Basic tools

Using psql

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

OOOOOOOOOOOO

Topics Pos{gres

Launching psql and connecting to the database
Getting help
Working with psql

Configuration

o)) PROFESSIONAL

Purpose of psql Posigres

Terminal client for working with PostgreSQL
Comes with the DBMS

Used by administrators and developers for interactive work and
script execution

There are other third-party tools available, but they are not considered in the
scope of the course.

The psql terminal client will be used throughout the course. Those who are
used to working with GUI tools may find it uncomfortable at first.
Nevertheless, it is very powerful if you get used to it.

This is the only client supplied with the DBMS. The knowledge of psqgl will be
useful to both developers and DB administrators, regardless of which tool
they choose to work with at the end of the day.

https://postgrespro.com/docs/postgresqgl/13/app-psql.html

Connection Po@SF“éE

Launch
$ psql -d database -U user -h node -p port

New connection in psql

=>\c[onnect] database user node port

Information about the current connection

=> \conninfo

When starting psql, you need to specify the connection parameters.

The required connection parameters include: database name, user name,
server name, port number. If these parameters are not specified, psql will try
to connect using the default values:

» database — matches the user name,
e user — matches the OS user name,
* node — local connection,

e port — usually 5432.

To make a new connection without leaving psql, run the \connect
command.

The \conninfo command provides information about the current
connection.

Additional information about connection configuration options:

https://postgrespro.com/docs/postgresql/13/libpg-envars.html
https://postgrespro.com/docs/postgresgl/13/libpg-pgservice.html
https://postgrespro.com/docs/postgresql/13/libpg-pgpass.html

o)) PROFESSIONAL

Getting help Pos{gres

In the OS command line
$ psgl --help

$ man psql
In psql
=> \? list of psql commands
=> \? variables psql variables
=> \h[elp] list of SQL commands
=> \h command syntax of the SQL command
=> \q quit

Reference information on psqgl can be obtained not only
from the documentation, but also from within the system directly.

psql with the - -help key displays a startup help message. If the
documentation package is installed with the system, you can view the
manual for psql using the man psql command.

psqgl can execute SQL commands as well as its own commands.

Inside psql, you can get a list and a brief description of all psql commands.
All psgl commands start with a backslash.

The \he lp command provides a list of SQL commands that the server
supports, as well as the syntax of an SQL command (if specified).

Another command that is useful to know, although it has nothing to do with
the help, is \q, used to exit psql. Alternatively, you can also use the exit

and quit commands to quit.

Executing SQL commands and formatting the output

Run psql:

student$ psql

Check the connection:

=> \conninfo

You are connected to database "student" as user "student" via socket in "/var/run/postgresql" at port "5432".

Using the default parameters, we’ve connected to the student database as the student user. You'll learn more about databases and users in later modules.

The \c[onnect] command creates a new connection without leaving psql.

psql can give output in different formats. Here are some of them:
* aligned,

e non-aligned,
¢ extended.

SQL commands, unlike psql ones, may span multiple rows. To send an SQL command, end it with a semicolon:

=> SELECT schemaname, tablename, tableowner
FROM pg_tables

LIMIT 5;

schemaname | tablename | tableowner
____________ e e e e
pg_catalog | pg_statistic | postgres
pg_catalog | pg_type | postgres
pg_catalog | pg foreign table | postgres
pg_catalog | pg_authid | postgres
pg_catalog | pg_statistic_ext data | postgres

(5 rows)

The aligned format is the default. It sets each column’s width based on its contents. There’s also the header and the total row.

psql commands to switch display modes:

¢ \a — switches between aligned and non-aligned,
e \t — switches the header and the total row on and off.

Let’s switch to non-aligned, turn the header and the total row off, and use a whitespace as the separator:
=> \t \a

Tuples only is on.
Output format is unaligned.

=> \pset fieldsep ' '
Field separator is " ".
=> SELECT schemaname, tablename, tableowner FROM pg_tables LIMIT 5;

pg_catalog pg statistic postgres
pg_catalog pg_type postgres

pg_catalog pg_foreign table postgres
pg_catalog pg_authid postgres

pg_catalog pg_statistic_ext_data postgres

=>\t \a

Tuples only is off.
Output format is aligned.

The extended format is convenient for displaying multiple columns for one or several records:
=> \Xx

Expanded display is on.

=> SELECT * FROM pg_tables WHERE tablename = 'pg_class';

-[RECORD 1 J-----------
schemaname | pg_catalog
tablename | pg_class
tableowner | postgres
tablespace |
hasindexes |
hasrules |
hastriggers |
rowsecurity

—h —h —h +

=> \Xx
Expanded display is off.
The extended mode can be set only for a single query. To do that, add \gx at the end instead of a semicolon:

=> SELECT * FROM pg_tables WHERE tablename = 'pg_proc' \gx

-[RECORD 1 J-----------

schemaname | pg_catalog
tablename | pg_proc
tableowner | postgres
tablespace |

hasindexes | t

hasrules | f
hastriggers | f
rowsecurity | f

You can see all the formatting options by using the \pset command. If used with no parameters, it will display the parameters currently set:

=> \pset

border 1
columns 0
csv_fieldsep Y
expanded of f
fieldsep v
fieldsep_zero off
footer on
format aligned
linestyle ascii
null v
numericlocale off
pager 1
pager_min_lines 0
recordsep "\n'
recordsep_zero of f
tableattr

title

tuples_only of f

unicode_border linestyle single
unicode column_linestyle single
unicode_header linestyle single

Interfacing with the OS

psql can run shell commands:

=> \! pwd

/home/student

It can set environment variables:

=> \setenv TEST Hello

=> \! echo $TEST

Hello

It can write output into a file with the \o[ut] command:
=> \o dbal_log

=> SELECT schemaname, tablename, tableowner FROM pg_tables LIMIT 5;
There’s nothing on the screen! Let’s check the file:

=> \! cat dbal_log

schemaname | tablename | tableowner
____________ T
pg_catalog | pg_statistic | postgres
pg_catalog | pg_type | postgres
pg_catalog | pg_foreign table | postgres
pg_catalog | pg_authid | postgres
pg_catalog | pg_statistic_ext data | postgres

(5 rows)

Let’s get set the output to back to the screen:

Executing scripts
Another way to run a query is with the \g command. You can specify parameters for this query alone in the brackets. Note the file name to output into at the
end of the command.

=> SELECT format('SELECT count(*) FROM %I;', tablename)
FROM pg_tables LIMIT 3
\g (tuples_only=on format=unaligned) dbal_log

Here are the file contents:
=> \! cat dbal_log

SELECT count(*) FROM pg_statistic;
SELECT count(*) FROM pg_type;
SELECT count(*) FROM pg foreign table;

You can reroute the output to the OS with \g | cmd

We can run the commands using \i[nclude]:

=> \i dbal_log

Other ways to run a command from a file:

e psql < filename
e psql -f filename

You can skip creating a file in the last example if you end the query with \gexec:

=> SELECT format('SELECT count(*) FROM %I;', tablename)
FROM pg_tables LIMIT 3
\gexec

psql variables and control structures

Not unlike shell, psql has its own variables, including some pre-defined ones (integral to psql).
Set a variable:

=> \set TEST Hi!

Use a colon to get its value:

=> \echo :TEST

Hi!

Unset a value:

=> \unset TEST

=> \echo :TEST

You can set a variable’s value as a query output using the ‘gset command:
=> SELECT now() AS curr_time \gset

=> \echo :curr_time

2024-03-07 13:48:29.961792+03

The query must return only one record.

If used with no parameters, \set displays all currently set variables and their values:

=> \set

AUTOCOMMIT = ‘'on'

COMP_KEYWORD_CASE = 'preserve-upper'

DBNAME = 'student'’

ECHO = 'none’

ECHO_HIDDEN = 'off"'

ENCODING = 'UTF8'

ERROR = 'false'

FETCH_COUNT = '0"'

HIDE TABLEAM = 'off"'

HISTCONTROL = 'none’

HISTFILE = 'hist'

HISTSIZE = '500'

HOST = '/var/run/postgresql’

IGNOREEOF = '0'

LAST_ERROR_MESSAGE = ''

LAST_ERROR_SQLSTATE = '00000'
ON_ERROR_ROLLBACK = 'off'

ON_ERROR_STOP = 'off"'

PORT = '5432'

PROMPTL = '9%/%R%x%# '

PROMPT2 = '%/%R%x%# '

PROMPT3 = '>> '

QUIET = 'off'

ROW_COUNT = '1'

SERVER_VERSION_NAME = '13.11 (Ubuntu 13.11-1.pgdg22.04+1)"
SERVER_VERSION_NUM = '130011'

SHOW_CONTEXT = 'errors'

SINGLELINE = 'off'

SINGLESTEP = 'off'

SQLSTATE = '00000'

USER = 'student'

VERBOSITY = 'default’

VERSION = 'PostgreSQL 13.11 (Ubuntu 13.11-1.pgdg22.04+1) on x86 64-pc-linux-gnu, compiled by gcc (Ubuntu 11.3.0-1lubuntul~22.04) 11.3.0, 64-bit'
VERSION _NAME = '13.11 (Ubuntu 13.11-1.pgdg22.04+1)
VERSION _NUM = '130011

curr_time = '2024-03-07 13:48:29.961792+03"'

Conditional operators can be used with command files.

For example, let’s check if working dir has a value, and if it doesn'’t, set it as the current directory name. The following command checks if the value is set and
returns a Boolean value:

=> \echo :{?working_dir}

FALSE

This conditional psql operator checks if the variable exists and sets the default value if needed:
=> \if :{?working_dir}

\else

\set working_dir pwd’
\endif

Now we can be sure that the working dir variable is defined:
=> \echo :working_dir

/home/student

system catalog commands

There is a set of commands (mostly starting with \d) used to quickly and conveniently collect information about database objects.
Example:
=> \d pg_tables

View "pg_catalog.pg_tables"

Column | Type | Collation | Nullable | Default

------------- B s e T (LI
schemaname | name | | |
tablename | name | | |
tableowner | name | | |
tablespace | name | | |
hasindexes | boolean | | |
hasrules | boolean | | |
hastriggers | boolean | | |
rowsecurity | boolean | | |

We will see more of these commands later.

Configuring psql

On startup, psql runs two scripts (if they exist):

e first, the common script psqlrc,
« next, the user configuration .psqlrc.

The user configuration file must be in the home directory. The system script’s location can be discovered with the following command:
student$ pg_config --sysconfdir
/etc/postgresql-common

Neither file exists by default.

You can use the files to configure your session parameters:

e psql prompt;
e desired page-by-page output viewing application;
e variables to store frequently used commands.

For example, let’s store a query that returns 5 largest tables in a variable top5:

=> \set top5 'SELECT tablename, pg_total_relation_size(schemaname||''."'"'||tablename) AS bytes FROM pg_tables ORDER BY bytes DESC LIMIT 5;'

Now we can execute the query by just typing:

=> :top5
tablename | bytes

________________ e
pg_depend | 1130496
pg_proc | 1048576
pg_rewrite | 704512
pg_attribute | 671744
pg_description | 581632

(5 rows)

If you write the \set command into the ~/.psqlrc file, the top5 variable will be available immediately after psql startup.

Thanks to readline support, psql can autocomplete keywords and object names, and also stores the command history. The name and the size of the history file
are set by HISTFILE and HISTSIZE variables.

Takeaways poééa?@g

psql is a terminal client for working with PostgreSQL
Connection parameters are required at startup
Executes SQL and psql commands

Includes tools for interactive work, as well as for preparing and
executing scripts

Practice Pogga’?“ég

1. Run psql and check the current connection information.

2. Output all rows of the pg_tables table.

3. Set the parameter less -XS to display output page by page,
then display pg_tables contents again.

4. The default prompt shows the name of the database. Configure

the prompt to display additional information about the user:
role@base=#

5. Configure psql to display the execution time for all commands.
Make sure that this setting is saved when you restart.

1. When starting psql, if you omit the connection parameters, the default
values will apply.

3. You can set the PSQL_PAGER environment variable in the .psqlrc file.
Use the \setenv command to set it. This will make the less -XS
parameter apply to only psql output. For all other OS commands, the OS
settings will be used (for example, from the .profile file).

4. Prompt customization is described in the documentation:

thg)s://postqrespro.com/docs/postqresqI/13/app-psqI#APP-PSOL-PROMPTI

5. The psqgl command to output the duration of a query execution can be
found in the PostgreSQL documentation or within psql itself with the \?

command.

1. Running psql and displaying connection information

student$ psql
=> \conninfo

You are connected to database "student" as user "student" via socket in "/var/run/postgresql" at port "5432".

2. pg_tables table

Limit the output to 5 rows. Note that if the records are too wide to fit on the screen, they will be wrapped to new lines. This
makes them harder to read.

=> SELECT * FROM pg_tables LIMIT 5;

schemaname | tablename | tableowner | tablespace | hasindexes | hasrules | hastriggers | rowsecurity
------------ R R R e e i R e S L R P
pg_catalog | pg statistic | postgres | | t | f | f | f

pg _catalog | pg type | postgres | | t | f | f | f

pg _catalog | pg foreign table | postgres | | t | f | f | f

pg _catalog | pg_authid | postgres | pg_global | t | f | f | f

pg catalog | pg statistic ext data | postgres | | t | f | f | f

(5 rows)

3. Configuring page view in .psqlrc

student$ echo "\setenv PSQL_PAGER 'less -XS'" >> ~/.psqlrc
When displaying output with the less command, you can use the up, down, left and right keys to scroll. The h command

display the help file. The ¢ command exits the display mode.

4. Configuring the prompt

To add role information to the prompt, add %n@ in front of the variables PROMPT1 and PROMPT2.
student$ echo "\set PROMPTL '%n@%/%R%x%# '" >> ~/.psqlrc
student$ echo "\set PROMPT2 '%n@%/%R%x%# '" >> ~/.psqlrc

The PROMPT1 variable declares the prompt for the first row of the query. If the query spans several rows, every row after
the first will start with the prompt defined by PROMPT?2. Both variables have the same value by default, but you can
configure them differently. The PROMPT3 variable is used only for the COPY command.

5. Displaying SQL command execution times

student$ echo "\timing on" >> ~/.psqlrc
The full .psqlrc file will look like this:
student$ cat ~/.psqlrc

\setenv PSQL PAGER 'less -XS'
\set PROMPT1 '%n@%/%R%x%# '
\set PROMPT2 '%n@%/%R%x%# '
\timing on

For the changes to take effect, you need to relog to psql.
=> \q
student$ psql

After relogging, check:

e the prompt (should include the role name),
e how the query for pg tables is displayed,
¢ if command execution times are displayed.

o)) PROFESSIONAL

Practice+ Posigres

1. Open a transaction and execute a command that ends with any
error. Make sure that no other commands can be executed inside
this transaction.

2. Set the ON_ERROR_ROLLBACK parameter to ON and make
sure that after the error, you can continue executing commands
inside the transaction.

1. To open a transaction, run the command
BEGIN;

2. Setting the ON_ERROR_ROLLBACK parameter to ON causes psq|
to create a SAVEPOINT before each SQL command inside an open
transaction and, in case of an error, roll back to this savepoint.

https://postgrespro.com/docs/postgresgl/13/sql-savepoint

1. psql and in-transaction errors

student$ psql

The psql tool autocommits transactions by default, so each SQL command is executed within a separate transaction.
To start a transaction explicitly, the BEGIN command is used:

student@student=# BEGIN;

BEGIN

Note that the psql prompt has changed. The asterisk character shows that the transaction is currently open.
student@student=*# CREATE TABLE t (id int);

CREATE TABLE

Consider that we have made a typo in the following command:

student@student=*# INSERTINTO t VALUES(1);

ERROR: syntax error at or near "INSERTINTO"
LINE 1: INSERTINTO t VALUES(1);

The asterisk will change to an exclamation mark, indicating an error. Now, rewrite the command:
student@student=!# INSERT INTO t VALUES(1);
ERROR: current transaction is aborted, commands ignored until end of transaction block

But PostgreSQL cannot roll back just a single command, so it terminates and rolls back the whole transaction. To continue,
we must send a command that says that the transaction is complete. It can be either COMMIT or ROLLBACK, since the
transaction is already cancelled.

student@student='# COMMIT;

ROLLBACK

Creating the table was cancelled, so there is no such table in the database:
student@student=# SELECT * FROM t;

ERROR: relation "t" does not exist
LINE 1: SELECT * FROM t;

2. The ON_ERROR_ROLLBACK variable

We can change how psql behaves here.
student@student=# \set ON_ERROR_ROLLBACK on

Now, before every transaction command, there will be a checkpoint created. In case of an error, it will roll back to the last
checkpoint. This way, transaction commands can continue executing.

student@student=# BEGIN;

BEGIN

student@student=*# CREATE TABLE t (id int);
CREATE TABLE

student@student=*# INSERTINTO t VALUES(1);

ERROR: syntax error at or near "INSERTINTO"
LINE 1: INSERTINTO t VALUES(1);

student@student=*# INSERT INTO t VALUES(1);
INSERT 0 1

student@student=*# COMMIT;

COMMIT

student@student=# SELECT * FROM t;

id

1
(1 row)

The ON_ERROR ROLLBACK variable can be set to interactive. This will make such behavior work only in the interactive

mode, but not when executing scripts.

