and server

connection authentication
query generation query execution

transaction management transactionality control

protocol

PostgreSQL
Python client

ps
yc

op
g2

Java client

JD
B

C
SQL client

lib
pq

A client application, such as psql or any other program written in any 
programming language, connects to the server and “communicates” with it 
in one way or another. In order for the client and the server to understand 
each other, they must use the same communication protocol. Usually, the 
client uses a driver that implements the protocol and provides a set of 
functions to use in the program. Internally, the driver can use the standard 
protocol implementation (the libpq library), or can implement the protocol 
itself.
The language the client is written in is unimportant, as the functionality 
behind the syntax is defined by the protocol. As an example, we will use the 
SQL language and the psql client. Of course, no one really would program
a client in SQL, but we will use it here purely for educational purposes.
It should not be that difficult to substitute any of the SQL commands 
provided below with corresponding statements in your programming 
language of choice.
Generally speaking, a connection protocol allows the client to connect to a 
database in a cluster. The server performs authentication: decides if the 
client should be allowed to connect, i.e. by demanding a password.
Then, the client sends the server queries in the SQL language, the server 
executes the queries and sends back the results. A powerful and convenient 
query language is one of the fundamentals of relational databases.
Another one is the ability to maintain consistency between transactions.
https://postgrespro.com/docs/postgresql/13/protocol



  

 

4

Transactions

client
application

PostgreSQL

dr
iv

er

atomicity — everything or nothing
consistency — integrity constraints and user constraints
isolation — parallel processes impact
durability — no data loss after a failure

operations
COMMIT /

ROLLBACK;

BEGIN;

PostgreSQL

A transaction is a sequence of operations that preserves the consistency of 
data, provided that the operations are performed completely and without 
interference from other transactions.
Transactions must satisfy four properties collectively known as ACID:
● Atomicity. A transaction is either completed in full or not completed at all. 

To that end, the beginning of a transaction is marked with the BEGIN 
command, and the end with either COMMIT (commit changes) or 
ROLLBACK (undo changes).

● Consistency. Transactions move the database from one consistent state 
to another consistent one (consistency here means that certain 
restrictions are fulfilled).

● Isolation. Transactions running simultaneously should not affect each 
other.

● Durability. Once data is committed, it should not be lost even after a 
server failure.

In PostgreSQL, the client application is the side usually responsible for 
transaction management (that is, for determining what commands make up 
a transaction, and for committing or canceling the transaction).
Transactions can also be managed on the backend by stored procedures.
https://postgrespro.com/docs/postgresql/13/sql-begin
https://postgrespro.com/docs/postgresql/13/sql-savepoint



Transaction	management

By	default,	psql	runs	in	autocommit	mode:

=>	\echo	:AUTOCOMMIT

on

It	means	that	any	command	is	committed	immediately	unless	the	transaction	is	explicitly	opened	and	not	closed.

Check	if	the	PostgreSQL	driver	for	your	favorite	programming	language	has	this	option	on	by	default.

Create	a	table	with	one	row:

=>	CREATE	TABLE	t(
		id	integer,
		s	text
);

CREATE	TABLE

=>	INSERT	INTO	t(id,	s)	VALUES	(1,	'foo');

INSERT	0	1

Will	another	transaction	see	the	table	and	the	row?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
(1	row)

Yes,	it	will.	Compare	the	result:

=>	BEGIN;	--	explicitly	open	a	transaction	

BEGIN

=>	INSERT	INTO	t(id,	s)	VALUES	(2,	'bar');

INSERT	0	1

What	will	the	other	transaction	see	now?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
(1	row)

The	changes	are	not	yet	committed	so	the	other	transaction	does	not	see	them.

=>	COMMIT;

COMMIT

What	about	now?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
(2	rows)

When	autocommit	is	off,	a	transaction	is	implicitly	opened	upon	command	input.	The	command	then	must	be	committed
manually.

=>	\set	AUTOCOMMIT	off

=>	INSERT	INTO	t(id,	s)	VALUES	(3,	'baz');

INSERT	0	1

What	do	we	see	now?



=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
(2	rows)

The	changes	are	not	there,	as	the	transaction	was	opened	and	never	closed.

=>	COMMIT;

COMMIT

Now,	finally:

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
(3	rows)

Turn	the	default	autocommit	mode	back	on.

=>	\set	AUTOCOMMIT	on

You	can	roll	changes	back	without	interrupting	a	transaction	(however,	it	is	not	often	necessary).

=>	BEGIN;

BEGIN

=>	SAVEPOINT	sp;

SAVEPOINT

=>	INSERT	INTO	t(id,	s)	VALUES	(4,	'qux');

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	qux
(4	rows)

Note	how	the	transaction	sees	its	own	changes,	even	the	uncommitted	ones.

Now,	roll	back	to	the	save	point.

Rollback	is	done	without	transferring	control	over	the	transaction	(unlike	GOTO).	Only	the	changes	done	from	the	moment
the	save	point	was	made	and	until	the	rollback	command	are	rolled	back.

=>	ROLLBACK	TO	sp;

ROLLBACK

Check	the	table:

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
(3	rows)

The	changes	have	been	rolled	back,	but	the	transaction	is	still	open:

=>	INSERT	INTO	t(id,	s)	VALUES	(4,	'xyz');

INSERT	0	1

=>	COMMIT;



COMMIT

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	xyz
(4	rows)



  

 

6

Query execution

client
application dr

iv
er

parsing ← system catalog
rewriting ← rules
planning ← statistics
execution ← data

query
result

PostgreSQL

Query execution is complicated. First, a query is sent from a client to the 
server as text. The server parses the text, analyzing its syntax (whether 
letters are formed into words, and words into commands) and semantics 
(whether there are tables and other objects in the database that the query 
refers to by name). To do that, the server needs data on what is actually 
stored in the database. This meta-data is called the system catalog and is 
stored in special tables in the same database.
A query can be rewritten (transformed). For example, a view name can be 
substituted with the query text. Users can implement their own 
transformations using the rule system.
SQL is a declarative language: a query defines what data to get, but not how 
to get it. It is at this point when the query (already parsed and presented in 
the form of a tree) is passed on to the planner, which develops an execution 
plan. For example, the planner can decide whether or not to use indexes to 
find the data for the query. To plan the execution efficiently, the planner 
needs certain information about the tables it is going to work with, such as 
the size of the tables and the distribution of data within them. Together, this 
information is called statistics.
When a plan is selected, the query is executed in accordance with it, and 
the result is returned to the client in its entirety.
This is convenient and simple when we're talking about just a row or two, 
but it can quickly become problematic with large outputs.



  

 

7

Prepared statements

client
application dr

iv
er

parsing
rewriting

binding ← parameter values
planning
execution

bonding
result

preparation

PostgreSQL

Each query goes through the steps listed above: parsing, rewriting, planning 
and execution. But if the same query (possibly with different parameters) is 
executed over and over again, there is no point in parsing it anew every 
time.
Therefore, in addition to the usual query execution process, the PostgreSQL 
protocol provides an extended mode that can control statement execution 
more precisely.
One of its features is the ability to prepare a statement. When a statement is 
prepared, it is parsed and rewritten as usual and its parse tree is saved.
When the statement is executed, specific parameter values are bound to it. 
If necessary, planning is redone (in some cases, PostgreSQL remembers 
the query plan and does not repeat this step). Then, the statement is 
executed.
Another advantage of prepared statements is that they are protected from 
possible SQL injections.
https://postgrespro.com/docs/postgresql/13/sql-prepare
https://postgrespro.com/docs/postgresql/13/sql-execute



Prepared	statements

In	SQL,	you	can	prepare	a	statement	by	using	the	PREPARE	command	(it	is	a	PostgreSQL	extension	not	present	in	the
SQL	standard):

=>	PREPARE	q(integer)	AS
		SELECT	*	FROM	t	WHERE	id	=	$1;

PREPARE

The	statement	is	parsed	and	rewritten,	and	the	parse	tree	is	saved.

A	prepared	statement	can	be	called	by	its	name	using	arbitrary	parameters:

=>	EXECUTE	q(1);

	id	|		s		
----+-----
		1	|	foo
(1	row)

For	non-parametric	statements,	an	execution	plan	is	saved	as	well.	If	the	statement	does	accept	parameters,	like	in	our
case,	the	planner	takes	their	actual	values	into	account.	If	the	planner	decides	that	the	generic	plan	it	has	built	without
considering	any	parameters	is	no	worse	than	the	parameterised	one,	it	will	stop	trying	to	make	new	plans	for	the
statement	altogether.

How	do	you	prepare	a	statement	in	your	favorite	programming	language?
Can	you	execute	a	statement	WITHOUT	preparing	it?

All	prepared	statements	can	be	found	in	the	following	view:

=>	SELECT	*	FROM	pg_prepared_statements	\gx

-[	RECORD	1	]---+---------------------------------
name												|	q
statement							|	PREPARE	q(integer)	AS											+
																|			SELECT	*	FROM	t	WHERE	id	=	$1;
prepare_time				|	2024-03-07	13:48:44.424036+03
parameter_types	|	{integer}
from_sql								|	t



  

 

9

Cursors

client
application

PostgreSQL

dr
iv

er

parsing
rewriting

binding ← parameter values
planning
execution

output

preparation

result

result

bonding

PostgreSQL

The client may not want to get all the output at once. There can be too much 
data, and not all of it may be needed.
This issue is solved by cursors, another feature of the extended mode. The 
protocol can open a cursor for any operator, and then receive the output row 
by row.
A cursor can be imagined as a sliding window that shows only a part of the 
output at a time. When an output row is received, the window shifts down.
In other words, cursors allow you to work with relational data (that comes in 
sets) iteratively, row by row.
An open cursor is represented on the server by a so-called portal. This term 
is mentioned in the documentation, but in general, the words “cursor” and 
“portal” can be considered synonyms.
A statement used within a cursor is implicitly prepared (that is, its parsing 
tree and possibly execution plan are saved).
https://postgrespro.com/docs/postgresql/13/sql-declare
https://postgrespro.com/docs/postgresql/13/sql-fetch



Cursors

A	regular	SELECT	command	returns	all	rows	at	once:

=>	SELECT	*	FROM	t	ORDER	BY	id;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	xyz
(4	rows)

Cursors	are	used	to	output	data	in	batches.

=>	BEGIN;

BEGIN

=>	DECLARE	c	CURSOR	FOR
		SELECT	*	FROM	t	ORDER	BY	id;

DECLARE	CURSOR

=>	FETCH	c;

	id	|		s		
----+-----
		1	|	foo
(1	row)

You	can	set	the	size	of	the	batch:

=>	FETCH	2	c;

	id	|		s		
----+-----
		2	|	bar
		3	|	baz
(2	rows)

This	is	important	for	long	outputs,	as	processing	them	row	by	row	is	inefficient.

What	if	we	reach	the	end	of	the	table?

=>	FETCH	2	c;

	id	|		s		
----+-----
		4	|	xyz
(1	row)

=>	FETCH	2	c;

	id	|	s	
----+---
(0	rows)

FETCH	will	just	stop	returning	rows.	All	regular	programming	languages	have	a	way	to	check	for	this	condition.

How	would	you	fetch	data	row	by	row	with	a	cursor	in	your	programming	language?
Can	you	get	all	the	rows	at	once	without	using	a	cursor?
How	do	you	set	the	cursor	batch	size?

You	can	close	your	cursor	when	done,	freeing	up	some	resources:

=>	CLOSE	c;

CLOSE	CURSOR

However,	cursors	close	automatically	on	transaction	completion,	so	you	don’t	need	to	close	them	explicitly	(except	for
cursors	initiated	with	the	WITH	HOLD	key.)

=>	COMMIT;



COMMIT



  

 

11

backend

Processes and memory

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

local
memory

parsed queries,
cursor states,

system catalog cache,
space for sorting,

joining etc.

Between processing queries from clients, the server must store technical 
information, such as parsed queries and their plans and the status of open 
cursors (portals). But where is it stored and how?
Under the hood, a PostgreSQL server consists of several interacting 
processes.
First of all, when the server starts, a process traditionally called postmaster 
is started. It starts all other processes (using the fork system call in Unix).
It also “babysits” them: if any of the processes crashes, postmaster will 
restart it (or restart the entire server if it considers that the failed process 
could have damaged any of the shared data).
Operations of the server are maintained by a number of background 
processes. The main ones will be discussed in later topics.
In order for the processes to exchange information between them, 
postmaster allocates shared memory that all the processes can access.
In addition to shared memory, each process has its own local memory, 
accessible only to itself.
Postmaster also listens for incoming connections. For each connecting 
client, postmaster generates a designated backend process for the client to 
communicate with on the server side, and each client gets its own process.
The space required to execute a client’s query (parsed queries 
and their plans, cursor states, system catalog cache, a place to sort data, 
etc.) is allocated in the local memory of the backend process of this client.



  

 

12

Multiple clients

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

MVCC

locks

When multiple clients connect to a server, each one gets a backend process 
created for it. As long as there are not too many clients, RAM is sufficient, 
and connections do not occur too often, sustaining many connections at 
once isn't a problem in itself.
However, when multiple processes try to access the same database object, 
things must be done to ensure that one process will not change the data 
while another is in the process of reading it.
For objects in shared memory, this is ensured by short-term locks. 
PostgreSQL does this carefully enough so that the system scales well with 
an increase in the number of processors (cores).
Tables are more complicated. Locks will have to be held until the end of 
transactions (that is, potentially for a long time), so scalability may suffer. To 
avoid that, PostgreSQL uses a multiversion concurrency control mechanism 
(MVCC) and snapshot isolation: multiple versions of the same data can exist 
simultaneously, and each process sees only its own (but always consistent) 
data snapshot. Now, only those processes that are trying to change data 
that has already been changed, but not yet committed by other processes, 
will be locked.
MVCC is the main mechanism that enables the first three properties of 
transactions (atomicity, consistency, and isolation). We will talk about it more 
in its dedicated topic.



  

 

13

Connection pool

client
application

PostgreSQL

postmaster

background processes

shared memory

backendpool

If there are too many clients, or connections are established 
and broken too often, using a connection pool may help. This functionality is 
usually provided by the application server or third-party pool managers (the 
most popular of which is PgBouncer).
With a connection pool in place, clients connect not to the PostgreSQL 
server directly, but to the pool manager. The manager keeps several 
connections to the database server open and uses free ones to fulfill client 
queries. From the server's point of view, the number of clients remains 
constant regardless of how many clients access the pool manager.
The drawback is that multiple clients end up sharing the same backend 
process, which, as we remember, stores client-specific state in its local 
memory (such as parsed queries for prepared statements). Therefore, care 
should be taken when developing applications for such deployments.
The use of connection pools is discussed in greater detail in the DEV2 
course.



  

 

14

Data storage

header

data

buffer cache

page
(usually 8 KB)

file

Data is stored as regular OS files on disks. How exactly the data is 
distributed among the files is discussed in the topic “Low level”.
Logically, the files are divided into pages (sometimes the term block is 
used). A page is usually 8 KB in size. It can be changed within some limits 
(16 KB or 32 KB), but only during server compilation. A cluster that has been 
compiled and started up can work with pages of only one size.
Each page has a certain internal structure. It contains a header and actual 
data. There may be free space between them if the page is not fully 
occupied.
Since disks work much slower than RAM (especially HDD, but SSD too), 
data heading to disk and back is cached first. A buffer cache, a certain 
amount of space in RAM, is allocated for recently read pages. The idea is 
that the system may want to read the same pages multiple times, and 
keeping them on hand may save time compared to repeated disk scans. 
Any recently changed data is also cached for some time before being 
written on disk.



  

 

15

Data storage

client
application

OS

WAL

PostgreSQL
postmaster

background processes

shared memory

buffer cache

cache

backend

The PostgreSQL buffer cache is located in shared memory so that all 
processes have access to it.
PostgreSQL doesn't directly access disks storing its data. Instead, it relies 
on the operating system. The operating system also has its own data cache. 
Therefore, if a page is not found in the buffer cache, there is a chance that it 
is in the OS cache and access to the disk will be avoided.
In case of a failure (for example, power supply dies), the contents of the 
RAM are lost and the data changed but not yet written to disk will be lost. 
This is unacceptable and breaks the durability property of transactions. To 
avoid that, PostgreSQL keeps a log that allows it to redo lost operations and 
restore data to a consistent state. We will talk about the buffer cache and 
the write-ahead log in the dedicated topic later on.



  

 

16

OS

Extensibility

client
application

PostgreSQL

postmaster

background processes

backend

shared memory

background
workers

programming 
languages

кеш

index
types

data
types

functions,
operators,

triggers

FDW

PostgreSQL is designed with extensibility in mind.
An application developer can create their own data types based on existing 
ones (composite types, ranges, arrays, enumerations) and stored functions 
for data processing (including triggers for specific events).
And with the C programming language, extensions can be developed to add 
arbitrary functionality to the system. Most extensions can be installed “hot”, 
without stopping the server. Thanks to this architecture, there are plenty of 
existing extensions doing things such as:
● adding support for programming languages (in addition to standard SQL, 

PL/pgSQL PL/Perl, PL/Python and PL/Tcl),
● introducing new data types and operators to work with them,
● creating new index types that work more efficiently with specific data 

types (in addition to standard B-trees, GiST, SP-GiST, GIN, BRIN, 
Bloom),

● interfacing with external systems using foreign data wrappers (FDW),
● starting background workers to perform periodic tasks.
Extensibility is discussed in more detail the DEV2 course.



  

 

17

Takeaways

A server manages a database cluster
The protocol allows clients to connect to the server, transmit 
queries and manage transactions
Each client is served by a dedicated backend process
Data is stored in files and accessed via the operating system

Data is cached both in local memory (system catalog, parsed 
queries) and in shared memory (buffer cache)


