Access control
Connection and authentication

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics pogéa?sg

Configuration files
Simple authentication methods
Password-based authentication

External authentication and name mapping

Steps during connection Pogga’?“é“g

Identification

identify the database user name
the name may differ from the one specified (for external authentication)

Authentication

is the user really who they claim they are?
some sort of confirmation is usually required (e.g., a password)

Authorization

is this user allowed to connect to the server?
partially overlaps with privileges

When a client initiates a connection, the server must perform several tasks.

Firstly, the server must identify the user, that is, determine their user name.
To do this, the server asks the user to provide their user name. The
specified name may differ from the name of the database user (for example,
if the user is registered under their OS user name).

Next, the server authenticates the user, or verifies that they are who they
claim to be. A simple way to achieve that is by requesting a password.

Lastly, the server authorizes the user, that is, determines whether they are
allowed to connect to the server (this task is partially overlapped with
privileges).

All three tasks are often referred to as “authentication”. PostgreSQL offers
significant flexibility when it comes to configuring the authentication process.

So far, we've been connecting to the server without any sort of
authentication. In Ubuntu, the default settings allow users to connect to a
local server without authorization, if the database user name matches the
OS user name. Additionally, in the course VM, PostgreSQL is additionally
configured to allow any local connections.

o)) PROFESSIONAL

General configuration Posigres

pg_hba.conf

the configuration file, has to be reloaded for any changes to apply
lines are composed of fields, space or tab-separated
empty lines and any text after a comment sign (#) are ignored

Fields

connection type
database name)
connection parameters
user name
host address
authentication method

optional parameters in the key=value format

Authentication settings are stored in a configuration file. The file functions in
a similar way to postgresql.conf, but has a different format. The file is called
pg_hba.conf (from “host-based authentication”). Its location is determined by
the hba_file parameter. For any changes made to the configuration to apply,
the file must be reloaded (by using pg_ctl reload or calling the
pg_reload_conf function).

The pg_hba.conf file contains a number or lines, each constituting a
separate record. Empty lines and comments (anything after a # sign) are
ignored. A line contains a number of fields separated by tabs or spaces.

The number of fields may vary depending on the type of content. See the
slide for details.

https://postgrespro.com/docs/postgresql/13/auth-pg-hba-conf

o)) PROFESSIONAL

Processing the file Posigres

Records are read from top to bottom

The first record that corresponds to the attempted connection
(type, database, user, and address) is applied

authentication and verification of the CONNECT privilege are performed
if the result is negative, access is denied
if none of the records correspond to the connection parameters, access is

denied

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only

local all all trust
IPv4 local connections:

host all all 127.0.0.1/32 trust
IPv6 local connections:

host all all ::1/128 trust

The configuration file is processed from top to bottom. Each record is
matched against the parameters of the connection requested by the client
(by checking the connection type, database name, user name and IP
address). If a corresponding record is found, the authentication method
specified in the record is performed. Upon successful authentication, the
connection is permitted, otherwise it is denied (no other records are checked
after this point).

If no records correspond to the connection parameters, access is also
denied.

Thus, the records in the file should go from top to bottom from more specific
to more general.

At the bottom of the slide is a fragment of the default file you end up with
when building from source (may be different when installing from a
package). In this example, there are three records. The first one refers to
local non-TCP connections (local) for all databases (all) and users (all). The
second one is for remote connections (host) from the address 127.0.0.1
(localhost), and the third is the same, but for IPv6.

So, by default PostgreSQL allows only local connections (including local
network connections).

Some of the possible field values are discussed more closely later in this
topic.

pg_hba.conf contents

Location of the configuration file:

=> SHOW hba_file;

hba file

/etc/postgresql/13/main/pg_hba.conf

(1 row)

View the file (without comments and empty strings):

student$ sudo egrep

local all
local all
host all
host all
local replication
host replication
host replication

postgres
all
all
all
all
all
all

'"~["*#]' /etc/postgresql/13/main/pg_hba.conf

127.0.0.1/32
1:1/128

127.0.0.1/32
::1/128

trust
trust
md5
md5
trust
md5
md5

When configuring the virtual machine, we have made some changes to the default pg hba.conf. Namely, the method peer
was changed to trust, so that alice, bob and charlie could connect locally under the OS user student.

(;2 OOOOOOOOOOOOO

Connection parameters

Connection type
Database name
Host address

Role name

o)) PROFESSIONAL

Connection type Pos{gres

local
local connection via a Unix domain socket

host

TCP/IP connection

(usually the listen_addresses parameter has to be changed)
hostssl

encrypted SSL connection over TCP/IP

(the server must be compiled with SSL support, and the ssl parameter must
be set)

hostnossl

unencrypted TCP/IP connection

The connection type field contains one of the values listed below.

“local” allows a local connection via a Unix domain socket (without using a
network connection).

“host” allows any TCP/IP connection. Since by default PostgreSQL listens to
connections only from the local address (localhost), you will most likely need
to set a different address using the listen_address server parameter.

“hostssl” allows only an encrypted SSL connection over TCP/IP.
Such connections require that the server is complied with SSL support.
In addition, you need to set the ss/ = on parameter.

“hostnossl” allows only unencrypted TCP/IP connections.

Database name Pogga’?“ég

all

connecting to any database

sameuser
a database which name matches the user role name

samerole
a database which name matches the user role name or a group name that the
user is a member of

replication
a special permission for the replication protocol

database
a specific database name (may be in quotes)

name[,name...]
several names from the list

In the database field, you can specify one of the values listed below, or
several such values separated by commas.

The word “all” corresponds to any database.

The word “sameuser” corresponds to a database that matches the user
name.

The word “samerole” corresponds to a database that matches the name of
any role that the user is a member of (including the user's own, since the
user is also a role).

Any specific database name can be listed here, too.

A list of database names can be stored in an external file and linked to using
the @ sign. The external file can store names separated by commas,
spaces, tabs or line breaks. Nested file links (@) and comments (#) are
allowed.

o)) PROFESSIONAL

Host address Posigres

all
any IP address

IP address/mask_length
specified IP address range (i.e. 172.20.143.0/24)
or an alternative form with two fields (172.20.143.0 255.255.255.0)

samehost
server IP address

samenet
any IP address from any subnet to which the server is connected

domain_name
the IP address matching the specified name (i.e. domain.com)
any part of name can be specified, starting with a dot (.com)

10

The address field may contain one of the following values.
“all” corresponds to any client IP address.

IP address with a subnet mask length (CIDR) defines the range of valid IP
addresses. Alternatively, the IP address can be specified in one field and the
subnet mask in the next. IP addresses in the IPv6 notation are also
supported.

“samehost” corresponds to the IP address of the server (this is an
alternative of 127.0.0.1 for systems where such an address is not allowed).

“samenet” corresponds to any IP address from any subnet to which the
server is connected.

Lastly, the address can be specified as a domain name (or a part of it,
starting with a dot). PostgreSQL will determine whether the client’s IP
address belongs to the domain. To do this, the domain name is first looked
up using the IP address (reverse lookup), and then PostgreSQL checks if
the source IP address really corresponds to such a domain (forward
lookup). This matches the network owner with the domain name owner, thus
blocking out compromised addresses:

https://en.wikipedia.org/wiki/Forward-confirmed_reverse_DNS

o)) PROFESSIONAL

Role name Posigres

all

any role

role

a role with a specific name (possibly in quotes)

+role

a role that is a member of the specified role

namel[,name...]

multiple names in the formats given above

11

In the user name field, you can specify one of the values listed below, or
several such values separated by commas.

“all” corresponds to any client IP address.

Role name corresponds to the user (or role, which is the same) with the
specified name. If the role name is preceded by a + sign, then the name
corresponds to any user who is a member of the specified role.

A list of database names can be stored in an external file and linked to using
the @ sign. The external file can store names separated by commas,
spaces, tabs or line breaks. Nested file links (@) and comments (#) are
allowed.

Simple authentication

Doesn’t check anything

12

o)) PROFESSIONAL

Simple authentication Posigres

trust
allow without authentication
reject

refuse without authentication

13

Various methods can be specified in the authentication method field.
To begin with, let’s look at the two simplest ones.

The “trust” method unconditionally trusts the user and does not perform
verification. In real life, it should never be used for anything but local
connections.

The “reject” method unconditionally denies access. It can be used to cut off
any connections of a certain type or from certain addresses (for example, to
prohibit unencrypted connections).

o)) PROFESSIONAL

Question Pos{gres

What does the configuration below mean?

TYPE DATABASE USER ADDRESS METHOD
hostnossl all all all reject
host sameuser all samenet trust
host pub +reader all trust
14
‘abueyo [Im

NsaJl uoleInNBIjuod 3] 1O ‘UMOP PSAOW 3 JoUURd PI0dal 1Sil} 8yl eyl 810N

‘aseqerep qnd ay; 01
SS90 pPamoj[e aJe 9]0J Japeal ay) JO SIaquBW aJe OYM SIasN '€

1auUqns S,JaAI8S
WIOJ) SaWRU Jasn JIay] Yd1ew Jey) saseqerep ssadde 0] pamo|je aJe sI1asn 2

‘pallgiyoid ase suonosuuod paydAiouaun T

Editing pg_hba.conf

Back up pg hba.conf, so that we could restore it when we are done experimenting.
student$ sudo cp -n /etc/postgresql/13/main/pg_hba.conf ~/pg_hba.conf.orig
Another way to display the contents of pg hba.conf is through the pg hba file rules view:

=> SELECT line_number, type, database, user_name, address, auth_method
FROM pg_hba_file_rules;

line number | type | database | user name | address | auth_method
------------- B i e e e S I

89 | local | {all} | {postgres} | | trust

94 | local | {all} | {all} | | trust

96 | host | {all} | {all} | 127.0.0.1 | md5

98 | host | {all} | {all} | ::1 | md5

101 | local | {replication} | {all} | | trust

102 | host | {replication} | {all} | 127.0.0.1 | md5

103 | host | {replication} | {all} | ::1 | md5

(7 rows)

The view reads the file itself, not displays previously scanned values. You can use it to check if the changes you make
actually apply.

For example, add the following string to pg _hba.conf:
student$ echo 'local all all trast' | sudo tee -a /etc/postgresql/13/main/pg_hba.conf
local all all trast

=> SELECT line_number, error
FROM pg_hba_file_rules
WHERE error IS NOT NULL;

line_number | error
............. e
104 | invalid authentication method "trast"

Without the help of the view, we would have learned of the error only from the server log and after the configuration file is
rescanned.

Password-based authentication Q SSSSSSSSSSSSS

The server requests a password from the client

16

Passwords inside DBMS Posigres

password

transmitted unencrypted

md5
an MDS5 hash is transmitted

scram-sha-256
the SCRAM protocol is used

17

During password authentication, the PostgreSQL server requests a
password from the user and checks it matches the password stored either in
the database itself or in an external service.

https://www.postgrespro.com/docs/postgresqgl/13/protocol-flow#id-1.10.5.7.3
For passwords stored in the database, three methods are supported.

The md5 method compares the MD5 hash of the password with the MD5
hash stored in the database. Upon request, the server sends the so-called
"salt" to the client, the client calculates the MD5 hash of the password, adds
the salt, calculates the MD5 hash again and sends it to the server, where it
iIs compared with the stored hash. Thanks to the salt, the same password
can result in different hash values. However, the MD5 algorithm is currently
considered insufficiently cryptographically secure.

The most secure method scram-sha-256 uses the SCRAM protocol for
authentication and employs the SHA-256 algorithm. The method implements
the SASL framework that separates the authentication mechanism from the
application protocol.

https://postgrespro.com/docs/postgresql/13/sasl-authentication

The password method transmits the password in plain text. It should not be
used if the client-server connection is not encrypted.

Passwords inside DBMS Posigres

Set a user password

[CREATE | ALTER] ROLE ...
PASSWORD 'password'
[VALID UNTIL date_time];

a user with an empty password will be denied access during password
authentication

Passwords are stored in the system catalog

pg_authid
the encryption method is determined by the password_encryption parameter

the authentication method must match the encryption method
(md5 automatically switches to scram-sha-256)

18

So far, we've been creating roles without specifying any passwords. If the
password authentication method is set, such users will be denied access.

Passwords are stored in the database in the pg_authid table.

To set a password, you must specify it either immediately when creating a
role with the CREATE ROLE command, or later with the ALTER ROLE
command. Passwords are stored in encrypted form. The encryption
algorithm (MD5 or SCRAM-SHA-256) is determined by the
password_encryption parameter.

You can optionally specify a password expiration time.

If a stored password is encrypted with the SCRAM-SHA-256 algorithm and
the authentication method is set to use MD5, the more reliable SCRAM-
SHA-256 method will be used during communication instead.

Entering a password po&a?sg

Manually
Set the PGPASSWORD variable

inconvenient when connecting to different databases
not recommended for security reasons

The passwords file

~/.pgpass at the client host

lines in the format host :port:database:username:password
may use the * sign (any value)

records are checked from top to bottom, the first match is used
the file must have permission 600 (rw-------)

19

The password can be entered manually every time, or the input can be
automated. There are two ways to do it.

First, the password can be set in the PGPASSWORD environment variable
(on the client). However, this is inconvenient if you frequently connect to
multiple databases. It also poses some security risks.

Otherwise, you can store passwords in the ~/.pgpass file (its location is
defined by the PGPASSFILE environment variable). Access to the file must
be restricted to the owner alone, or PostgreSQL will ignore it.

Password-based authentication

Let’s set up password-based authentication for local connections for the user student. First, we can check how passwords are encrypted when saved.
=> SHOW password_encryption;

password_encryption

We want to use a secure encryption algorithm.

=> SET password_encryption='scram-sha-256";

SET

Now, set up a password for student. The password may contain any Unicode characters.
=> ALTER ROLE student PASSWORD 'p@ssword’;

ALTER ROLE

What's left is to set up the authentication rules:

student$ sudo tee /etc/postgresql/13/main/pg_hba.conf << EOF
local all postgres trust

local all student scram-sha-256

EOF

local all postgres trust
local all student scram-sha-256

If the encryption method MDS5 is specified instead, the system would still use SCRAM-SHA-256 for student, but other users would have been able to store
passwords encrypted with the weaker MD5.

=> SELECT pg_reload_conf();

pg_reload_conf

Try to guess the password:

student$ psql ‘user=student password=1234'

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed: FATAL: password authentication failed for user "student"
Now, enter the correct one:

student$ psql 'user=student password=p@ssword' -c '\conninfo'

You are connected to database "student" as user "student" via socket in "/var/run/postgresql" at port "5432".

Restore the original pg hba.conf.

student$ sudo cp ~/pg_hba.conf.orig /etc/postgresql/13/main/pg_hba.conf

student$ sudo pg_ctlcluster 13 main reload

o)) PROFESSIONAL

Passwords outside DBMS Posigres

ldap [parameters]

passwords are stored on a LDAP server

radius [parameters]

passwords are stored on a RADIUS server

pam [parameters]
passwords are stored in the PAM plugin

21

Passwords can be stored by external services outside the database.
The methods “Idap”, “radius” and “pam” use an LDAP server, a RADIUS

server, or the Pluggable Authentication Module, respectively. These
methods require additional specific parameters. They are not considered in

detail in this topic.

External authentication Wres

Performed outside the database

22

o)) PROFESSIONAL

External authentication Posigres

peer [map=...]

query the username from the OS kernel (for local connections)
cert [map=...]

authentication using the client’s SSL certificate
gss [map=... and other parameters]

Kerberos authentication over the GSSAPI protocol

sspi [map=... and other parameters]
Kerberos/NTLM authentication for Windows

23

These methods carry out both identification and authentication outside the
database. Upon successful authentication, PostgreSQL receives two
names:

1. The name specified during connection (internal DBMS name).
2. The name identified by the external system (external name).

Therefore, all of these methods allow for at least one additional parameter
“map”. It defines the mapping rules for internal and external names (more on
that on the next slide).

The “peer” method requests the user name from the OS kernel. Since the
OS has already authenticated this user (most likely by requesting a
password), it can be trusted.

The “cert” method uses client certificate-based authentication and is
intended for SSL connections only.

The “gss” method uses Kerberos authentication over the GSSAPI protocol
(RFC1964 https://tools.ietf.org/html/rfc1964). Automatic authentication
(single sign-on) is supported.

The “sspi” method uses Kerberos or NTLM authentication on Windows
systems. Automatic authentication is supported.

Name mapping Poggai“éé

pg_ident.conf

another configuration file
lines consist of fields, space or tab-separated
empty lines and any text after a comment sign (#) are ignored

Fields

the name of the mapping
(specified in the map parameter in pg_hba.conf)

external name
(if starts with a slash, then considered a regular expression)

internal DB user name

24

The name matching rules are defined in a separate file pg_ident.conf. Its
location is determined by the ident file parameter. pg_ident.conf structure is
similar to that of pg_hba.conf. Records consist of three fields: mapping
name, external user name, internal user name.

Mapping names are necessary to distinguish between different mapping
rules within the same pg_ident.conf file (which, in turn, may be required by
different records in pg_hba.conf).

The external name must match the name returned by the external
authentication system or the one listed in the certificate. If this field starts
with a slash, then its value is considered a regular expression. This can be
used to handle situations where the external and internal names differ only
by prefixes or suffixes.

The internal name must match the name of the database user.

Each record mapping an internal user name to an external user name
means that the specified external user is allowed to connect to the DBMS as
the specified internal user (after a successful authentication, of course).

https://postgrespro.com/docs/postgresgl/13/auth-username-maps

o)) PROFESSIONAL

Question Pos{gres

What does the configuration below do?

pg_hba.conf

TYPE DATABASE USER ADDRESS METHOD

hostssl sameuser all all cert map=m1l
local all all peer map=m2
host all all samehost md5

pg_ident.conf

MAPNAME SYSTEM-USERNAME PG-USERNAME
m1 /N(.*)@domain\.com$ \1

m2 student alice

m2 student bob

25

‘(gan Aq pardAioud)

piomssed e Aq pajeonuayine si JaAIaS [20] 8yl 0] UOII08UU0D ¥I0MIBU ay |
*.0qQ, pue ,a2le, Saj0J 8yl Japun gq ayl 01 199UU0D

ued ,Juapnis, Jasn SO ayl 1eys sAes buiddew zw ay woisAs buneiado
aU] woJj) sweu Jasn ay) sisenbai 1OS8161S0d ‘Suondauuod [ea0| Jo4
"aWeU 3|04 aY) PaJapISuoI SI Jasn pue ‘, Wod urewopoasn,

Se pal0)s SI 91edluad ay)l ul (dweu uowwod) aweu ayl eyl

pawnsse Si]| "91e21yNJad Juald e Buisn pajednuayine aJe suoljosauuod 1SS

Takeaways poééa?@g

Authentication settings are defined in configuration files

Authentication can be done by password (with the password
stored within the DBMS or outside of it) or using external
authentication services

26

o)) PROFESSIONAL

Practice Posigres

Modify the configuration files (after backing up the originals)
in such a way that:

the superusers student and postgres are always allowed local
connections,

all users are allowed network connections to all databases with password-
based authentication using MD5 encryption.

Create arole alice with an MD5 encrypted password
and a role bob with a SCRAM-SHA-256 encrypted password.

Verify that the created roles can connect to the database.

As a superuser, look at the passwords of alice and bob in the
system catalog.

Restore the original configuration files.

27

1. Authentication configuration

Save the original configuration file:
student$ sudo cp -n /etc/postgresql/13/main/pg_hba.conf ~/pg_hba.conf.orig
Now create a new pg_hba.conf file from scratch:

student$ sudo tee /etc/postgresql/13/main/pg_hba.conf << EOF

local all postgres trust
local all student trust
host all all all md5
EOF

local all postgres trust
local all student trust
host all all all md5

student$ sudo pg_ctlcluster 13 main reload
2. Creating roles

=> SHOW password_encryption;

password_encryption

=> CREATE ROLE alice LOGIN PASSWORD ‘'alice’;
CREATE ROLE

=> SET password_encryption='scram-sha-256";
SET

=> CREATE ROLE bob LOGIN PASSWORD 'bob';

CREATE ROLE
3. Verifying connection settings

The connection settings require the user to enter a password. We will provide it in the connection string.

Note that for this task, it's better to enter it explicitly to verify that the system asks for it.

=> \c "dbname=student user=alice host=localhost password=alice"

You are now connected to database "student" as user "alice" on host "localhost" (address "127.0.0.1") at port "5432".
=> \c "dbname=student user=bob host=localhost password=bob"

You are now connected to database "student" as user "bob".
4. Viewing passwords

=> \q
student$ psql
=> SELECT rolname, rolpassword FROM pg_authid WHERE rolname IN ('alice','bob') \gx

S RECORD 1] - - m - s mm s m o s s oo o o e oo
rolname | alice

rolpassword | md5579e43b423b454623383471aeb85cd87

S RECORD 2] - - - - - oo m o s oo
rolname | bob

rolpassword | SCRAM-SHA-256$4096:RxfUKGOEtG1lgUpu86ZRKiQ==$VQE51fRIzwftd+kS1pQuSjPEV23iGcIMlalTubhT/eM=:/sL1RyDwn3yl//nECwzlVKI1+xSct+WenLzx173f7DI=

Passwords are stored as hash function values that cannot be decrypted. The server always compares the encrypted values the encrypted value stored in pg authid
and the entered password's encrypted hash.

5. Restoring the default configuration

student$ sudo cp ~/pg_hba.conf.orig /etc/postgresql/13/main/pg_hba.conf

student$ sudo pg_ctlcluster 13 main reload

o)) PROFESSIONAL

Practice+ Posigres

Certain users, a list of whom is subject to change from time to time,
must be allowed local access without authorization. The problem is
that changing the list of trusted users requires changing the
pg_hba.conf file every time.

1. Set up authentication that does not have this problem.

2. Verify that the new configuration works as intended.

3. Restore the original configuration.

28

1. Use a group role.

1. Authentication configuration

Save the original configuration file:

student$ sudo cp -n /etc/postgresql/13/main/pg_hba.conf ~/pg_hba.conf.orig
We will control what users to authenticate by adding them into the locals group.
Overwrite the existing pg_hba.conf file:

student$ sudo tee /etc/postgresql/13/main/pg_hba.conf << EOF

local all student trust

local all +locals trust
EOF

local all student trust
local all +locals trust

student$ sudo pg_ctlcluster 13 main reload
Create a group role:
=> CREATE ROLE locals;

CREATE ROLE
2. Verification

Alice belongs to the locals group:

=> CREATE ROLE alice LOGIN;

CREATE ROLE

=> GRANT locals TO alice;

GRANT ROLE

Bob does not:

=> CREATE ROLE bob LOGIN;

CREATE ROLE

student$ psql "dbname=student user=alice" -c "\conninfo"

You are connected to database "student" as user "alice" via socket in "/var/run/postgresql" at port "5432".
student$ psql “"dbname=student user=bob" -c "\conninfo"

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed: FATAL: no pg_hba.conf entry for host "[locall", user "bob", database "student", SSL off
Grant Bob membership:

=> GRANT locals TO bob;

GRANT ROLE

student$ psql "dbname=student user=bob" -c "\conninfo"

You are connected to database "student" as user "bob" via socket in "/var/run/postgresql" at port "5432".
2. Restoring the default configuration

student$ sudo cp ~/pg_hba.conf.orig /etc/postgresql/13/main/pg_hba.conf

student$ sudo pg_ctlcluster 13 main reload

