Replication
Overview

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics

Replication purposes and types
Physical replication
Logical replication

Replication use cases

o)) PROFESSIONAL

Posygres

o)) PROFESSIONAL

Replication purposes Posigres

Replication

the process of synchronizing multiple copies of a database cluster
on different servers

Purposes
reliability if one of the servers fails,
the system must maintain availability
(performance degradation is acceptable)
scalability load distribution between servers

A single database server may not meet all the requirements.

First, reliability. One physical server is a possible point of failure. If the
server fails, the system becomes unavailable.

Secondly, performance. One server may not be able to handle
the load. Often, the ability to scale and distribute the load between multiple
servers is preferable to increasing single server capacity.

The solution is to have multiple servers managing the same databases.
Replication refers to the process of synchronizing these servers.

Replication types Pogga’?“é“g

Physical

primary-replica: data flow in one direction only
delivery of WAL records or files

binary server compatibility is required

only the cluster as a whole can be replicated

Logical
publication-subscription: data flow is possible in both directions
row level information (log level = logical)

protocol-level compatibility is required
can replicate individual tables

There are multiple ways to set up synchronization between servers. The two
main venues available in PostgreSQL are physical and logical replication.

During physical replication, one server is assigned the main server role and
the other becomes a replica. The main server transfers WAL records to a
replica (in the form of files or a stream of records). The replica applies these
records to its data files. The WAL record application is purely mechanical,
without “understanding the meaning” of the changes, so binary compatibility
between servers is necessary (the same platforms and major PostgreSQL
versions). Since the WAL is shared across the entire cluster, only the cluster
as a whole can be replicated.

During logical replication, higher-level information is added to the WAL,
allowing the replica to sort out changes at the row level (requires the
parameter wal_level = logical). This sort of replication does not require
binary compatibility, it only needs the replica to be able to understand the
incoming WAL information. Logical replication allows, if necessary, to
replicate only the changes made to individual tables.

Logical replication was introduced in PostgreSQL 10. Before, you had to use
the pg_logical extension or set up trigger-based replication.

Physical replication

How physical replication works
WAL transmission modes
Replica usage

Switching to replica and back

Replica configuration and use cases

Let’s discuss physical replication first.

It works by translating changes to the replica in the form of WAL records.
This is a very efficient mechanism, but it requires binary compatibility
between servers (the major version of the server, the operating system, the
hardware platform).

Physical replication is one-way only: while there may be any number of
replicas, there is always only one main server.

o)) PROFESSIONAL

Replication Posigres

Backup

base backup via pg_basebackup
WAL files archive

Continuous recovery
deploy the backup

set configuration parameters

create a standby.signal file

launch the server

the server restores consistency and continues to apply incoming logs

delivery by replication protocol stream or WAL archive

connections (read-only) are allowed immediately after consistency is restored

Setting up replication is very similar to setting up a physical backup. The
difference is that the backup deploys immediately, without waiting for the
main server to crash, and works in continuous recovery mode: it
continuously reads and applies new WAL segments coming from the main
server. To tell the replica to start in this mode, a standby.signal file is created
instead of recovery.signal.

This way, the replica is constantly maintained in an almost up-to-date state
and if the main server fails, the replica is ready to take over.

By default, the replica operates in the “hot standby” mode. This means that
during the recovery process, it allows connections to read data (as soon as
consistency is restored). You can prohibit these connections (this is called
“warm standby”).

Unlike backup, replication does not allow you to recover to an arbitrary point
in the past. In other words, replication cannot be used to correct an error
(although it is possible to configure a replica so that it lags behind the main
server by a certain amount of time).

o)) PROFESSIONAL

Replica usage Pos{gres

Allowed

read-only queries (select, copy to, cursors)

setting server parameters (set, reset)

transaction management (begin, commit, rollback...)
creating a backup (pg_basebackup)

Not allowed

any changes (insert, update, delete, truncate, nextval...)

locks expecting changes (select for update...)

DDL commands (create, drop...), including creating temporary tables
maintenance commands (vacuum, analyze, reindex...)

access control (grant, revoke...)

triggers and advisory locks are disabled

In hot standby mode, no data changes (including sequences), locks, DDL
commands, service commands such as VACUUM and ANALYZE, or access
control commands are allowed on the replica. Basically, anything that
changes the data in any way is prohibited.

The replica can still process read-only queries. Changing server parameters
and executing transaction management commands is allowed. For example,
you can start a (reading) transaction with a specific isolation level.

In addition, the replica can also be used for making backups (of course,
taking into account the possible lag behind the main server).

o)) PROFESSIONAL

Streaming replication Pos{gres

main server backup server
(primary) (replica)

- feedback -
select, insert wal sender | - > wal receiver J
update, delete

AN]
D]:Dj:‘]j continuous
AT T feeovey

WAL segments

There are two ways to deliver WALs from the primary server to the replica.
The one used more commonly in production is streaming replication.

In this case, the replica connects to the primary server via the replication
protocol and receives the WAL record stream. This minimizes the replica lag
and can even eliminate it entirely (in synchronous mode).

There's a notable possible issue with reading from a replica. While a query
on a replica takes a MVCC snapshot, the primary server may vacuum the
row versions required for the snapshot. The affected query on the replica will
have to be terminated in this case. With streaming replication, the issue is
resolved by the feedback mechanism. It lets the primary server know if any
transaction IDs are in use by the replica so that it can delay the vacuuming.

Physical replication. Primary server backup
The replication protocol can run with the default server configuration:
o wal level = replica,
e max wal senders = 10,
e connection permission in pg_hba.conf.
Create a standalone backup. The -R key tells pg_basebackup to set all necessary configuration parameters for the replication.
student$ sudo rm -rf /home/student/basebackup
student$ pg_basebackup --pgdata=/home/student/basebackup -R
Make sure that the second server is stopped and copy the backup into its data directory. The user postgres must be the owner of the backup files.
student$ sudo pg_ctlcluster 13 replica status
pg_ctl: no server running
student$ sudo rm -rf /var/lib/postgresql/13/replica

student$ sudo mv /home/student/basebackup/ /var/lib/postgresql/13/replica

student$ sudo chown -R postgres:postgres /var/lib/postgresql/13/replica

Replica

pg_basebackup has added the connection parameters for the main server into postgresql.auto.conf:
student$ sudo cat /var/lib/postgresql/13/replica/postgresql.auto.conf

Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
primary_conninfo = 'user=student passfile=''/home/student/.pgpass'' channel binding=prefer host='"'/var/run/postgresql'' port=5432 sslmode=prefer sslcompression=0 sslsni=1 ssl min_proto

It also created an empty standby.signal file that will tell the server to start in continuous recovery mode.
student$ sudo 1s -1 /var/lib/postgresql/13/replica/standby.signal

SrW------ - 1 postgres postgres O Mar 7 13:51 /var/lib/postgresql/13/replica/standby.signal
We can start the server now.

student$ sudo pg_ctlcluster 13 replica start

Check what processes are running on the replica.

student$ sudo head -n 1 /var/lib/postgresql/13/replica/postmaster.pid

144247

student$ sudo ps -o pid,command --ppid 144247

PID COMMAND
144248 postgres: 13/replica: startup waiting for 000000016000000000000008
144249 postgres: checkpointer
144250 postgres: background writer
144251 postgres: 13/replica: stats collector
144252 postgres: 13/replica: walreceiver

The walreceiver process reads the WAL stream, the startup process applies the changes.

Compare them to the processes on the primary server.

student$ sudo head -n 1 /var/lib/postgresql/13/main/postmaster.pid
129559

student$ sudo ps -o pid,command --ppid 129559

PID COMMAND
129561 postgres: 13/main: checkpointer
129562 postgres: background writer
129563 postgres: walwriter
129564 postgres: autovacuum launcher
129565 postgres: stats collector
129566 postgres: : logical replication launcher
143991 postgres: student student [local] idle
144253 postgres: 13/main: walsender student [local] idle

Here, a process called walsender exists.

Replication verification
The state of the replication can be checked on the primary server:

student$ psql -p 5432

=> SELECT * FROM pg_stat_replication \gx

[RECORD 1 J---odboommmmiaoiieie oo
pid | 144253

usesysid | 16384

usename | student

application_name | 13/replica

client_addr |

client_hostname |

client_port | -1

backend_start | 2024-03-07 13:51:58.613524+03
backend_xmin |

state | streaming

sent_lsn | ©/8000000

write_lsn | 0/8000000

flush_1lsn | ©/8000000

replay_lsn | 0/8000000

write lag | 00:00:00.100474

flush_lag | ©0:00:00.100474

replay lag | 00:00:00.100474
sync_priority | ©

sync_state | async

reply time | 2024-03-07 13:51:58.715715+03

Run several commands on the primary server:

=> CREATE DATABASE replica_overview;

CREATE DATABASE

=> \c replica_overview;

You are now connected to database "replica overview" as user "student".
=> CREATE TABLE test(id integer PRIMARY KEY, descr text);

CREATE TABLE

Check the replica:

student$ psql -p 5433 -d replica_overview
‘ => SELECT * FROM test;
id | descr

e
(6 rows)

=> INSERT INTO test VALUES (1, 'One');
INSERT 0 1
| => SELECT * FROM test;

id | descr

R

1| One

(1 row)
No changes can be done on replica directly:
‘ => INSERT INTO test VALUES (2, 'Two');

| ERROR: cannot execute INSERT in a read-only transaction

o)) PROFESSIONAL

Replication via WAL archive Posggres

main server backup server
(primary) (replica)

select, insert N . J
update, delete % { @)
A=] p

archive_command
ML~

AT I —————[III 1]
WAL segments D:‘DE alternative

LI TLT]
INEENIEN

WAL archive

10

During streaming replication, there’s a chance that the primary server will
delete a WAL segment that hasn’t been received by the replica yet. To
ensure that it does not happen, you have to use either a replication slot or
streaming replication together with a WAL archive (that you need for
backups anyway).

When using a WAL archive, a special archiver process on the primary
server archives full WAL segments using the archive_command (this
mechanism is discussed in the Backup module).

If the replica cannot receive the next WAL entry via the replication protocol,
it will try to read it from the archive using the command from the
restore_command parameter.

In fact, replication can work with just the archive, without streaming
replication. But in this case:

* the replica is forced to lag behind the primary server by the time it takes
to fill the WAL segment,

* the primary server is not aware of the replica’s existence, so vacuuming

can delete the row versions needed for replica snapshots (you can set up
a delay for applying conflicting records, but it is not always clear how long
the delay should it be).

o)) PROFESSIONAL

Switching to a replica Pos{gres

Scheduled switchover

shutdown of the main server for maintenance without interruption of service
manual mode

Emergency switchover

switch to a replica due to a primary server failure
manual mode, but can be automated with external cluster software

11

There are different reasons for switching to a backup server. The switchover
can be performed routinely at a convenient time to allow for maintenance
shutdown of the main server. If it is a main server failure, on the other hand,
the switchover has to be performed as quickly as possible to avoid service
downtime.

Even an emergency switchover must be performed manually, because
PostgreSQL does not come with integrated cluster management software
that should monitor the state of the servers and initiate switchovers.

o)) PROFESSIONAL

Switching to a replica Pos{gres

main server backup server

(primary) (replica)
— —
usgl:gf’égls:tg I{i wal sender | >
=]

WAL segments

12

The image above illustrates the state of the servers before a switchover.
The main server is on the left, the replica on the right, and replication is set
up between the two.

o)) PROFESSIONAL

Switching to a replica Pos{gres

main server
former main server (former replica)

select, insert
update, delete
.

WAL segments

13

In case of a main server failure or a planned switchover, the replica is given
the command to stop recovering and become an independent server, and
the former main server is disconnected.

Of course, a way to redirect users to a new server is required, but this is
done by means outside of PostgreSQL.

Switchover to replica

Tell the replica to exit recovery mode and start as usual.
student$ sudo pg_ctlcluster 13 replica promote

| => INSERT INTO test VALUES (2, 'Two');

| INSERT 0 1

We have two completely independent servers running at the same time.

o)) PROFESSIONAL

Main server recovery Pos{gres

backup server)
(former main server) main server

—] =
T el varsenr ib ot
7\

15

After the former main server is recovered or any maintenance on it is
complete, it connects as a replica to the new main server.

Main server recovery Pogga’?“é“g

Simply restarting the server will not work
WAL records missed by the replica due to delay will be lost

Restoring from a backup “from scratch”

a fresh new replica is deployed at the former primary server
this is time-consuming (rsync can accelerate it somewhat)

pg_rewind
“rolls back” the lost WAL records, replacing the corresponding pages on the
disk with pages from the new primary server
comes with a number of limitations

16

If the switchover has occurred due to a hardware failure (disk or server
replacement is required) or an operating system failure (OS reinstallation is
required), then the only option is to create a completely new replica on the
server.

If the switchover was a planned one, the server can be reconnected quickly
(now as a replica).

Unfortunately, you can’t simply switch the server back on and connect it to
the new primary server over the replication protocol. Because of replication
delay, some WAL records could have not made it to the replica. If the old
primary server has such records and the new primary server doesn'’t, then
applying WALs from the new primary server will ruin the database.

You can always scrap the old primary server data and create a brand new
replica instead from a base backup. However, for large databases, this can
take a long time. The rsync process can speed this up to an extent.

An even faster option is to use pg_rewind.
https://postgrespro.com/docs/postgresgl/13/app-pgrewind

pg_rewind detects WAL records that have not reached the replica (starting
from the last common checkpoint) and finds the pages affected by these
records. The pages (should be just a few) are replaced with pages from the
new primary server. In addition, pg_rewind copies all service files from the
source server (the new primary server). The usual recovery process takes it
from there.

1. Multiple replicas Pogga’?é“g

backup server
(replica A)

high availability >
and distributed load for reading e
. o]
main server
(primary)
—
select, insert %i
update, delete
wal sender backup server
D]Z - (replica B)
AT
WAL segments -
T

17

The replication mechanism offers flexible system design options for a variety
of applications. Let’s consider several typical cases and possible solutions.

Case: a system with high availability and reading load distribution.

Solution: a primary server server and multiple replicas. Replicas can serve
read-only queries and can take over immediately if the main server fails.

Each replica will have a dedicated wal sender process on the main server
and a replication slot, if necessary.

The reading load distribution between replicas must be done by external
software.

o)) PROFESSIONAL

2. Synchronous replication Posggres

backup server
(repllca A)

data storage reliability synlchronous
chaLZ"ef before the
main server

wal recewer

main server
(prlmary

wal sender

select, |nsert
update, delete

fimiamny
AT

WAL segments

wal sender backup server

asynchronous (replica B)

replica may
lag behind -

wal recelver

18

Case: in the event of a main server failure, no data must be lost when
switching to a replica.

Synchronous replication is the solution. In a single server environment,
synchronous WAL recording ensures that the committed data will not be lost
in the event of a failure. Replication works in a similar manner. Changes on
the main server are committed only when a confirmation from the replica is
received. If necessary, synchronization can be managed at the transaction
level.

Synchronous replication does not ensure perfect data consistency between
servers. Changes can become visible on the primary server and on the
replica at different points in time.

Synchronization can be set up with multiple replicas. In this case, you can
also set up quorum-based voting.

In the image above, replica B is asynchronous and may lag behind; replica A
is synchronous. When committing changes, the main server performs
following actions:

* makes a WAL record (so that the change is not lost in case of failure),

» walits for a confirmation from the replica that the WAL record was
received on its end,

* changes the state of the transaction in the clog buffer.

With this setup, a query to a synchronous replica can see changes even
earlier than a query to the primary server.

3. Cascading replication Pogga’?“e“g

multiple replicas
no additional load on the master server

main server backup server backup server
(primary) (replica A) (replica B)

select, insert wal sender — wal receiver wal sender wal receiver :
update, delete

WAL segments

19

Case: have multiple replicas without creating additional load on the main
server.

The solution is to use cascading replication. With this setup, each replica
sequentially transfers WAL records to the next one.

Cascading replication does not support synchronization, but the main server
still collects feedback from all replicas, so the functionality is there.

When switching over, the replica closest to the main server in the replication
chain should be selected, as it lags behind the least.

The image shows that the main server has only one wal sender process,
and replicas transfer WAL records to each other along the chain. The further
away a replica from the main server, the more the delay. With this setup, the
replication process has to be monitored at multiple servers at once, making
monitoring more complicated.

4. Delayed replication po&a?sg

“time machine”
can recover to a specific moment in time without a WAL archive

main server backup server
(primary) (replica)

select, insert | J
update, delete l{i @ >
(m WAL application delay ‘ j

WAL segments

20

Case: have the ability to view data at and recover to an arbitrary point in
time.

The usual archive-based point-in-time recovery mechanism can work here,
but it requires a lot of preparation and takes a lot of time. And PostgreSQL
itself doesn't allow to make data snapshots for a given moment in the past.

The solution is to have a replica apply WAL records not immediately, but
with a certain delay.

In order for the delay to work correctly, clock synchronization between
servers is necessary.

If a replica switches from continuous recovery mode into normal operation,
the rest of the records will be applied immediately.

Feedback is tricky in this setup. A large delay will cause table bloating on the
main server, since vacuuming will not delete old versions of rows that may
be needed by the replica as quickly as it usually does.

Logical replication Wz

Publications and subscriptions
Conflict detection and resolution

Replica configuration and usage options

21

Stock logical replication tools first appeared in PostgreSQL 10.

Row-level logical changes are transmitted over the replication protocol.
Logical replication requires the wal_level parameter set to logical.

There is no main server or replica roles in logical replication, so it is possible
to set up bidirectional replication.

Logical replication Poggai“éé

Publisher
streams data changes row by row in the order they are committed
(replicates INSERT, UPDATE, DELETE and TRUNCATE commands)
can do initial synchronization
always uses the logical replication slot
wal_level = logical

Subscriber

receives and applies changes
no parsing, rewriting and planning, just blind execution
possible conflicts with local data

22

Logical replication uses the publish-subscribe pattern. A publication is
created on one server, which can include a number of tables in a single
database. Other servers can subscribe to this publication to receive and
apply changes to the tables.

Only table row modifications are replicated, not SQL commands. DDL
commands are not transmitted, so target tables on the subscriber must be
created manually. Initial synchronization can be used to synchronize the
tables when a subscription is created.

The information about modified rows is extracted and decoded from existing
WAL records on the publishing server, and then sent by the wal sender
process to the subscriber over the replication protocol. The transmission
format is independent of the platform and server version. The log level on
the publishing server (the wal_level parameter) must be set to “logical” for
this all to work.

The logical replication worker process on the subscriber accepts and applies
the changes. In order to guarantee transmission reliability (no losses and
repetitions), a logical replication slot (similar to the physical replication slot)
IS required.

The changes are applied without executing SQL commands, avoiding the
overhead of parsing and planning. On the other hand, a single SQL
command can result in multiple one-row changes.

https://postgrespro.com/docs/postgrespro/13/logical-replication

o)) PROFESSIONAL

Logical replication Posigres

publisher subscriber
select, insert |;i % logical repl. select, insert
update, delete wal sender | ‘ worker update, delete
= 1 =]

WAL segments has WAL segments

superuser
privileges

23

The image shows the logical replication worker process on the subscriber
that receives data from the publisher and applies it. Meanwhile, the server
works normally and accepts both read and write queries.

Logical replication

To set up logical replication between two servers, we need the WAL to store additional information.
=> ALTER SYSTEM SET wal_level = logical;

ALTER SYSTEM

student$ sudo pg_ctlcluster 13 main restart

Create a publication on the first server:

student$ psql -d replica_overview

=> CREATE PUBLICATION test_pub FOR TABLE test;

CREATE PUBLICATION

=> \dRp+

Publication test pub
Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root

student | f
Tables:
"public.test"

Subscribe to the publication on the second server (disable the initial data copying):

=> CREATE SUBSCRIPTION test_sub
CONNECTION 'port=5432 user=student dbname=replica_overview'
PUBLICATION test_pub WITH (copy_data = false);

NOTICE: created replication slot "test sub" on publisher
CREATE SUBSCRIPTION

| => \dRs
List of subscriptions
Name | Owner | Enabled | Publication
---------- B e e
test sub | student | t | {test pub}
(1 row)

=> INSERT INTO test VALUES (3, 'Three');
INSERT 0 1
| => SELECT * FROM test;

id | descr

(3 rows)

The following view shows the state of the subscription:

| => SELECT * FROM pg_stat_subscription \gx

[RECORD 1 J---ommmmdmmmm i
subid 24618

subname test sub

pid 145074

received lsn 0/802BB50

2024-03-07 13:52:08.864581+03
2024-03-07 13:52:08.865103+03
0/802BB50

2024-03-07 13:52:08.864581+03

last msg _send time
last_msg_receipt_time
latest_end_1sn

+
|
|
I
relid |
|
|
|
I
latest end time |

The logical replication worker process starts (you can see its ID in pg stat subscription.pid):
student$ sudo ps -o pid,command --ppid 144247
PID COMMAND

144249
144250
144251
144686
144860
144861
144862
145074

postgres:
postgres:
postgres:
postgres:
postgres:
postgres:
postgres:
postgres:

13/replica:
13/replica:
13/replica:
13/replica:
13/replica:
13/replica:
13/replica:
13/replica:

checkpointer

background writer

stats collector

student replica overview [local] idle

walwriter

autovacuum launcher

logical replication launcher

logical replication worker for subscription 24618

Conflicts PoSdgras

Identification modes for modifying and deleting rows

primary key columns (default)

columns of a specific unique index with the NOT NULL constraint
all columns

no identification (default for the system catalog)

Conlflicts: violation of integrity constraints

replication is suspended until the conflict is resolved manually
correct the data or skip the conflicting transaction

25

Inserting new rows is straightforward. Changes and deletions are more
complicated. These operations need to somehow identify the old version of
the row. By default, primary key columns are used for this, but you can
specify other ways (replica identity) when defining a table, i.e. use a unique
index or all the table columns. Or you can disable replication for some tables
altogether (system catalog tables have it disabled by default).

Since the table on the publisher and the table on the subscriber can change
independently of each other, conflicts in the form of integrity constraint
violations are possible when inserting new row versions. Whenever this
happens, the process of applying records is suspended until the conflict is
resolved manually. You can either correct the data on the subscriber to
resolve the conflict, or cancel the application of the conflicting records.

Conflicts

Local changes on the subscriber side are allowed. Insert a row into a table on the second server:
| => INSERT INTO test VALUES (4, 'Four (local)');
| INSERT 0 1

If we add a row with the same primary key value on the server, the subscription will have a conflict when trying to apply
the change.

=> INSERT INTO test VALUES (4, 'Four');

INSERT 0 1

=> INSERT INTO test VALUES (5, 'Five');

INSERT 0 1

The subscription is unable to apply the change, replication stops.

| => SELECT * FROM pg_stat_subscription \gx

<[RECORD 1 J------mmmtommmamnn-
subid 24618
subname test sub
pid

received lsn
last_msg_send_time
last_msg_receipt_time
latest _end 1lsn

+
|
I
|
relid |
|
|
I
|
latest end time |

| => SELECT * FROM test;

Four (local)
(4 rows)

To resolve the conflict, remove the row on the second server and wait a moment...
| => DELETE FROM test WHERE id=4;

| DELETE 1

| => SELECT * FROM test;

id | descr

2 | Two

3 | Three
4 | Four
5 | Five
(5 rows)

Replication continues.

If replication is no longer needed, the subscription has to be deleted manually, otherwise the publisher will keep the open
replication slot.

| => DROP SUBSCRIPTION test_sub;

NOTICE: dropped replication slot "test sub" on publisher
DROP SUBSCRIPTION

o)) PROFESSIONAL

1. Consolidation Posigres

regional
server

receipt and consolidation <>
of data from regional servers a
}}I select, insert
) update, delete
main
WAL segments
—
. worker
select, insert
update, delete % 3}' Io%vicoeilkr;pl. rigRga:l
—
WAL segments "
select, insert
?;L—I update, delete
[]

WAL segments 27

Let’s discuss some logical replication use cases.

Suppose there are several regional branches, each of which runs on its own
PostgreSQL server. The goal is to consolidate some of the data on a central
server.

First, publications of the necessary data are created on regional servers.
The central server subscribes to these publications. The received data can
be processed using triggers on the central server (for example, unifying the
data format).

Inverted, the setup allows, for example, to transfer reference information
from the central server to regional ones.

Note that the replication relies on maintaining logical replication slots, and
the slots require a stable connection. If the connection breaks, the main
server will be forced to save its WAL files on disk.

An existing business logic may apply additional constraints on the system.
In some cases, it may be easier to transmit data in batches every now and
again.

The image shows two WAL receivers running on the central server, one for
each subscription.

2. Rolling out server updates Po@SFTéN&

updating the PostgreSQL version
without interruption of service

old server new server

136

select, insert
update, delete

[(I=_]

WAL segments

el

28

Case: update the PostgreSQL major version on the server without
interrupting the service.

The two major versions don't have binary compatibility, so physical
replication will not work. However, logical replication can solve the problem.

As usual, external tools are required to switch users between servers.
First, a new server is created with the desired PostgreSQL version.

o)) PROFESSIONAL

2. Rolling out server updates Posggres

updating the PostgreSQL version
without interruption of service

old server new server

D

initial
synchronization

select, insert logical repl. J
update, delete Z i wal sender f >

WAL segments

29

Then, logical replication of all required databases is set up between the
servers, and the servers are synchronized. This is possible because logical
replication does not require binary compatibility between servers.

2. Rolling out server updates Pos{gres

updating the PostgreSQL version
without interruption of service

new server

select, insert
update, delete

e

I

WAL segments

30

After that, clients switch to the new server, and the old one shuts down.

In practice, the process of updating major server versions using logical
replication is much more complicated and difficult. It is discussed in more
detail in the the topic “Server Update” in the DBA2 course.

o)) PROFESSIONAL

3. Primary-primary Posggres

a cluster where
multiple servers can modify data

main server main server

n
VAN

("
JAN

\ [logical repl.
select, insert @ Y worker select, insert
update, delete logical repl. |1 (wal sender update, delete
worker ¥ .
=]

WAL segments WAL segments

31

Case: provide reliable data storage on multiple servers with the ability to
change the data on any node.

Regular physical replication allows you to change data only on the primary
server. Logical replication makes it possible to change data simultaneously
on multiple servers. This requires that the applications working with the
cluster are built with certain considerations in mind in order to avoid conflicts
when modifying data in the same table. One of those is to ensure that
different servers work with different ranges of keys.

Keep in mind that the primary-primary setup with logical replication will not
support global distributed transactions. With synchronous replication,
reliability can be ensured, but consistency of data between servers cannot.
In addition, PostgreSQL does not offer any tools for automatic failure
processing, connecting or removing nodes from the cluster, etc. These tasks
must be solved by external means.

The image shows a primary-primary setup. Each of the servers creates a
publication and a subscription, establishing a bidirectional exchange of WAL
records. PostgreSQL 13 does not support such replication just yet, but this
feature is bound to appear sooner or later. See extensions pg_logical
https://www.2ndquadrant.com/en/resources-old/pglogical/ and BDR
https://www.2ndquadrant.com/en/resources-old/postgres-bdr-2ndquadrant/

o)) PROFESSIONAL

Takeaways Pos{gres

The replication mechanism works by delivering
WAL records to the replica and applying them there

streaming WAL records or transferring files

Physical replication creates an exact copy of the entire cluster

unidirectional
requires binary compatibility

Logical replication streams individual row changes

multidirectional
requires protocol-level compatibility

32

o)) PROFESSIONAL

Practice Posigres

1. Set up physical streaming replication between the two servers
in synchronous mode.

2. Verify that replication works as intended. Make sure that when
the replica is stopped, commits on the primary server could not
be completed.

3. Exit recovery mode on the replica.
4. Create two tables on both servers.

5. Set up logical replication for the first table from the first server
to the second, and the other way around for the second table.

6. Verify that replication works as intended.

33

1. To do this, set the parameters on the main server:
- synchronous_commit = on,
- synchronous_standby _names = 'replica’,

and on the replica in the postgresgl.auto.conf file, add
“application_name=replica” to the primary_conninfo parameter.

1. Synchronous physical streaming replication

Instead of using the -R key, create our own postgresqgl.auto.conf manually, because we need to specify some non-standard parameters.
student$ pg_basebackup --pgdata=/home/student/basebackup

Make sure the second server is stopped and push the backup:

student$ sudo pg_ctlcluster 13 replica status

pg_ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/13/replica

student$ sudo mv /home/student/basebackup/ /var/lib/postgresql/13/replica

student$ sudo chown -R postgres:postgres /var/lib/postgresql/13/replica

Configure and start the replica:

student$ echo "primary_conninfo = 'user=student port=5432 application_name=replica | sudo tee /var/lib/postgresql/13/replica/postgresql.auto.conf
primary_conninfo = 'user=student port=5432 application_name=replica’'

student$ sudo touch /var/lib/postgresql/13/replica/standby.signal

student$ sudo pg_ctlcluster 13 replica start

Main server configuration:

student$ psql

=> ALTER SYSTEM SET synchronous_commit = on;

ALTER SYSTEM

=> ALTER SYSTEM SET synchronous_standby_names = ‘replica’;

ALTER SYSTEM

student$ sudo pg_ctlcluster 13 main reload

2. Physical replication verification

student$ psql

=> CREATE DATABASE replica_overview;

CREATE DATABASE

=> \c replica_overview

You are now connected to database "replica overview" as user "student".
=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (1);

INSERT 0 1

=> SELECT * FROM pg_stat_replication \gx

[RECORD 1 J----d--ommmmmmmim i
pid | 162643

usesysid | 16384

usename | student

application_name | replica

client_addr |

client_hostname |

client_port | -1

backend_start | 2024-03-07 13:55:51.773678+03
backend_xmin |

state | streaming

sent_lsn | 0/1401A5C8

write_lsn | ©6/1401A5C8

flush lsn | 0/1401A5C8

replay_lsn | ©6/1401A5C8

write lag | 00:00:00.000166

flush_lag | 00:00:00.00269

replay lag | 00:00:00.003026
sync_priority |1

sync_state | sync

reply_time | 2024-03-07 13:55:55.33892+03

sync_state: sync means that replication is running in the synchronous mode.

student$ psql -p 5433

| => \c replica_overview

| You are now connected to database "replica_overview" as user "student".
| => SELECT * FROM t;

n

1
(1 row)

student$ sudo pg_ctlcluster 13 replica stop

=> BEGIN;

BEGIN

=> INSERT INTO t VALUES (2);

INSERT 0 1

=> COMMIT;

The commit waits for the synchronous replica.
student$ sudo pg_ctlcluster 13 replica start
COMMIT

student$ psql -p 5433 -d replica_overview

| => SELECT * FROM t;

n

1
2
(2 rows)

3. Completion of recovery

student$ sudo pg_ctlcluster 13 replica promote

The synchronous mode on the first server needs to be disabled now:
=> ALTER SYSTEM RESET synchronous_standby_names;

ALTER SYSTEM

student$ sudo pg_ctlcluster 13 main reload

4. Tables to verify logical replication

=> CREATE TABLE a(id integer)
CREATE TABLE

=> CREATE TABLE b(s text);
CREATE TABLE

| => CREATE TABLE a(id integer);
| CREATE TABLE

| => CREATE TABLE b(s text);

| CREATE TABLE
5. Logical replication configuration

=> ALTER SYSTEM SET wal_level = logical;
ALTER SYSTEM

student$ sudo pg_ctlcluster 13 main restart
| => ALTER SYSTEM SET wal_level = logical;
| ALTER SYSTEM

student$ sudo pg_ctlcluster 13 replica restart
student$ psql -d replica_overview

=> CREATE PUBLICATION a_pub FOR TABLE a;
CREATE PUBLICATION

student$ psql -p 5433 -d replica_overview

| => CREATE PUBLICATION b_pub FOR TABLE b;
| CREATE PUBLICATION

=> CREATE SUBSCRIPTION b_sub
CONNECTION 'port=5433 user=student dbname=replica_overview'
PUBLICATION b_pub;

NOTICE: «created replication slot "b_sub" on publisher
CREATE SUBSCRIPTION

=> CREATE SUBSCRIPTION a_sub
CONNECTION 'port=5432 user=student dbname=replica_overview'
PUBLICATION a_pub;

NOTICE: «created replication slot "a sub" on publisher
CREATE SUBSCRIPTION

6. Logical replication verification

=> INSERT INTO a VALUES (1);
INSERT 0 1
| => SELECT * FROM a;

id

1
(1 row)

| => INSERT INTO b VALUES ('Pa3');
| INSERT @ 1

=> SELECT * FROM b;

Remove the subscriptions as they are no longer needed:
=> DROP SUBSCRIPTION b_sub;

NOTICE: dropped replication slot "b_sub" on publisher
DROP SUBSCRIPTION

| => DROP SUBSCRIPTION a_sub;

NOTICE: dropped replication slot "a sub" on publisher
DROP SUBSCRIPTION

