

Data Organization
System catalog

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

What is the system catalog and how to access it
System catalog objects and their locations

Object naming rules
Special data types

3

System catalog

A set of tables and views describing all objects
in a database cluster
Schemas

primary schema: pg_catalog
alternative view: information_schema (the SQL standard)

SQL access
view: SELECT
update: CREATE, ALTER, DROP

psql access
quality-of-life commands

The system catalog is a collection of tables and views that describe all
database objects. It is metadata for the contents of the cluster.
https://postgrespro.com/docs/postgresql/13/catalogs
You can access this metadata using regular SQL queries. SELECT
commands can give a description of an object, and DDL (Data Definition
Language) commands let you add and modify objects.
All system catalog tables and views are located in the pg_catalog schema.
There is another schema, as defined by the SQL standard:
information_schema. It is more stable and portable than pg_catalog, but
does not reflect a number of specific features of PostgreSQL.
Client programs can read the contents of the system catalog and display it
to the user in a convenient way. For example, GUI-based development and
management environments usually come with a hierarchical object
navigation tool.
The psql client also offers a number of convenient built-in commands
specifically designed for working with the system catalog. Most of these
commands start with \d (as in “describe”). For the full list of commands and
their descriptions, see:
https://postgrespro.com/docs/postgresql/13/app-psql#APP-PSQL-META-CO
MMANDS
We will look at the most commonly used ones in the demo. The course
materials also include the catalogs.pdf file that features a diagram of the
main system catalog tables and related psql commands.

4

Shared cluster objects

appdb

pg_catalog

tabletableobject

public

tabletableobject

postgres

pg_catalog public

tabletableobject

tabletableobject

tabletableobject tabletableobject

tabletableobject tabletableobject

tabletableobject

Objects in
this database

shared
cluster
objects

schema

tabletableobject

tabletableobject

In a database cluster, each database has its own set of system catalog
tables. However, there are several system catalog objects that are shared
between all cluster databases. The most obvious example is the list of the
databases themselves.
These tables are stored outside of any single database, but at the same
time they are accessible from any database within the cluster.

5

Naming rules

Object (table, view) and column name prefixes

Object names are always lowercase

pg_database.datname

common prefix
for all objects

column prefix
(usually derived from

the object name)

All system catalog tables and views begin with the prefix “pg_”. In order to
avoid potential conflicts, it is not recommended to create your own objects
starting with “pg_”.
Column names have a three-letter prefix, which is usually derived from the
name of the table. There is no underscore after the prefix.
Object names are always stored in lowercase.
Example of a query for tablespaces:
 SELECT * FROM pg_tablespace WHERE spcname='pg_global';

All pg_tablespace columns start with "spc", and the name of the tablespace
under the WHERE clause must be in lowercase.

Some	system	catalog	objects

Create	a	database	and	some	test	objects:

=>	CREATE	DATABASE	data_catalog;

CREATE	DATABASE

=>	\c	data_catalog

You	are	now	connected	to	database	"data_catalog"	as	user	"student".

=>	CREATE	TABLE	employees(
		id	integer	GENERATED	ALWAYS	AS	IDENTITY	PRIMARY	KEY,
		name	text,
		manager	integer
);

CREATE	TABLE

=>	CREATE	VIEW	top_managers	AS
		SELECT	*	FROM	employees	WHERE	manager	IS	NULL;

CREATE	VIEW

We	are	familiar	with	some	of	the	system	catalog	tables	from	the	previous	topic,	namely,	databases:

=>	SELECT	*	FROM	pg_database	WHERE	datname	=	'data_catalog'	\gx

-[RECORD	1]-+-------------
oid											|	16483
datname							|	data_catalog
datdba								|	16384
encoding						|	6
datcollate				|	en_US.UTF-8
datctype						|	en_US.UTF-8
datistemplate	|	f
datallowconn		|	t
datconnlimit		|	-1
datlastsysoid	|	13484
datfrozenxid		|	478
datminmxid				|	1
dattablespace	|	1663
datacl								|	

And	schemas:

=>	SELECT	*	FROM	pg_namespace	WHERE	nspname	=	'public'	\gx

-[RECORD	1]---------------------------------
oid						|	2200
nspname		|	public
nspowner	|	10
nspacl			|	{postgres=UC/postgres,=UC/postgres}

pg_class	is	an	important	table	that	stores	descriptions	for	multiple	types	of	objects:	tables,	views,	indexes,	sequences.	All	these	objects	in	PostgreSQL	are	called	relations,	thus	the	prefix	“rel”	in	the	column
names:

=>	SELECT	relname,	relkind,	relnamespace,	relfilenode,	relowner,	reltablespace	
FROM	pg_class	WHERE	relname	~	'^(emp|top)';

					relname						|	relkind	|	relnamespace	|	relfilenode	|	relowner	|	reltablespace	
------------------+---------+--------------+-------------+----------+---------------
	employees_id_seq	|	S							|									2200	|							16484	|				16384	|													0
	employees								|	r							|									2200	|							16486	|				16384	|													0
	employees_pkey			|	i							|									2200	|							16492	|				16384	|													0
	top_managers					|	v							|									2200	|											0	|				16384	|													0
(4	rows)

The	object	type	is	defined	in	the	relkind	column.

Naturally,	not	every	column	in	pg_class	will	make	sense	for	every	object	type.	It	is	also	more	convenient	to	look	at	object	IDs	(relnamespace,	relowner,	etc.)	instead	of	at	object	names	directly.	There	are
system	views	that	show	the	necessary	data,	for	example:

=>	SELECT	schemaname,	tablename,	tableowner,	tablespace
FROM	pg_tables	WHERE	schemaname	=	'public';

	schemaname	|	tablename	|	tableowner	|	tablespace	
------------+-----------+------------+------------
	public					|	employees	|	student				|	
(1	row)

=>	SELECT	*	
FROM	pg_views	WHERE	schemaname	=	'public';

	schemaname	|			viewname			|	viewowner	|														definition														
------------+--------------+-----------+--------------------------------------
	public					|	top_managers	|	student			|		SELECT	employees.id,															+
												|														|											|					employees.name,																	+
												|														|											|					employees.manager															+
												|														|											|				FROM	employees																			+
												|														|											|			WHERE	(employees.manager	IS	NULL);
(1	row)

Using	psql	commands

psql	has	a	toolkit	for	obtaining	system	catalog	objects.	The	toolkit	is	a	set	of	short	commands	that	are	more	convenient	than	making	direct	queries	to	system	tables	and	views.

A	list	of	all	tables	is	obtained	with	the	command:

=>	\dt

										List	of	relations
	Schema	|			Name				|	Type		|		Owner		
--------+-----------+-------+---------
	public	|	employees	|	table	|	student
(1	row)

This	command	returns	a	list	of	all	views	in	the	public	schema:

=>	\dv	public.*

											List	of	relations
	Schema	|					Name					|	Type	|		Owner		
--------+--------------+------+---------
	public	|	top_managers	|	view	|	student
(1	row)

List	of	tables,	views,	indexes,	and	sequences:

=>	\dtvis

																					List	of	relations
	Schema	|							Name							|			Type			|		Owner		|			Table			
--------+------------------+----------+---------+-----------
	public	|	employees								|	table				|	student	|	
	public	|	employees_id_seq	|	sequence	|	student	|	
	public	|	employees_pkey			|	index				|	student	|	employees
	public	|	top_managers					|	view					|	student	|	
(4	rows)

Appended	with	the	+	key,	these	commands	will	return	more	detailed	data:

=>	\dt+

																															List	of	relations
	Schema	|			Name				|	Type		|		Owner		|	Persistence	|				Size				|	Description	
--------+-----------+-------+---------+-------------+------------+-------------
	public	|	employees	|	table	|	student	|	permanent			|	8192	bytes	|	
(1	row)

To	get	detailed	information	about	a	specific	object,	use	the	\d	command	(without	any	additional	letters):

=>	\d	top_managers

													View	"public.top_managers"
	Column		|		Type			|	Collation	|	Nullable	|	Default	
---------+---------+-----------+----------+---------
	id						|	integer	|											|										|	
	name				|	text				|											|										|	
	manager	|	integer	|											|										|	

The	+	key	still	works:

=>	\d+	top_managers

																									View	"public.top_managers"
	Column		|		Type			|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
---------+---------+-----------+----------+---------+----------+-------------
	id						|	integer	|											|										|									|	plain				|	
	name				|	text				|											|										|									|	extended	|	
	manager	|	integer	|											|										|									|	plain				|	
View	definition:
	SELECT	employees.id,
				employees.name,
				employees.manager
			FROM	employees
		WHERE	employees.manager	IS	NULL;

You	can	use	the	command	not	only	on	relations,	but	other	objects	as	well,	such	as	schemas	(\dn)	and	functions	(\df).

The	S	key	makes	the	command	display	system	objects	in	addition	to	user-generated	ones.	You	can	use	wildcard	patterns	to	filter	the	output:

=>	\dfS	pg*size

																																		List	of	functions
			Schema			|										Name										|	Result	data	type	|	Argument	data	types	|	Type	
------------+------------------------+------------------+---------------------+------
	pg_catalog	|	pg_column_size									|	integer										|	"any"															|	func
	pg_catalog	|	pg_database_size							|	bigint											|	name																|	func
	pg_catalog	|	pg_database_size							|	bigint											|	oid																	|	func
	pg_catalog	|	pg_indexes_size								|	bigint											|	regclass												|	func
	pg_catalog	|	pg_relation_size							|	bigint											|	regclass												|	func
	pg_catalog	|	pg_relation_size							|	bigint											|	regclass,	text						|	func
	pg_catalog	|	pg_table_size										|	bigint											|	regclass												|	func
	pg_catalog	|	pg_tablespace_size					|	bigint											|	name																|	func
	pg_catalog	|	pg_tablespace_size					|	bigint											|	oid																	|	func
	pg_catalog	|	pg_total_relation_size	|	bigint											|	regclass												|	func
(10	rows)

Usually,	psql	commands	have	mnemonic	names.	For	example,	\df	is	describe	function,	\sf	is	show	function:

=>	\sf	pg_catalog.pg_database_size(oid)

CREATE	OR	REPLACE	FUNCTION	pg_catalog.pg_database_size(oid)
	RETURNS	bigint
	LANGUAGE	internal
	PARALLEL	SAFE	STRICT
AS	$function$pg_database_size_oid$function$

You	can	get	the	full	list	of	commands	from	the	documentation	or	with	the	psql	\?	command.

System	catalog	structure

All	psql	commands	that	describe	objects	query	system	catalog	tables.	To	see	the	queries	psql	makes,	use	the	ECHO_HIDDEN	variable:

=>	\set	ECHO_HIDDEN	on

=>	\dt	employees

*********	QUERY	**********
SELECT	n.nspname	as	"Schema",
		c.relname	as	"Name",
		CASE	c.relkind	WHEN	'r'	THEN	'table'	WHEN	'v'	THEN	'view'	WHEN	'm'	THEN	'materialized	view'	WHEN	'i'	THEN	'index'	WHEN	'S'	THEN	'sequence'	WHEN	's'	THEN	'special'	WHEN	'f'	THEN	'foreign	table'	WHEN	'p'	THEN	'partitioned	table'	WHEN	'I'	THEN	'partitioned	index'	END	as	"Type",
		pg_catalog.pg_get_userbyid(c.relowner)	as	"Owner"
FROM	pg_catalog.pg_class	c
					LEFT	JOIN	pg_catalog.pg_namespace	n	ON	n.oid	=	c.relnamespace
WHERE	c.relkind	IN	('r','p','s','')
						AND	n.nspname	!~	'^pg_toast'
		AND	c.relname	OPERATOR(pg_catalog.~)	'^(employees)$'	COLLATE	pg_catalog.default
		AND	pg_catalog.pg_table_is_visible(c.oid)
ORDER	BY	1,2;

										List	of	relations
	Schema	|			Name				|	Type		|		Owner		
--------+-----------+-------+---------
	public	|	employees	|	table	|	student
(1	row)

=>	\unset	ECHO_HIDDEN

7

Special data types

OID — object identifier
column, ensures object distinction in system catalog tables
integer with an auto increment

Reg types
oid aliases for some system catalog tables
(regclass for pg_class, etc.)
converting the text name of an object to the oid type and vice versa

Most system catalog tables use a column with oid name and data type of
the same name as the identifier.
The PRIMARY KEY constraint is not used for system catalog tables (it was
added in PostgreSQL 14), but unique indexes are created on the oid
columns.
Prior to PostgreSQL 12, the oid columns were hidden and the regular
“SELECT *” command did not show them.
The oid (Object Identifier) type is a 32 bit integer (about 4 billion possible
values) with an auto increment.
There are several special data types (in fact, oid aliases) starting with “reg”
that are used to convert object names to oid’s and back.
https://postgrespro.com/docs/postgresql/13/datatype-oid

oid	and	reg	types

As	shown	before,	table	and	view	descriptions	are	stored	in	pg_class,	and	column	descriptions	in	a	separate	table
pg_attribute.	So,	to	get	a	list	of	columns	in	a	specific	table,	you	need	to	join	pg_class	and	pg_attribute:

=>	SELECT	a.attname,	a.atttypid
FROM	pg_attribute	a
WHERE	a.attrelid	=	(
		SELECT	oid	FROM	pg_class	WHERE	relname	=	'employees'
)
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|							23
	name				|							25
	manager	|							23
(3	rows)

Using	reg	types,	the	query	can	be	simplified	by	omitting	the	explicit	query	to	pg_class:

=>	SELECT	a.attname,	a.atttypid
FROM	pg_attribute	a
WHERE	a.attrelid	=	'employees'::regclass
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|							23
	name				|							25
	manager	|							23
(3	rows)

Here,	the	column	“employees”	was	transformed	into	the	oid	type.	Similarly,	oid	can	be	transformed	into	a	text	value:

=>	SELECT	a.attname,	a.atttypid::regtype
FROM	pg_attribute	a
WHERE	a.attrelid	=	'employees'::regclass
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|	integer
	name				|	text
	manager	|	integer
(3	rows)

A	list	of	all	reg	types:

=>	\dT	reg*

																								List	of	data	types
			Schema			|					Name						|													Description														
------------+---------------+--------------------------------------
	pg_catalog	|	regclass						|	registered	class
	pg_catalog	|	regcollation		|	registered	collation
	pg_catalog	|	regconfig					|	registered	text	search	configuration
	pg_catalog	|	regdictionary	|	registered	text	search	dictionary
	pg_catalog	|	regnamespace		|	registered	namespace
	pg_catalog	|	regoper							|	registered	operator
	pg_catalog	|	regoperator			|	registered	operator	(with	args)
	pg_catalog	|	regproc							|	registered	procedure
	pg_catalog	|	regprocedure		|	registered	procedure	(with	args)
	pg_catalog	|	regrole							|	registered	role
	pg_catalog	|	regtype							|	registered	type
(11	rows)

9

Takeaways

The system catalog contains metadata about the cluster.
It is stored within the cluster itself

SQL access and additional psql commands
Some system catalog tables are stored in databases, some are
shared by the entire cluster

The system catalog uses special data types

10

Practice

1. Get a description of the pg_class table.
2. Get a detailed description of the pg_tables view.
3. Create a database and a temporary table in it.

Get a complete list of schemas in the database, including system
schemas.

4. Get a list of views in the information_schema schema.
5. What queries does the following psql command perform?

\d+ pg_views

1.	Description	of	pg_class

=>	\d	pg_class

																					Table	"pg_catalog.pg_class"
							Column								|					Type					|	Collation	|	Nullable	|	Default	
---------------------+--------------+-----------+----------+---------
	oid																	|	oid										|											|	not	null	|	
	relname													|	name									|											|	not	null	|	
	relnamespace								|	oid										|											|	not	null	|	
	reltype													|	oid										|											|	not	null	|	
	reloftype											|	oid										|											|	not	null	|	
	relowner												|	oid										|											|	not	null	|	
	relam															|	oid										|											|	not	null	|	
	relfilenode									|	oid										|											|	not	null	|	
	reltablespace							|	oid										|											|	not	null	|	
	relpages												|	integer						|											|	not	null	|	
	reltuples											|	real									|											|	not	null	|	
	relallvisible							|	integer						|											|	not	null	|	
	reltoastrelid							|	oid										|											|	not	null	|	
	relhasindex									|	boolean						|											|	not	null	|	
	relisshared									|	boolean						|											|	not	null	|	
	relpersistence						|	"char"							|											|	not	null	|	
	relkind													|	"char"							|											|	not	null	|	
	relnatts												|	smallint					|											|	not	null	|	
	relchecks											|	smallint					|											|	not	null	|	
	relhasrules									|	boolean						|											|	not	null	|	
	relhastriggers						|	boolean						|											|	not	null	|	
	relhassubclass						|	boolean						|											|	not	null	|	
	relrowsecurity						|	boolean						|											|	not	null	|	
	relforcerowsecurity	|	boolean						|											|	not	null	|	
	relispopulated						|	boolean						|											|	not	null	|	
	relreplident								|	"char"							|											|	not	null	|	
	relispartition						|	boolean						|											|	not	null	|	
	relrewrite										|	oid										|											|	not	null	|	
	relfrozenxid								|	xid										|											|	not	null	|	
	relminmxid										|	xid										|											|	not	null	|	
	relacl														|	aclitem[]				|											|										|	
	reloptions										|	text[]							|	C									|										|	
	relpartbound								|	pg_node_tree	|	C									|										|	
Indexes:
				"pg_class_oid_index"	UNIQUE,	btree	(oid)
				"pg_class_relname_nsp_index"	UNIQUE,	btree	(relname,	relnamespace)
				"pg_class_tblspc_relfilenode_index"	btree	(reltablespace,	relfilenode)

2.	Detailed	description	of	pg_tables

=>	\d+	pg_tables

																										View	"pg_catalog.pg_tables"
			Column				|		Type			|	Collation	|	Nullable	|	Default	|	Storage	|	Description	
-------------+---------+-----------+----------+---------+---------+-------------
	schemaname		|	name				|											|										|									|	plain			|	
	tablename			|	name				|											|										|									|	plain			|	
	tableowner		|	name				|											|										|									|	plain			|	
	tablespace		|	name				|											|										|									|	plain			|	
	hasindexes		|	boolean	|											|										|									|	plain			|	
	hasrules				|	boolean	|											|										|									|	plain			|	
	hastriggers	|	boolean	|											|										|									|	plain			|	
	rowsecurity	|	boolean	|											|										|									|	plain			|	
View	definition:
	SELECT	n.nspname	AS	schemaname,
				c.relname	AS	tablename,
				pg_get_userbyid(c.relowner)	AS	tableowner,
				t.spcname	AS	tablespace,
				c.relhasindex	AS	hasindexes,
				c.relhasrules	AS	hasrules,
				c.relhastriggers	AS	hastriggers,
				c.relrowsecurity	AS	rowsecurity
			FROM	pg_class	c
					LEFT	JOIN	pg_namespace	n	ON	n.oid	=	c.relnamespace
					LEFT	JOIN	pg_tablespace	t	ON	t.oid	=	c.reltablespace
		WHERE	c.relkind	=	ANY	(ARRAY['r'::"char",	'p'::"char"]);

3.	A	list	of	all	schemas

=>	CREATE	DATABASE	data_catalog;

CREATE	DATABASE

=>	\c	data_catalog

You	are	now	connected	to	database	"data_catalog"	as	user	"student".

=>	CREATE	TEMP	TABLE	t(n	integer);

CREATE	TABLE

=>	\dnS

								List	of	schemas
								Name								|		Owner			
--------------------+----------
	information_schema	|	postgres
	pg_catalog									|	postgres
	pg_temp_4										|	postgres
	pg_toast											|	postgres
	pg_toast_temp_4				|	postgres
	public													|	postgres
(6	rows)

Temporary	tables	are	stored	in	schemas	named	pg_temp_N,	where	N	is	a	number.	Such	schemas	are	created	for	each	session	in	which	temporary	objects	appear,	so	there	can	be	multiple	schemas.	To	get	the
name	of	the	schema	for	the	current	session,	use	the	following	system	function:

=>	SELECT	pg_my_temp_schema()::regnamespace;

	pg_my_temp_schema	

	pg_temp_4
(1	row)

In	general,	the	exact	name	of	the	schema	is	not	required:	you	can	access	temporary	objects	in	your	session	by	using	just	pg_temp:

=>	SELECT	*	FROM	pg_temp.t;

	n	

(0	rows)

We	already	know	what	some	of	the	schemas	are	there	for,	and	we	will	learn	more	about	the	rest	(pg_toast*)	in	a	later	topic.

4.	A	list	of	views	in	information_schema

Use	the	template:

=>	\dv	information_schema.*

																														List	of	relations
							Schema							|																	Name																		|	Type	|		Owner			
--------------------+---------------------------------------+------+----------
	information_schema	|	_pg_foreign_data_wrappers													|	view	|	postgres
	information_schema	|	_pg_foreign_servers																			|	view	|	postgres
	information_schema	|	_pg_foreign_table_columns													|	view	|	postgres
	information_schema	|	_pg_foreign_tables																				|	view	|	postgres
	information_schema	|	_pg_user_mappings																					|	view	|	postgres
	information_schema	|	administrable_role_authorizations					|	view	|	postgres
	information_schema	|	applicable_roles																						|	view	|	postgres
	information_schema	|	attributes																												|	view	|	postgres
	information_schema	|	character_sets																								|	view	|	postgres
	information_schema	|	check_constraint_routine_usage								|	view	|	postgres
	information_schema	|	check_constraints																					|	view	|	postgres
	information_schema	|	collation_character_set_applicability	|	view	|	postgres
	information_schema	|	collations																												|	view	|	postgres
	information_schema	|	column_column_usage																			|	view	|	postgres
	information_schema	|	column_domain_usage																			|	view	|	postgres
	information_schema	|	column_options																								|	view	|	postgres
	information_schema	|	column_privileges																					|	view	|	postgres
	information_schema	|	column_udt_usage																						|	view	|	postgres
	information_schema	|	columns																															|	view	|	postgres
	information_schema	|	constraint_column_usage															|	view	|	postgres
	information_schema	|	constraint_table_usage																|	view	|	postgres
	information_schema	|	data_type_privileges																		|	view	|	postgres
	information_schema	|	domain_constraints																				|	view	|	postgres
	information_schema	|	domain_udt_usage																						|	view	|	postgres
	information_schema	|	domains																															|	view	|	postgres
	information_schema	|	element_types																									|	view	|	postgres
	information_schema	|	enabled_roles																									|	view	|	postgres
	information_schema	|	foreign_data_wrapper_options										|	view	|	postgres
	information_schema	|	foreign_data_wrappers																	|	view	|	postgres
	information_schema	|	foreign_server_options																|	view	|	postgres
	information_schema	|	foreign_servers																							|	view	|	postgres
	information_schema	|	foreign_table_options																	|	view	|	postgres
	information_schema	|	foreign_tables																								|	view	|	postgres
	information_schema	|	information_schema_catalog_name							|	view	|	postgres
	information_schema	|	key_column_usage																						|	view	|	postgres
	information_schema	|	parameters																												|	view	|	postgres
	information_schema	|	referential_constraints															|	view	|	postgres
	information_schema	|	role_column_grants																				|	view	|	postgres
	information_schema	|	role_routine_grants																			|	view	|	postgres
	information_schema	|	role_table_grants																					|	view	|	postgres
	information_schema	|	role_udt_grants																							|	view	|	postgres
	information_schema	|	role_usage_grants																					|	view	|	postgres
	information_schema	|	routine_privileges																				|	view	|	postgres
	information_schema	|	routines																														|	view	|	postgres
	information_schema	|	schemata																														|	view	|	postgres
	information_schema	|	sequences																													|	view	|	postgres
	information_schema	|	table_constraints																					|	view	|	postgres
	information_schema	|	table_privileges																						|	view	|	postgres
	information_schema	|	tables																																|	view	|	postgres
	information_schema	|	transforms																												|	view	|	postgres
	information_schema	|	triggered_update_columns														|	view	|	postgres
	information_schema	|	triggers																														|	view	|	postgres
	information_schema	|	udt_privileges																								|	view	|	postgres
	information_schema	|	usage_privileges																						|	view	|	postgres
	information_schema	|	user_defined_types																				|	view	|	postgres
	information_schema	|	user_mapping_options																		|	view	|	postgres
	information_schema	|	user_mappings																									|	view	|	postgres
	information_schema	|	view_column_usage																					|	view	|	postgres
	information_schema	|	view_routine_usage																				|	view	|	postgres
	information_schema	|	view_table_usage																						|	view	|	postgres
	information_schema	|	views																																	|	view	|	postgres
(61	rows)

5.	Queries	to	the	system	catalog

To	see	the	queries	that	psql	makes,	use	the	ECHO_HIDDEN	parameter.

=>	\set	ECHO_HIDDEN	on

=>	\d+	pg_views

*********	QUERY	**********
SELECT	c.oid,
		n.nspname,
		c.relname
FROM	pg_catalog.pg_class	c
					LEFT	JOIN	pg_catalog.pg_namespace	n	ON	n.oid	=	c.relnamespace
WHERE	c.relname	OPERATOR(pg_catalog.~)	'^(pg_views)$'	COLLATE	pg_catalog.default
		AND	pg_catalog.pg_table_is_visible(c.oid)
ORDER	BY	2,	3;

*********	QUERY	**********
SELECT	c.relchecks,	c.relkind,	c.relhasindex,	c.relhasrules,	c.relhastriggers,	c.relrowsecurity,	c.relforcerowsecurity,	false	AS	relhasoids,	c.relispartition,	pg_catalog.array_to_string(c.reloptions	||	array(select	'toast.'	||	x	from	pg_catalog.unnest(tc.reloptions)	x),	',	')
,	c.reltablespace,	CASE	WHEN	c.reloftype	=	0	THEN	''	ELSE	c.reloftype::pg_catalog.regtype::pg_catalog.text	END,	c.relpersistence,	c.relreplident,	am.amname
FROM	pg_catalog.pg_class	c
	LEFT	JOIN	pg_catalog.pg_class	tc	ON	(c.reltoastrelid	=	tc.oid)
LEFT	JOIN	pg_catalog.pg_am	am	ON	(c.relam	=	am.oid)
WHERE	c.oid	=	'12109';

*********	QUERY	**********
SELECT	a.attname,
		pg_catalog.format_type(a.atttypid,	a.atttypmod),
		(SELECT	pg_catalog.pg_get_expr(d.adbin,	d.adrelid,	true)
			FROM	pg_catalog.pg_attrdef	d
			WHERE	d.adrelid	=	a.attrelid	AND	d.adnum	=	a.attnum	AND	a.atthasdef),
		a.attnotnull,
		(SELECT	c.collname	FROM	pg_catalog.pg_collation	c,	pg_catalog.pg_type	t
			WHERE	c.oid	=	a.attcollation	AND	t.oid	=	a.atttypid	AND	a.attcollation	<>	t.typcollation)	AS	attcollation,
		a.attidentity,
		a.attgenerated,
		a.attstorage,
		pg_catalog.col_description(a.attrelid,	a.attnum)
FROM	pg_catalog.pg_attribute	a
WHERE	a.attrelid	=	'12109'	AND	a.attnum	>	0	AND	NOT	a.attisdropped
ORDER	BY	a.attnum;

*********	QUERY	**********
SELECT	pg_catalog.pg_get_viewdef('12109'::pg_catalog.oid,	true);

*********	QUERY	**********
SELECT	r.rulename,	trim(trailing	';'	from	pg_catalog.pg_get_ruledef(r.oid,	true))
FROM	pg_catalog.pg_rewrite	r
WHERE	r.ev_class	=	'12109'	AND	r.rulename	!=	'_RETURN'	ORDER	BY	1;

																									View	"pg_catalog.pg_views"
			Column			|	Type	|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
------------+------+-----------+----------+---------+----------+-------------
	schemaname	|	name	|											|										|									|	plain				|	
	viewname			|	name	|											|										|									|	plain				|	
	viewowner		|	name	|											|										|									|	plain				|	
	definition	|	text	|											|										|									|	extended	|	
View	definition:
	SELECT	n.nspname	AS	schemaname,
				c.relname	AS	viewname,
				pg_get_userbyid(c.relowner)	AS	viewowner,
				pg_get_viewdef(c.oid)	AS	definition
			FROM	pg_class	c
					LEFT	JOIN	pg_namespace	n	ON	n.oid	=	c.relnamespace
		WHERE	c.relkind	=	'v'::"char";

psql	made	five	queries	to	display	this	result.

=>	\set	ECHO_HIDDEN	off

