Architecture

Isolation and MVVCC

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics

Multiversion concurrency control
Data snapshot

Isolation levels

Locking

o)) PROFESSIONAL

Posygres

o)) PROFESSIONAL

Multiversion concurrency control Posigres

Storing multiple versions of the same row

versions have different time frames
timestamp = transaction ID (IDs are given in ascending order)

j version 1 version 2 version 3 j
o0 @ — @

Row:

» Xid

When multiple sessions are running at the same time, two transactions may
access the same row at the same time. If both transactions are just reading
the row, there is no problem. If both transactions try to write, no problem
either (in this case, they line up and make the changes one after the other).
The tricky part is when one transaction wants to read a row and another
one wants to change it at the same time.

There are two simple ways about it. You can let such transactions block
each other, but then performance suffers. Otherwise, you can let the
reading transaction immediately see the changes made by the writing
transaction, even if they are not committed (this is called a “dirty read”).
This is dangerous, because the changes can be rolled back.

PostgreSQL goes the hard way and utilizes what is known as Multiversion
concurrency control. In essence, the system stores multiple versions of
each row. This allows transactions to see different versions of the same row,
while only one transaction can modify a version at a time.

To distinguish between the versions, PostgreSQL marks each one with two
timestamps, which together specify a version’s “time frame”.

The timestamps are essentially just transaction IDs, which always come in
ascending order. (In reality, the whole thing is a bit more complicated, but
not worth getting into right now.) Upon creation, a row version is marked
with the ID if the transaction that executed the INSERT command. When
deleted, the version is marked with the the ID if the transaction that did the
DELETE command (but is not physically deleted). An UPDATE command is
a DELETE and an INSERT executed back to back.

https://postgrespro.com/docs/postgresgl/13/mvcc-intro

Data snapshot POQSFF@%

A representation of database data in a consistent state
at a specific point in time
a transaction ID defines a point in time

a list of active transactions helps the system
to exclude changes that have not been committed

record 1: L —

record 2:

J

record 3: [—

» Xid

PostgreSQL uses snapshot-based transaction isolation.

A transaction accessing a table should see only one of the versions of each
record (or none at all). To achieve this, PostgreSQL presents the transaction
with a data snapshot created at a certain point in time. The snapshot
includes the most recent versions of all committed records but does not
include any non-committed changes from active transactions. In other
words, the snapshot takes the version of each record that corresponds to
the moment when the snapshot was created.

A snapshot is not a physical copy of the data, but just a few numbers:

* the number of the last recorded transaction at the time of snapshot
(determines an exact moment in time),

* list of active transactions at that point in time.

The list is needed in order to exclude from the snapshot any changes those
transactions may have made but not yet committed.

With just these numbers, we can always tell which record version will be
visible in the snapshot. Sometimes it will be the current (most recent)
version, as with record 1 in the diagram. Sometimes not: record 2 has been
deleted after the snapshot has been created (and the change has already
been committed), but the transaction still continues to see it while working
with the snapshot. This is the correct behavior, the snapshot gives a
consistent representation of data at the selected point in time.

Some records will not get into the snapshot at all: record 3 was deleted
before the snapshot was made, so it is not included.

|solation levels Pogga’?“ég

Read Uncommitted
not supported by PostgreSQL: works as Read Committed

Read Committed (default)

the snapshot is created as of the time a statement starts
the same queries may receive different data each time

Repeatable Read

the snapshot is created as of the time the first transaction statement starts
a transaction may fail with a serialization error

Serializable

total isolation, but additional overhead
a transaction may fail with a serialization error

The SQL standard defines four isolation levels: the stricter the level, the
less concurrent transactions affect each other. At the time when the
standard was adopted, it was believed that the stricter the level, the more
difficult it is to implement and the stronger its impact on performance (since
then, these views have changed somewhat).

The most lax level of Read Uncommitted allows dirty reads. It is not
supported by PostgreSQL, because it is of no practical value and does not
give a performance gain.

The Read Committed level is the default isolation level

in PostgreSQL. At this level, data snapshots are created at the beginning of
each SQL statement execution. Thus, the statement works with an
unchanged and consistent data snapshot, but two identical queries
following one after the other may show different data.

At the Repeatable Read level, the snapshot is built at the beginning of a
transaction (when executing the first statement). This makes all queries
inside the same transaction see the same data. This level is convenient, for
example, for generating reports from several queries.

The Serializable level guarantees total isolation. At this level, you can
safely issue any statements as if the transaction is running alone. The
drawback is that some transactions will fail, and your application must be
able to repeat such transactions.

https://postgrespro.com/docs/postgresqgl/13/transaction-iso

Row version visibility

Let’s see how the same row can have multiple versions of itself.
Create a table:

=> CREATE TABLE t(s text);

CREATE TABLE

Insert a row. Note that if you don’t preface your command with the keyword BEGIN, then psql will execute the command
immediately and return the output:

=> INSERT INTO t VALUES ('Version one');
INSERT 0 1

Let’s begin a transaction and select its ID:

=> BEGIN;

BEGIN

=> SELECT pg_current_xact_id();

pg_current xact id

The transaction sees the first (the only, for now) row version:
=> SELECT *, xmin, xmax FROM t;
s | xmin | xmax

Version one | 501 | 0
(1 row)

This additionally shows the transactions which determine the row version’s visibility. The row was created by the last
transaction, and xmax=0 means that this is the most up-to-date version.

Let’s open another session and begin a new transaction:
| => BEGIN;

| BEGIN

| => SELECT pg_current_xact_id();

pg _current xact id

The transaction sees the only existing version:

| => SELECT *, xmin, xmax FROM t;

S | xmin | xmax
_____________ I
Version one | 501 | 0
(1 row)

But when the second transaction modifies the row...
| => UPDATE t SET s = 'Version two';

| UPDATE 1

We get this:

| => SELECT *, xmin, xmax FROM t;

s | xmin | xmax
Version two | 503 | 0

(1 row)

And this is what the first transaction sees:

=> SELECT *, xmin, xmax FROM t;

s | xmin | xmax
............. L
Version one | 501 | 503
(1 row)

Because the change hasn’t been committed yet, the first transaction still sees the original version.

Note the xmax value: it shows that another transaction is currently modifying the row. Strictly speaking, this “peeking”
breaks isolation. That’s why the xmin and xmax fields are hidden and should not be used in production.

Now, let’s commit the changes.

| => comMMIT;

| commIT

This changes what the first transaction sees:

=> SELECT *, xmin, xmax FROM t;

s | xmin | xmax
_____________ L
Version two | 503 | 0
(1 row)

Both transactions see the same row version, i.e. version two.
After committing, version one is no longer visible to either transaction.
=> COMMIT;

COMMIT

o)) PROFESSIONAL

Locking Posggres

Row locks

reading never locks rows
changing rows locks them for changes, but not for reads

Table locks

prohibit changing or deleting a table while it is being worked on
prohibit reading the table when rebuilding or moving
etc.

Lock lifetime

set as needed or manually
lifted automatically upon transaction completion

What does MVCC do? It allows the system to do only the most necessary
minimum of locks, thereby increasing performance.

The main locks are set at the row level. Reading never blocks either reading
or writing transactions. Changing a row does not lock it for reading. The only
case when a transaction will wait for the lock to be released is if it tries to
change a row that has already been changed by another transaction that
has not been committed yet.

Locks can also be set at a higher level, particularly on tables. They are
needed so that no one can delete the table while other transactions are
reading data from it, or to prohibit access to the table being rebuilt. Such
locks generally do not cause problems, since deleting or rebuilding tables is
only done once in a while.

All necessary locks are set automatically and automatically released at the
end of the transaction. You can also set additional custom locks, but this is
rarely necessary.

https://postgrespro.com/docs/postgresqgl/13/explicit-locking

Locks

Let’s try this again, but now have both transactions attempt to change the value.
=> BEGIN;

BEGIN

=> UPDATE t SET s = 'Version three';

UPDATE 1

And in the other transaction:

| => BEGIN;

| BEGIN

| => UPDATE t SET s = 'Version four';

The second transaction hangs up. It can’t change the row value until the first transaction releases the lock.
=> COMMIT;

COMMIT

Now, the second transaction can do its thing:

| UPDATE 1

| => comMMIT;

| commIT

Transaction status Pogga’?“é“g

Transaction status (clog)

service information; two bits per transaction
stored in files on disk
cached in shared memory

Commit

the “transaction committed” bit is set

Termination

the “transaction aborted” bit is set
performed as fast as commit (no data rollback needed)

For multiversion concurrency control to work, the server needs to
understand the status of transactions. A transaction can be active or
finished. A transaction can end either in a commit or in an abort. Therefore,
only two bits are required to represent the state of each transaction.

Transaction statuses (commit log, clog) are stored in special service files in
the PGDATA/pg_xact directory and worked upon in the server's shared
memory, as to avoid constantly accessing the disk.

At any transaction completion (either successful or not), it is enough to set
the appropriate status bits. Both transaction commit and abort occur equally
quickly.

If an aborted transaction managed to create new row versions, these
versions are not destroyed (there is no “physical” rollback of data). Thanks
to the status information, other transactions will see that the transaction that
created or deleted the row versions was actually aborted, and will not take
changes made by it into account.

Takeaways Pogga’?é%

Multiple versions of each row can be stored
in data files

Transactions work with a data snapshot, a representation of
database data in a consistent state at a specific point in time

Writers don’t block readers, readers don’t block anyone

Isolation levels differ in snapshot creation times

10

Practice Pogga’?é%

1.

Create a table with one row.

Begin a transaction at the Read Committed isolation level and
query the table.

In another session, delete the row and commit the changes.
How many rows will the first transaction see after executing the
same query again? Try and see.

Complete the first transaction.

Repeat the same thing, but now let the transaction work at the
isolation level Repeatable Read:

BEGIN ISOLATION LEVEL REPEATABLE READ;
Explain the differences.

11

1. Read Committed isolation level

Create a table:

=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (42);

INSERT 0 1

Make a query from one transaction (Read Committed is the isolation level by default):
=> BEGIN;

BEGIN

=> SELECT * FROM t;

n

42
(1 row)

Remove the row in another transaction and commit:
| => DELETE FROM t;

| DELETE 1

Retry the query:

=> SELECT * FROM t;

n

(0 rows)

The first transaction sees the changes.
=> COMMIT;

COMMIT

2. Repeatable Read isolation level

Put the row back in:

=> INSERT INTO t VALUES (42);

INSERT 0 1

Query from the first transaction:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
BEGIN

=> SELECT * FROM t;

n

42
(1 row)

Remove the row in the second transaction and commit:
| => DELETE FROM t;

| DELETE 1

Retry the query:

=> SELECT * FROM t;

n

42

(1 row)

On this isolation level, the first transaction does not see the changes.
=> COMMIT;

COMMIT

Practice+ Pogga’?é%

1. Begin a transaction and create a new table with one row. Without
completing the transaction, open a second session and query the
table in it. Check what the transaction will return in the second
session.

Commit the transaction in the first session and repeat the query
to the table in the second session.

2. Repeat task 1, but roll back rather than commit the transaction in
the first session. What has changed?

3. In the first session, start a transaction and make a query
to the previously created table. Will it be possible to delete this
table in the second session before the transaction is completed?
Try and see.

12

1. Transactions and DDL commands. Commit

Start a transaction and create a table:
=> BEGIN;

BEGIN

=> CREATE TABLE t1(n integer);
CREATE TABLE

=> INSERT INTO t1 VALUES (42);
INSERT 0 1

In another transaction, query the table:
| => SELECT * FROM t1;

ERROR: relation "tl1" does not exist
LINE 1: SELECT * FROM t1;

Until the initial transaction is completed, no other transactions can see the table.
It will only be visible when the transaction that created it has completed:

=> COMMIT;

COMMIT

| => SELECT * FROM t1;

n

42
(1 row)

2. Transactions and DDL commands. Rollback

Again, start a transaction and create a table:

=> BEGIN;

BEGIN

=> CREATE TABLE t2(n integer);

CREATE TABLE

=> INSERT INTO t2 VALUES (42);

INSERT 0 1

The other transaction does not see the table, as expected:
| => SELECT * FROM t2;

ERROR: relation "t2" does not exist
LINE 1: SELECT * FROM t2;

When the first transaction is rolled back, so is the table creation command:
=> ROLLBACK;
ROLLBACK

| => SELECT * FROM t2;

ERROR: relation "t2" does not exist
LINE 1: SELECT * FROM t2;

~

DDL commands in PostgreSQL are transactional.

3. Table locks

Start a transaction and query the table:

=> BEGIN;
BEGIN
=> SELECT * FROM tl1;

n

42
(1 row)

When another transaction attempts to remove the table, it will be locked, because you are not allowed to remove a table
that is being used.

| => DROP TABLE t1;
The table will be removed only when the first transaction is completed:
=> COMMIT;

COMMIT

| DROP TABLE

