

Data organization
Low level

13

Copyright
© Postgres Professional, 2015–2022
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Topics

Data files
Forks: main, visibility map, free space map
Oversized row versions and TOAST

3

Object forks

NNN_vm

NNN_fsm

1 GB
segment

main

fsm

vmNNN_fsm

NNN_fsm.1

NNN

NNN.1

NNN.2

pg_relation_size

Usually, each database object that stores data (table, index, sequence,
materialized view) has several corresponding forks. Each fork contains a
specific type of data.
Initially, each fork contains a single file. The file name is a numeric identifier
and may include a suffix derived from the fork name.
The file gradually increases in size until it reaches 1 GB, at which point the
next file for the same fork is created. Such files are sometimes called
segments.The segment sequence number is appended to
the end of the file name. The pg_relation_size function displays the total
size of a fork.
The 1 GB file size limit was established in the past to support file systems
that cannot operate with larger file sizes. A different file size limit can be set
during source code compilation with the --with-segsize flag.
So, a single database object may consist of multiple files on disk. A small
table will have three corresponding files on disk, and an index will have two.
All object files belonging to the same tablespace and the same database are
stored in the same directory. This may become an issue as some file
systems may perform poorly on directories with a large number of files.

4

Forks

Main fork
actual data (row versions)
exists for all objects

Initialization fork (init)
A “template” of the main fork
used in case of failure; exists only for unlogged tables

Visibility map (vm)
exists only for tables

Free space map (fsm)
exists for both tables and indexes

There are multiple types of forks.
The main fork contains the actual data, such as table row versions and
index records. The main fork file names match the identifier. All objects have
a main fork.
The file names of the initialization fork end with the “_init” suffix. This fork
exists only for unlogged tables (created with the UNLOGGED keywords)
and their indexes. Unlogged tables are no different from regular ones,
except that actions performed on them are not logged in WAL. This makes
operations on them faster, but their content cannot be recovered if a failure
occurs. When recovering after a failure, PostgreSQL simply wipes all
unlogged table forks and copies the initialization fork into the main fork. The
result is an empty table.
https://postgrespro.com/docs/postgresql/13/storage-init
The vm (visibility map) fork’s filenames end in “_vm”. The fork exists only for
tables. Separate MVCC for indexes is not supported.
The fsm (free space map) fork’s filenames end in “_fsm”. This fork exists for
both tables and indexes.
These two maps were discussed in the Architecture module.
https://postgrespro.com/docs/postgresql/13/storage-fsm
https://postgrespro.com/docs/postgresql/13/storage-vm

File	locations

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

Create	a	table	and	look	where	its	files	are.

=>	CREATE	TABLE	t(
		id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,	
		n	numeric
);

CREATE	TABLE

=>	INSERT	INTO	t(n)	SELECT	id	FROM	generate_series(1,10000)	AS	id;

INSERT	0	10000

=>	VACUUM	t;

VACUUM

The	path	to	the	main	file	relative	to	PGDATA	is	shown	with	the	following	command:

=>	SELECT	pg_relation_filepath('t');

	pg_relation_filepath	

	base/16527/16530
(1	row)

Since	the	table	is	located	in	the	pg_default	tablespace,	the	path	starts	with	“base”,	followed	by	the	database	directory:

=>	SELECT	oid	FROM	pg_database	WHERE	datname	=	'data_lowlevel';

		oid		

	16527
(1	row)

Then	follows	the	file	name.	To	get	it,	use	the	command:

=>	SELECT	relfilenode	FROM	pg_class	WHERE	relname	=	't';

	relfilenode	

							16530
(1	row)

Otherwise,	use	the	function	pg_relation_filepath	to	get	the	path	in	a	single	command.

Let’s	have	a	look	at	the	files	themselves.	Only	the	OS	user	postgres	has	access	to	PGDATA,	so	run	the	ls	on	their	behalf:

postgres$	ls	-l	/var/lib/postgresql/13/main/base/16527/16530*

-rw-------	1	postgres	postgres	450560	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16530
-rw-------	1	postgres	postgres		24576	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16530_fsm
-rw-------	1	postgres	postgres			8192	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16530_vm

There	are	three	forks:	the	main	fork,	the	free	space	map	(fsm)	and	the	visibility	map	(vm).

You	can	view	the	index	files	in	a	similar	way:

=>	\d	t

																												Table	"public.t"
	Column	|		Type			|	Collation	|	Nullable	|											Default												
--------+---------+-----------+----------+------------------------------
	id					|	integer	|											|	not	null	|	generated	always	as	identity
	n						|	numeric	|											|										|	
Indexes:
				"t_pkey"	PRIMARY	KEY,	btree	(id)

=>	SELECT	pg_relation_filepath('t_pkey');

	pg_relation_filepath	

	base/16527/16536
(1	row)

postgres$	ls	-l	/var/lib/postgresql/13/main/base/16527/16536*

-rw-------	1	postgres	postgres	245760	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16536

And	the	primary	key	sequence	files:

=>	SELECT	pg_relation_filepath(pg_get_serial_sequence('t','id'));

	pg_relation_filepath	

	base/16527/16528
(1	row)

postgres$	ls	-l	/var/lib/postgresql/13/main/base/16527/16528*

-rw-------	1	postgres	postgres	8192	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16528

A	stock	extension	oid2name	lets	you	quickly	and	easily	find	out	which	database	objects	relate	to	which	files.

You	can	view	all	databases:

student$	/usr/lib/postgresql/13/bin/oid2name

All	databases:
				Oid		Database	Name		Tablespace

		16527		data_lowlevel		pg_default
		13485							postgres		pg_default
		16385								student		pg_default
		13484						template0		pg_default
						1						template1		pg_default

All	objects	in	a	database:

student$	/usr/lib/postgresql/13/bin/oid2name	-d	data_lowlevel

From	database	"data_lowlevel":
		Filenode		Table	Name

					16530											t

All	tablespaces	in	a	database:

student$	/usr/lib/postgresql/13/bin/oid2name	-d	data_lowlevel	-s

All	tablespaces:
			Oid		Tablespace	Name

		1663							pg_default
		1664								pg_global

Find	the	file	name	by	table	name:

student$	/usr/lib/postgresql/13/bin/oid2name	-d	data_lowlevel	-t	t

From	database	"data_lowlevel":
		Filenode		Table	Name

					16530											t

Or	the	table	name	by	file	name:

student$	/usr/lib/postgresql/13/bin/oid2name	-d	data_lowlevel	-f	16530

From	database	"data_lowlevel":
		Filenode		Table	Name

					16530											t

Fork	sizes

You	can	get	the	size	of	the	files	that	comprise	a	fork	from	the	file	system,	but	there	is	an	easier	way	to	see	the	size	of	each
fork	individually:

=>	SELECT	pg_relation_size('t','main')	main,
										pg_relation_size('t','fsm')	fsm,
										pg_relation_size('t','vm')	vm;

		main		|		fsm		|		vm		
--------+-------+------
	450560	|	24576	|	8192
(1	row)

6

TOAST

A row version must fit into one page
some of the fields can be compressed
some fields can be moved into a TOAST table
fields can be both compressed and moved

TOAST table
located in the pg_toast (pg_toast_temp_N) schema
supported by its own index
contains chunks of oversized values, each chunk is smaller than a page
accessed by querying a corresponding oversized field
has its own MVCC
used transparently for the application

Any row version in PostgreSQL must fit entirely into one page. Oversized
row versions are stored using TOAST, The Oversized Attributes Storage
Technique. TOAST comprises several approaches to storing oversized field
values. Firstly, the value can be compressed so that the row version fits into
the page. Secondly, the value can be moved from the row version to a
separate service table. Both strategies can be applied to the same row
versions: some values would be compressed, some moved, some
compressed and moved.
Any table can have a separate TOAST table (with a dedicated index)
created for it, if necessary. The dedicated indexes are located in the
pg_toast schema and therefore are usually not visible (temporary TOAST
tables are stored in the pg_toast_temp_N schema, similarly to the regular
pg_temp_N).
The row versions in the TOAST table must also fit into one page each, so
longer values are split into multiple chunks, and are transparently “glued
together” by PostgreSQL when the application demands.
TOAST tables are used only when oversized values are queried. The tables
have their own versioning mechanism. Whenever a data update in the main
table does not modify the oversized value in the TOAST table, the new row
version in the table will refer to the same old TOAST value, saving disk
space.
https://postgrespro.com/docs/postgresql/13/storage-toast

TOAST

The	table	t	has	a	numeric	type	column.	This	type	can	hold	very	large	numbers.	For	example:

=>	SELECT	length((123456789::numeric	^	12345::numeric)::text);

	length	

		99907
(1	row)

However,	when	inserted	into	the	table,	this	humongous	value	does	not	change	the	table	size:

=>	SELECT	pg_relation_size('t','main');

	pg_relation_size	

											450560
(1	row)

=>	INSERT	INTO	t(n)	SELECT	123456789::numeric	^	12345::numeric;

INSERT	0	1

=>	SELECT	pg_relation_size('t','main');

	pg_relation_size	

											450560
(1	row)

Since	the	row	version	does	not	fit	into	a	single	page,	it	is	instead	stored	in	a	separate	TOAST	table.	TOAST	tables	and	their
indexes	are	created	automatically	for	all	tables	that	include	potentially	“oversized”	data	types	and	are	used	as	needed.

You	can	find	the	name	and	oid	of	a	TOAST	table:

=>	SELECT	relname,	relfilenode	FROM	pg_class	WHERE	oid	=	(
				SELECT	reltoastrelid	FROM	pg_class	WHERE	oid	=	't'::regclass
);

				relname					|	relfilenode	
----------------+-------------
	pg_toast_16530	|							16533
(1	row)

And	here	are	the	TOAST	table	files:

postgres$	ls	-l	/var/lib/postgresql/13/main/base/16527/16533*

-rw-------	1	postgres	postgres	57344	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16533
-rw-------	1	postgres	postgres	24576	Mar		7	13:50	/var/lib/postgresql/13/main/base/16527/16533_fsm

When	it	comes	to	oversized	values,	there	are	several	strategies	that	can	be	employed.	The	name	of	the	current	strategy	is
listed	in	the	Storage	column:

=>	\d+	t

																																															Table	"public.t"
	Column	|		Type			|	Collation	|	Nullable	|											Default												|	Storage	|	Stats	target	|	Description	
--------+---------+-----------+----------+------------------------------+---------+--------------+-------------
	id					|	integer	|											|	not	null	|	generated	always	as	identity	|	plain			|														|	
	n						|	numeric	|											|										|																														|	main				|														|	
Indexes:
				"t_pkey"	PRIMARY	KEY,	btree	(id)
Access	method:	heap

plain	—	TOAST	is	not	used	(the	type	has	a	fixed	length),
extended	—	both	compression	and	external	storage	are	used,
external	—	external	storage	but	not	compression,
main	—	processed	last,	compression	is	preferred.

You	can	select	what	strategy	to	use.	For	example,	if	you	know	that	data	in	a	table	is	already	compressed,	you	can	switch

the	strategy	to	external.

For	example:

=>	ALTER	TABLE	t	ALTER	COLUMN	n	SET	STORAGE	external;

ALTER	TABLE

This	operation	does	not	change	the	data,	but	defines	the	strategy	to	be	used	for	new	row	versions.

8

Table size

pg_total_relation_size

pg_indexes_sizepg_table_size

table TOAST Indexes

As already mentioned, the size of a single fork can be obtained by the
pg_relation_size function. To get the total object size, other functions can be
used:
● pg_table_size shows the size of the table and its TOAST part (the

TOAST table and its index), but not the regular index sizes. The same
function can be used to find the size of an individual index: both tables
and indexes are relations, and despite the name, the function accepts
any relation as input.

● pg_indexes_size sums up the sizes of all table indexes except the
TOAST table index.

● pg_total_relation_size shows the full size of the table, along
with all its indexes.

Table	size

The	size	of	a	table	(including	the	TOAST	table	and	its	index):

=>	SELECT	pg_table_size('t');

	pg_table_size	

								581632
(1	row)

Total	size	of	all	table	indexes:

=>	SELECT	pg_indexes_size('t');

	pg_indexes_size	

										245760
(1	row)

You	can	get	the	size	of	a	single	index	by	using	the	pg_table_size	function.	Indexes	have	no	TOASTs,	so	the	function	only
shows	the	size	of	all	index	forks	(main,	fsm).

Currently,	the	table	t	has	just	the	primary	key	index,	so	its	size	matches	the	size	returned	by	pg_indexes_size:

=>	SELECT	pg_table_size('t_pkey')	AS	t_pkey;

	t_pkey	

	245760
(1	row)

Total	table	size,	including	TOAST	and	all	indexes:

=>	SELECT	pg_total_relation_size('t');

	pg_total_relation_size	

																	827392
(1	row)

10

Takeaways

An object comprises several forks
A fork consists of one or more segment files
Oversized row versions are stored using TOAST

11

Practice

1. Create an unlogged table in a custom tablespace and make sure
that it has an init fork.

Delete the created tablespace.
2. Create a table with a column of the text type.

What storage strategy is used for this column?

Change the strategy to external and insert a short and a long
row into the table.

Check if the rows are in the TOAST table by making a direct
query to it. Explain why.

1.	Unlogged	tables

student$	sudo	mkdir	/var/lib/postgresql/ts_dir

student$	sudo	chown	postgres	/var/lib/postgresql/ts_dir

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

=>	CREATE	UNLOGGED	TABLE	u(n	integer)	TABLESPACE	ts;

CREATE	TABLE

=>	INSERT	INTO	u(n)	SELECT	n	FROM	generate_series(1,1000)	n;

INSERT	0	1000

=>	SELECT	pg_relation_filepath('u');

												pg_relation_filepath													

	pg_tblspc/16705/PG_13_202007201/16706/16707
(1	row)

Let's	look	at	the	table	files.

Note	how	the	ls	command	is	executed	on	behalf	of	the	postgres	user.	You	can	open	a	second	terminal	window	and	switch	to	the	new	user
with	the	following	command:

student$	sudo	su	postgres

Now,	in	the	same	window,	run:

postgres$	ls	-l	/var/lib/postgresql/13/main/pg_tblspc/16705/PG_13_202007201/16706/16707*

-rw-------	1	postgres	postgres	40960	Mar		7	13:54	/var/lib/postgresql/13/main/pg_tblspc/16705/PG_13_202007201/16706/16707
-rw-------	1	postgres	postgres	24576	Mar		7	13:54	/var/lib/postgresql/13/main/pg_tblspc/16705/PG_13_202007201/16706/16707_fsm
-rw-------	1	postgres	postgres					0	Mar		7	13:54	/var/lib/postgresql/13/main/pg_tblspc/16705/PG_13_202007201/16706/16707_init

Drop	the	created	tablespace:

=>	DROP	TABLE	u;

DROP	TABLE

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

2.	A	table	with	a	text	column

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

=>	\d+	t

																																				Table	"public.t"
	Column	|	Type	|	Collation	|	Nullable	|	Default	|	Storage		|	Stats	target	|	Description	
--------+------+-----------+----------+---------+----------+--------------+-------------
	s						|	text	|											|										|									|	extended	|														|	
Access	method:	heap

Dy	default,	the	extended	strategy	is	used	for	text	data.

Change	the	strategy	to	external:

=>	ALTER	TABLE	t	ALTER	COLUMN	s	SET	STORAGE	external;

ALTER	TABLE

=>	INSERT	INTO	t(s)	VALUES	('Short	string.');

INSERT	0	1

=>	INSERT	INTO	t(s)	VALUES	(repeat('A',3456));

INSERT	0	1

Check	the	toast	table:

=>	SELECT	relname	FROM	pg_class	WHERE	oid	=	(
		SELECT	reltoastrelid	FROM	pg_class	WHERE	relname='t'
);

				relname					

	pg_toast_16710
(1	row)

The	toast	table	is	“hidden”,	because	it	is	located	in	a	schema	that	is	excluded	from	the	search	path.	This	is	a	good	thing,	because	TOAST	is
intended	to	work	transparently	for	the	user.	However,	there	still	are	ways	to	view	the	table:

=>	SELECT	chunk_id,	chunk_seq,	length(chunk_data)
FROM	pg_toast.pg_toast_16710
ORDER	BY	chunk_id,	chunk_seq;

	chunk_id	|	chunk_seq	|	length	
----------+-----------+--------
				16716	|									0	|			1996
				16716	|									1	|			1460
(2	rows)

Only	the	long	string	went	into	the	toast	table	(two	chunks,	total	size	matches	the	string	size).	The	short	string	wasn't	toasted:	there	is	no
need,	as	it	already	fits	into	one	page.

12

Practice+

1. Create a database.

Compare the database size returned by the pg_database_size
command with the total size of all tables in the database.

Explain the result.

1. You can get the list of database tables from the pg_class table.

1.	Comparing	the	size	of	a	database	to	the	total	size	of	its	tables

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

Even	an	empty	database	contains	some	system	catalog	tables.	The	list	of	all	tables	is	stored	in	pg_class.	Exclude	from	the
calculation:

the	cluster's	shared	tables	(they	don't	belong	to	the	database),
indexes	and	TOAST	tables	(they	will	be	included	in	the	calculation	automatically).

=>	SELECT	sum(pg_total_relation_size(oid))
FROM	pg_class
WHERE	NOT	relisshared	--	local	database	objects
AND	relkind	=	'r';		--	regular	tables

			sum			

	7995392
(1	row)

The	size	of	the	database	is	a	bit	larger:

=>	SELECT	pg_database_size('data_lowlevel');

	pg_database_size	

										8147503
(1	row)

This	is	because	the	pg_database_size	function	returns	the	size	of	the	catalog	in	the	file	system,	and	the	catalog	contains
some	service	files.

=>	SELECT	oid	FROM	pg_database	WHERE	datname	=	'data_lowlevel';

		oid		

	16717
(1	row)

Note	that	the	following	ls	command	is	executed	on	behalf	of	the	postgres	user.	To	follow	along,	open	a	new	terminal
window	and	switch	to	the	postgres	user:

student$	sudo	su	postgres

In	the	same	window,	run:

postgres$	ls	-l	/var/lib/postgresql/13/main/base/16717/[^0-9]*

-rw-------	1	postgres	postgres				512	Mar		7	13:54	/var/lib/postgresql/13/main/base/16717/pg_filenode.map
-rw-------	1	postgres	postgres	151596	Mar		7	13:54	/var/lib/postgresql/13/main/base/16717/pg_internal.init
-rw-------	1	postgres	postgres						3	Mar		7	13:54	/var/lib/postgresql/13/main/base/16717/PG_VERSION

pg_filenode.map	—	mapping	OIDs	of	some	tables	to	file	names,
pg_internal.init	—	system	catalog	cache,
PG_VERSION	—	PostgreSQL	version.

As	some	functions	operate	on	the	database	object	level,	and	others	on	the	file	system	level,	it	is	sometimes	hard	to
compare	the	results	directly.	The	same	goes	for	the	pg_tablespace_size	function.

