Data organization
Low level

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

o)) PROFESSIONAL

Topics Pos{gres

Data files
Forks: main, visibility map, free space map

Oversized row versions and TOAST

Obiject forks Posigres

main
NNN.2
segment NNN.1
NNN
NNN_fsm.1
NNN_fsm
NNN_vm

pg_relation_size

Usually, each database object that stores data (table, index, sequence,
materialized view) has several corresponding forks. Each fork contains a
specific type of data.

Initially, each fork contains a single file. The file name is a numeric identifier
and may include a suffix derived from the fork name.

The file gradually increases in size until it reaches 1 GB, at which point the
next file for the same fork is created. Such files are sometimes called
segments.The segment sequence number is appended to

the end of the file name. The pg_relation_size function displays the total
size of a fork.

The 1 GB file size limit was established in the past to support file systems
that cannot operate with larger file sizes. A different file size limit can be set
during source code compilation with the --with-segsize flag.

So, a single database object may consist of multiple files on disk. A small
table will have three corresponding files on disk, and an index will have two.
All object files belonging to the same tablespace and the same database are
stored in the same directory. This may become an issue as some file
systems may perform poorly on directories with a large number of files.

Forks Posigres

Main fork

actual data (row versions)
exists for all objects

Initialization fork (init)

A “template” of the main fork

used in case of failure; exists only for unlogged tables
Visibility map (vm)

exists only for tables
Free space map (fsm)

exists for both tables and indexes

There are multiple types of forks.

The main fork contains the actual data, such as table row versions and
index records. The main fork file names match the identifier. All objects have
a main fork.

The file names of the initialization fork end with the “ _init” suffix. This fork
exists only for unlogged tables (created with the UNLOGGED keywords)
and their indexes. Unlogged tables are no different from regular ones,
except that actions performed on them are not logged in WAL. This makes
operations on them faster, but their content cannot be recovered if a failure
occurs. When recovering after a failure, PostgreSQL simply wipes all
unlogged table forks and copies the initialization fork into the main fork. The
result is an empty table.

https://postgrespro.com/docs/postgresqgl/13/storage-init

The vm (visibility map) fork’s filenames end in “_vm”. The fork exists only for
tables. Separate MVCC for indexes is not supported.

The fsm (free space map) fork’s filenames end in “_fsm”. This fork exists for
both tables and indexes.

These two maps were discussed in the Architecture module.
https://postgrespro.com/docs/postgresgl/13/storage-fsm
https://postgrespro.com/docs/postgresgl/13/storage-vm

File locations

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".
Create a table and look where its files are.

=> CREATE TABLE t(
id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
n numeric

)i

CREATE TABLE

=> INSERT INTO t(n) SELECT id FROM generate_series(1,10000) AS id;
INSERT 0 10000

=> VACUUM t;

VACUUM

The path to the main file relative to PGDATA is shown with the following command:
=> SELECT pg_relation_filepath('t');

pg_relation filepath

base/16527/16530
(1 row)

Since the table is located in the pg default tablespace, the path starts with “base”, followed by the database directory:

=> SELECT oid FROM pg_database WHERE datname = 'data_lowlevel';

Then follows the file name. To get it, use the command:
=> SELECT relfilenode FROM pg_class WHERE relname = 't';

relfilenode

Let’s have a look at the files themselves. Only the OS user postgres has access to PGDATA, so run the Is on their behalf:

postgres$ ls -1 /var/lib/postgresql/13/main/base/16527/16530%

SrW----- - 1 postgres postgres 450560 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16530
SrW----- - 1 postgres postgres 24576 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16530 fsm
SrW----- - 1 postgres postgres 8192 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16530 vm

There are three forks: the main fork, the free space map (fsm) and the visibility map (vm).

You can view the index files in a similar way:

= \d t
Table "public.t"
Column | Type | Collation | Nullable | Default
-------- B T R e e T
id | integer | | not null | generated always as identity
n | numeric | | |
Indexes:

"t _pkey" PRIMARY KEY, btree (id)

=> SELECT pg_relation_filepath('t_pkey');

pg relation filepath

base/16527/16536
(1 row)

postgres$ 1s -1 /var/lib/postgresql/13/main/base/16527/16536%*

SrW----- - 1 postgres postgres 245760 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16536
And the primary key sequence files:

=> SELECT pg_relation_filepath(pg_get_serial_sequence('t','id'));

pg relation filepath

base/16527/16528
(1 row)

postgres$ ls -1 /var/lib/postgresql/13/main/base/16527/16528%

A stock extension oid2name lets you quickly and easily find out which database objects relate to which files.
You can view all databases:
student$ /usr/lib/postgresql/13/bin/oid2name

All databases:
0id Database Name Tablespace

16527 data lowlevel pg default

13485 postgres pg default
16385 student pg default
13484 template® pg default

1 templatel pg default

All objects in a database:
student$ /usr/lib/postgresql/13/bin/oid2name -d data_lowlevel

From database "data lowlevel":
Filenode Table Name

All tablespaces in a database:
student$ /usr/lib/postgresql/13/bin/oid2name -d data_lowlevel -s

All tablespaces:
0id Tablespace Name

1663 pg default
1664 pg_global

Find the file name by table name:
student$ /usr/lib/postgresql/13/bin/oid2name -d data_lowlevel -t t

From database "data lowlevel":
Filenode Table Name

Or the table name by file name:
student$ /usr/lib/postgresql/13/bin/oid2name -d data_lowlevel -f 16530

From database "data lowlevel":
Filenode Table Name

Fork sizes

You can get the size of the files that comprise a fork from the file system, but there is an easier way to see the size of each
fork individually:

=> SELECT pg_relation_size('t', 'main') main,
pg_relation_size('t','fsm') fsm,
pg_relation_size('t','vm') vm;

450560 | 24576 | 8192
(1 row)

TOAST B8 e

A row version must fit into one page

some of the fields can be compressed
some fields can be moved into a TOAST table
fields can be both compressed and moved

TOAST table

located in the pg_toast (pg_toast_temp_N) schema

supported by its own index

contains chunks of oversized values, each chunk is smaller than a page
accessed by querying a corresponding oversized field

has its own MVCC

used transparently for the application

Any row version in PostgreSQL must fit entirely into one page. Oversized
row versions are stored using TOAST, The Oversized Attributes Storage
Technique. TOAST comprises several approaches to storing oversized field
values. Firstly, the value can be compressed so that the row version fits into
the page. Secondly, the value can be moved from the row version to a
separate service table. Both strategies can be applied to the same row
versions: some values would be compressed, some moved, some
compressed and moved.

Any table can have a separate TOAST table (with a dedicated index)
created for it, if necessary. The dedicated indexes are located in the
pg_toast schema and therefore are usually not visible (temporary TOAST
tables are stored in the pg_toast_temp_N schema, similarly to the regular

pg_temp_N).

The row versions in the TOAST table must also fit into one page each, so
longer values are split into multiple chunks, and are transparently “glued
together” by PostgreSQL when the application demands.

TOAST tables are used only when oversized values are queried. The tables
have their own versioning mechanism. Whenever a data update in the main
table does not modify the oversized value in the TOAST table, the new row
version in the table will refer to the same old TOAST value, saving disk
space.

https://postgrespro.com/docs/postgresgl/13/storage-toast

TOAST

The table t has a numeric type column. This type can hold very large numbers. For example:

=> SELECT length((123456789::numeric ~ 12345::numeric)::text);

However, when inserted into the table, this humongous value does not change the table size:
=> SELECT pg_relation_size('t','main');

pg_relation size

=> INSERT INTO t(n) SELECT 123456789::numeric ~ 12345::numeric;
INSERT 0 1
=> SELECT pg_relation_size('t','main');

pg_relation size

Since the row version does not fit into a single page, it is instead stored in a separate TOAST table. TOAST tables and their
indexes are created automatically for all tables that include potentially “oversized” data types and are used as needed.

You can find the name and oid of a TOAST table:

=> SELECT relname, relfilenode FROM pg_class WHERE oid = (
SELECT reltoastrelid FROM pg_class WHERE oid = 't'::regclass
);

relname | relfilenode
________________ o e e e e e oo
pg_toast_ 16530 | 16533
(1 row)

And here are the TOAST table files:
postgres$ 1s -1 /var/lib/postgresql/13/main/base/16527/16533*

SrW------- 1 postgres postgres 57344 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16533
SrW----- - 1 postgres postgres 24576 Mar 7 13:50 /var/lib/postgresql/13/main/base/16527/16533 fsm

When it comes to oversized values, there are several strategies that can be employed. The name of the current strategy is
listed in the Storage column:

=> \d+ t
Table "public.t"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
-------- B T T T T e e e T
id | integer | | not null | generated always as identity | plain |
n | numeric | | | | main | |
Indexes:

"t pkey" PRIMARY KEY, btree (id)
Access method: heap

e plain — TOAST is not used (the type has a fixed length),

e extended — both compression and external storage are used,
e external — external storage but not compression,

e main — processed last, compression is preferred.

You can select what strategy to use. For example, if you know that data in a table is already compressed, you can switch

the strategy to external.

For example:

=> ALTER TABLE t ALTER COLUMN n SET STORAGE external;
ALTER TABLE

This operation does not change the data, but defines the strategy to be used for new row versions.

o)) PROFESSIONAL

Table size Posygres

table TOAST Indexes

%% &%
%

pg_table_size pg_indexes_size

pg_total_relation_size

As already mentioned, the size of a single fork can be obtained by the
pg_relation_size function. To get the total object size, other functions can be
used:

* pg_table_size shows the size of the table and its TOAST part (the
TOAST table and its index), but not the regular index sizes. The same
function can be used to find the size of an individual index: both tables
and indexes are relations, and despite the name, the function accepts
any relation as input.

* pg_indexes_size sums up the sizes of all table indexes except the
TOAST table index.

* pg_total relation_size shows the full size of the table, along
with all its indexes.

Table size

The size of a table (including the TOAST table and its index):
=> SELECT pg_table_size('t');

pg table size

581632
(1 row)

Total size of all table indexes:
=> SELECT pg_indexes_size('t');

pg_indexes size

You can get the size of a single index by using the pg table size function. Indexes have no TOASTSs, so the function only
shows the size of all index forks (main, fsm).

Currently, the table t has just the primary key index, so its size matches the size returned by pg indexes_size:

=> SELECT pg_table_size('t_pkey') AS t_pkey;

245760
(1 row)

Total table size, including TOAST and all indexes:
=> SELECT pg_total_relation_size('t');

pg_total_relation_size

827392

Takeaways Pogga’??é

An object comprises several forks
A fork consists of one or more segment files

Oversized row versions are stored using TOAST

10

o)) PROFESSIONAL

Practice Posigres

1.

Create an unlogged table in a custom tablespace and make sure
that it has an init fork.

Delete the created tablespace.

Create a table with a column of the text type.
What storage strategy is used for this column?

Change the strategy to external and insert a short and a long
row into the table.

Check if the rows are in the TOAST table by making a direct
query to it. Explain why.

11

1. Unlogged tables

student$ sudo mkdir /var/lib/postgresql/ts_dir

student$ sudo chown postgres /var/lib/postgresql/ts_dir

=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir';
CREATE TABLESPACE

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".
=> CREATE UNLOGGED TABLE u(n integer) TABLESPACE ts;

CREATE TABLE

=> INSERT INTO u(n) SELECT n FROM generate_series(1,1000) n;
INSERT 0 1000

=> SELECT pg_relation_filepath('u');

pg relation filepath

pg tblspc/16705/PG 13 202007201/16706/16707
(1 row)

Let's look at the table files.

Note how the Is command is executed on behalf of the postgres user. You can open a second terminal window and switch to the new user
with the following command:

student$ sudo su postgres
Now, in the same window, run:

postgres$ 1s -1 /var/lib/postgresql/13/main/pg_tblspc/16705/PG_13_202007201/16706/16707*

SrW------ - 1 postgres postgres 40960 Mar 7 13:54 /var/lib/postgresql/13/main/pg_tblspc/16705/PG_13 202007201/16706/16707
SrW- - - 1 postgres postgres 24576 Mar 7 13:54 /var/lib/postgresql/13/main/pg tblspc/16705/PG_13 202007201/16706/16707 fsm
rW---- - 1 postgres postgres 0 Mar 7 13:54 /var/lib/postgresql/13/main/pg tblspc/16705/PG_13 202007201/16706/16707 init

Drop the created tablespace:
=> DROP TABLE u;

DROP TABLE

=> DROP TABLESPACE ts;

DROP TABLESPACE

2. A table with a text column

=> CREATE TABLE t(s text);
CREATE TABLE
=> \d+ t

Table "public.t"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

s | text | | | | extended | |
Access method: heap

Dy default, the extended strategy is used for text data.
Change the strategy to external:

=> ALTER TABLE t ALTER COLUMN s SET STORAGE external;
ALTER TABLE

=> INSERT INTO t(s) VALUES ('Short string.');

INSERT 0 1

=> INSERT INTO t(s) VALUES (repeat('A',3456));
INSERT 0 1

Check the toast table:

=> SELECT relname FROM pg_class WHERE oid = (
SELECT reltoastrelid FROM pg_class WHERE relname='t"
)i

relname

pg_toast_16710
(1 row)

The toast table is “hidden”, because it is located in a schema that is excluded from the search path. This is a good thing, because TOAST is
intended to work transparently for the user. However, there still are ways to view the table:

=> SELECT chunk_id, chunk_seq, length(chunk_data)
FROM pg_toast.pg_toast_16710
ORDER BY chunk_id, chunk_seq;

chunk _id | chunk seq | length

16716 | 0
16716 | 1
(2 rows)

Only the long string went into the toast table (two chunks, total size matches the string size). The short string wasn't toasted: there is no
need, as it already fits into one page.

o)) PROFESSIONAL

Practice+ Posigres

1. Create a database.

Compare the database size returned by the pg_database_size
command with the total size of all tables in the database.

Explain the result.

12

1. You can get the list of database tables from the pg_class table.

1. Comparing the size of a database to the total size of its tables

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".

Even an empty database contains some system catalog tables. The list of all tables is stored in pg class. Exclude from the
calculation:

e the cluster's shared tables (they don't belong to the database),
e indexes and TOAST tables (they will be included in the calculation automatically).

=> SELECT sum(pg_total_relation_size(oid))
FROM pg_class

WHERE NOT relisshared

AND relkind = 'r';

7995392
(1 row)

The size of the database is a bit larger:
=> SELECT pg_database_size('data_lowlevel');

pg database size

This is because the pg database size function returns the size of the catalog in the file system, and the catalog contains
some service files.

=> SELECT oid FROM pg_database WHERE datname = 'data_lowlevel';

Note that the following Is command is executed on behalf of the postgres user. To follow along, open a new terminal
window and switch to the postgres user:

student$ sudo su postgres
In the same window, run:

postgres$ 1s -1 /var/lib/postgresql/13/main/base/16717/["0-9]*

SrwW------- 1 postgres postgres 512 Mar 7 13:54 /var/lib/postgresql/13/main/base/16717/pg filenode.map
SrW------- 1 postgres postgres 151596 Mar 7 13:54 /var/lib/postgresql/13/main/base/16717/pg internal.init
SrW----- - 1 postgres postgres 3 Mar 7 13:54 /var/lib/postgresql/13/main/base/16717/PG_VERSION

e pg filenode.map — mapping OIDs of some tables to file names,
e pg internal.init — system catalog cache,
e PG VERSION — PostgreSQL version.

As some functions operate on the database object level, and others on the file system level, it is sometimes hard to
compare the results directly. The same goes for the pg tablespace size function.

