Basic tools
Server configuration

ol PROFESSIONAL

Posygres

Copyright

© Postgres Professional, 2015-2022

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov
Translated by Alexander Meleshko

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

Topics pogéa?sg

Configuration parameters
Configuration files

Parameter management at the instance and session levels

Parameters Pogga’?“ég

Purpose

managing DBMS operation and behavior

Setting parameters

for an instance via configuration files
for a separate database or user
for the current session

There are multiple parameters in PostgreSQL that control the DBMS behavior.
These parameters affect resource management, backend process operations,
and much more.

For example, the max_connections parameter limits the number of concurrent
connections to the server.

The full list of configuration parameters and their descriptions is available in the
documentation: https://postgrespro.com/docs/postgresql/13/runtime-config.html

In this topic, we will not cover any specific configuration parameters, but rather
discuss how to set their values.

Configuration parameters are generally managed in configuration files. The
parameter values defined in the configuration files affect the whole DBMS
instance, unless explicitly configured otherwise.

Some parameters can be set for specific databases or for a specific user’s
sessions. Such parameters will overrule those declared in configuration files.
These types of parameters will be discussed in further chapters of the course.

Lastly, many parameters can be changed at the session level, during server
operaton.

postgresqgl.conf Po%a?sg

Main configuration file
loaded when the server starts

located in the data directory (PGDATA) by default
® /etc/postgresql/13/main

After any changes to the parameters, the file has to be reloaded

$ pg_ctl reload
® 3 pg_ctlcluster 13 main reload
=> SELECT pg_reload_conf();

changes to some parameters require a server restart to apply

The main configuration file is postgresql.conf.

The file’s location is defined during initial PostgreSQL compilation. By default, the
file is located in the data catalog (PGDATA), but package distributions usually
place it somewhere else, depending on the OS-specific conventions.

This is a well-documented plaintext file that stores parameters in a key-value
format.

If the same parameter is defined in the file multiple times, only the most recently
read value will be used.

For any changes to parameters to apply, the file must be reloaded. Some
parameters require a server restart to apply.

The postgresql.conf file and the pg file_settings view

Take a look at a part of a config file.
=> SHOW config_file;

config file

/etc/postgresql/13/main/postgresql.conf
(1 row)

=> SELECT pg_read_file('/etc/postgresql/13/main/postgresql.conf', 1516, 860)
\g (tuples_only=on format=unaligned)

The default values of these variables are driven from the -D command-line
option or PGDATA environment variable, represented here as ConfigDir.

data_directory = '/var/lib/postgresql/13/main’ # use data in another directory
(change requires restart)

hba file = '/etc/postgresql/13/main/pg hba.conf' # host-based authentication file
(change requires restart)

ident file = '/etc/postgresql/13/main/pg _ident.conf' # ident configuration file

(change requires restart)

If external pid file is not explicitly set, no extra PID file is written.
external pid file = '/var/run/postgresql/13-main.pid' # write an extra PID file
(change requires restart)

To see all non-comment lines of a config file, use the pg file settings view:

=> SELECT sourceline, name, setting, applied
FROM pg_file_settings
WHERE sourcefile LIKE '/etc/postgresql/13/main/postgresql.conf’;

sourceline | name | setting | applied

------------ L I L L L T R
42 | data directory | /var/lib/postgresql/13/main | t
44 | hba file | /etc/postgresql/13/main/pg hba.conf | t
46 | ident file | /etc/postgresql/13/main/pg_ident.conf | t
50 | external pid file | /var/run/postgresql/13-main.pid | t
64 | port | 5432 | t
65 | max_connections | 100 | t
67 | unix socket directories | /var/run/postgresql | t
101 | ssl | on | t
103 | ssl cert file | /etc/ssl/certs/ssl-cert-snakeoil.pem | t
105 | ssl key file | /etc/ssl/private/ssl-cert-snakeoil.key | t
122 | shared buffers | 128MB | t
143 | dynamic_shared memory type | posix | t
229 | max_wal_size | 1GB | t
230 | min_wal_size | 86MB | t
530 | log line prefix | %m [%p] %Qq%u@%d | t
564 | log timezone | Europe/Moscow | t
570 | cluster name | 13/main | t
586 | stats temp directory | /var/run/postgresql/13-main.pg_stat tmp | t
679 | datestyle | iso, mdy | t
681 | timezone | Europe/Moscow | t
695 | lc_messages | en US.UTF-8 | t
697 | lc_monetary | en US.UTF-8 | t
698 | lc_numeric | en US.UTF-8 | t
699 | lc_time | en_US.UTF-8 | t
702 | default text search config | pg catalog.english | t

(25 rows)

The column name “applied” is misleading. In case any changes are made to the file, the table value tells you if the new
configuration can be applied without restarting the server. The pg file settings view shows only the contents of the file,
actual configuration parameter values may differ.

The pg_settings view

Current configuration parameter values are shown in the pg settings view. For example, here’s its output regarding the
work mem parameter:

=> SELECT name, setting, unit,
boot_val, reset_val,
source, sourcefile, sourceline,
pending_restart, context

FROM pg_settings

WHERE name = 'work_mem'\gx

[RECORD 1 J---#-nnnmmm--

name | work_mem
setting | 4096
unit | kB

boot val | 4096
reset val | 4096
source | default
sourcefile |
sourceline |

pending restart | f
context | user

The work mem parameter defines how much memory is allocated for operations like sorting or hash join. The default value
can be insufficient for queries working with massive amounts of data. To learn more about the work mem parameter,
check out our Query performance tuning course (QPT).

Below are the main columns of the pg settings view:

e name, setting, unit — parameter name and value,

e boot val — default value,

e reset val — value to be set by the RESET command,

e source — the source of the current value,

e pending restart — the value is changed in the configuration file, pending server restart.

The context column shows what action has to be taken for the parameter change to take effect. Possible values include:

e internal — cannot be changed, set during installation,
e postmaster — server restart required,

e sighup — reload of configuration files required,

e superuser — can be changed by superuser for their session,
e user — can be changed by any user for their session.

postgresql.conf lines are applied in a certain order

If the same parameter is defined multiple times throughout the file, the latest value applies.
Add two lines to the end of postgresqgl.conf which both modify the work mem parameter value:
student$ echo work_mem=12MB | sudo tee -a /etc/postgresql/13/main/postgresql.conf
work_mem=12MB

student$ echo work_mem=8MB | sudo tee -a /etc/postgresql/13/main/postgresql.conf
work_mem=8MB

=> SELECT sourceline, name, setting, applied
FROM pg_file_settings
WHERE name = 'work_mem';

sourceline | name | setting | applied
------------ et L R R
783 | work_mem | 12MB | f
784 | work_mem | 8MB | t
(2 rows)

The applied = f value for the 12MB line tells us that the configuration change cannot be applied.

The context field of the work mem parameter says “user”. This means that the parameter can be changed by the user
during their session. We will discuss how to do it in a bit.

To change the value for all sessions, you just need to reload the configuration file:

=> SELECT pg_reload_conf();

pg reload conf

Verify that work mem now has taken the value from the last line of the configuration file:

=> SELECT name, setting, unit,
boot_val, reset_val,
source, sourcefile, sourceline,
pending_restart, context

FROM pg_settings

WHERE name = 'work_mem'\gx

<] RECORD 1 J--mmmmmmmmmmmmmomom e e oo

name | work mem

setting | 8192

unit | kB

boot val | 4096

reset_val | 8192

source | configuration file

sourcefile | /etc/postgresql/13/main/postgresql.conf
sourceline | 784

pending_restart | f

context | user

postgresgl.auto.conf Pogga’?“é“g

Configuration file managed by SQL commands

ALTER SYSTEM adds or changes a line
SET parameter TO value;

ALTER SYSTEM RESET parameter, removes a line

ALTER SYSTEM RESET ALL; deletes all lines

read after postgresql.conf

Location
always in the data directory (PGDATA)

Actions needed to apply

same as for postgresql.conf

The file postgresql.auto.conf is always loaded last. This file is always located in the
data catalog (PGDATA).

It should never be modified manually, but only with the ALTER SYSTEM command.
ALTER SYSTEM is an SQL interface for managing configuration parameters.

For any changes made with ALTER SYSTEM to take place, the server must reload
the configuration files, as it does with postgresql.conf.

The contents of both files (postgresql.conf and postgresql.auto.conf) can be
checked using the pg_file_settings view, and the current parameter values are
shown in the pg_settings view.

More about the ALTER SYSTEM command:

https://postgrespro.com/docs/postgresqgl/13/runtime-config-logging.htmi#RUNTIME
-CONFIG-LOGGING-WHERE

The ALTER SYSTEM command and the postgresql.auto.conf file

Let’s set a new value for the work mem parameter:
=> ALTER SYSTEM SET work_mem TO '16mb’;

ERROR: invalid value for parameter "work mem": "1l6mb"
HINT: Valid units for this parameter are "B", "kB", "MB", "GB", and "TB".

What happened?

ALTER SYSTEM checks if the provided value is valid.
=> ALTER SYSTEM SET work_mem TO '16MB';
ALTER SYSTEM

Now it works!

The command saves the new value 16MB to a file named postgresql.auto.conf:

=> SELECT pg_read_file('postgresql.auto.conf')
\g (tuples_only=on format=unaligned)

Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
work mem = '16MB'

However, the value has not been applied yet:

=> SHOW work_mem;

For the new work mem setting to apply, reload the configuration file first:
=> SELECT pg_reload_conf();

pg reload conf

=> SELECT name, setting, unit,
boot_val, reset_val,
source, sourcefile, sourceline,
pending_restart, context

FROM pg_settings

WHERE name = 'work_mem'\gx

<L RECORD 1 J---dmmmmmmmmm o e e
name | work_mem

setting | 16384

unit | kB

boot val | 4096

reset val | 16384

source | configuration file

sourcefile | /var/lib/postgresql/13/main/postgresql.auto.conf
sourceline | 3

pending restart | f

context | user

Lines are removed from postgresql.auto.conf with the ALTER SYSTEM RESET command:
=> ALTER SYSTEM RESET work_mem;
ALTER SYSTEM

=> SELECT pg_read_file('postgresql.auto.conf')
\g (tuples_only=on format=unaligned)

Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.

Reload the configuration file again. The old value from postgresql.conf is now applied:
=> SELECT pg_reload_conf();

pg_reload conf

=> SELECT name, setting, unit,
boot_val, reset_val,
source, sourcefile, sourceline,
pending_restart, context

FROM pg_settings

WHERE name = 'work_mem'\gx

<] RECORD 1 J--mmmmmmmmmmmmmomom e oo

name | work_mem

setting | 8192

unit | kB

boot_val | 4096

reset_val | 8192

source | configuration file

sourcefile | /etc/postgresql/13/main/postgresql.conf
sourceline | 784

pending_restart | f

context | user

o)) PROFESSIONAL

Current session Posigres

PostgreSQL

client SET, set_config > iéﬁg

application SHOW, current_setting

set until the end of the session or transaction
the act of setting parameters is transactional

custom parameters are allowed

Parameter values can be changed directly during the session with the SET
command or the set_config function. The SHOW command or the
current_setting function display the current parameter value.

By setting a new value, you can specify its effective range: until the end of
the session (by default) or until the end of the transaction (SET LOCAL).

In any case, setting parameters is transactional: if the current transaction is
rolled back, any parameters modified within it will return to the state they
were in at the start of the transaction.

In addition to the PostgreSQL system parameters, the same commands and
functions can be used to create and get the values of custom parameters.

Configuring parameters for the duration of a session

The SET command is used to set parameter values for the duration of the current session:
=> SET work_mem TO '24MB';

SET

The set config function also works:

=> SELECT set_config('work_mem', '32MB', false);

set config

The third parameter of the function defines if the parameter should be used for the duration of the current transaction
(true) or until the end of the current session (false). This may be important when using a connection poll, when
transactions by multiple users may be performed within the same session.

Checking parameter values during a session

There are multiple ways to check the current parameter value:
=> SHOW work_mem;

work mem

=> SELECT current_setting('work_mem');

current_setting

=> SELECT name, setting, unit FROM pg_settings WHERE name = 'work_mem';

name | setting | unit
__________ O
work mem | 32768 | kB
(1 row)

Setting parameter values within a transaction

Open a transaction and set a new work mem value:
=> RESET work_mem;

RESET

=> BEGIN;

BEGIN

=> SET work_mem TO '64MB';

SET

=> SHOW work_mem;

If the transaction is rolled back, so is the new parameter value. If the transaction commits, however, the parameter
remains changed.

=> ROLLBACK;

ROLLBACK
=> SHOW work_mem;

work mem

You can set a new parameter value just for the duration of the current transaction:

=> BEGIN;

BEGIN

=> SET LOCAL work_mem TO '64MB'; -- or set_config('work_mem', '64MB',true);
SET

=> SHOW work_mem;

work mem

=> COMMIT;
COMMIT
When the transaction commits, the old value returns:

=> SHOW work_mem;

Custom parameters

Custom parameters can be defined during session. You can also verify if such a parameter is already defined.
Custom parameter names must include the full stop sign (.) in order to distinguish them from standard parameters.

=> SELECT CASE
WHEN current_setting('myapp.currency_code', true) IS NULL
THEN set_config('myapp.currency_code', 'USD', false)
ELSE
current_setting('myapp.currency_code')
END;

current_setting

Now myapp.currency code can be used as a global variable during the session:
=> SELECT current_setting('myapp.currency_code');

current_setting

Custom parameters can be defined in postgresql.conf. This will make them initialize in all sessions.

o)) PROFESSIONAL

Takeaways Pos{gres

The main configuration file is postgresql.conf

ALTER SYSTEM is an SQL interface for managing
configuration parameters stored in postgresql.auto.conf

When configuration files are modified, they have to be reloaded
Some parameters can be changed just for the current session

Changes to some parameters require a server restart to apply

10

o)) PROFESSIONAL

Practice Posigres

1. Get a list of parameters that require a server restart to apply.

2. In the postgresql.conf file, make an error when changing the
max_connections parameter value.

Restart the server. Make sure that the server does not start
and check the message log.

Fix the error and start the server.

11

2. To get the location of the postgresqgl.conf file, check the value of the
config_file parameter.

Edit the postgresql.conf file either as the owner (the postgres user) or as a
superuser.

To do the former, you can open a new terminal window and execute the
command there:

sudo su postgres

To do the latter, open the file in a text editor from the command line using
the sudo command, for example:

sudo vim postgresqgl.conf

1. Parameters that require a server restart to apply

=> SELECT name, setting, unit FROM pg_settings WHERE context = 'postmaster’;

name | setting | unit
..................................... e
archive mode | off |
autovacuum freeze max age | 200000000 |
autovacuum max_workers | 3 |
autovacuum multixact freeze max age | 400000000 |
bonjour | off |
bonjour name | |
cluster_name | 13/main |
config file | /etc/postgresql/13/main/postgresql.conf |
data directory | /var/lib/postgresql/13/main |
data_sync_retry | off |
dynamic_shared memory type | posix |
event source | PostgreSQL |
external pid file | /var/run/postgresql/13-main.pid |
hba file | /etc/postgresql/13/main/pg_hba.conf |
hot_standby | on |
huge_pages | try |
ident file | /etc/postgresql/13/main/pg_ident.conf |
ignore_invalid pages | off |
jit_provider | Tlvmjit |
listen_addresses | localhost |
logging collector | off |
max_connections | 100 |
max_files per process | 1000 |
max_locks per transaction | 64 |
max_logical_replication_workers | 4 |
max_pred locks per transaction | 64 |
max_prepared transactions | © |
max_replication_slots | 10 |
max_wal senders | 10 |
max_worker processes | 8 [
old snapshot threshold | -1 | min
port | 5432 |
recovery target | |
recovery target action | pause |
recovery target inclusive | on |
recovery target lsn | |
recovery target name | |
recovery target time | |
recovery target timeline | latest |
recovery target xid | |
restore_command | |
shared_buffers | 16384 | 8kB
shared_memory_type | mmap |
shared preload libraries | |
superuser reserved connections | 3 |
track activity query size | 1024 | B
track _commit timestamp | off |
unix socket directories | /var/run/postgresql |
unix_socket group | |
unix_socket permissions | 0777 |
wal buffers | 512 | 8kB
wal_level | replica |
wal_log_hints | off |
(53 rows)

2. Setting the max_connections parameter

The current value of max_connections:
=> SHOW max_connections;

max_connections

Imagine we try to set it to 50, but mistype and enter the letter O instead of the zero:
student$ echo max_connections=50 | sudo tee -a /etc/postgresql/13/main/postgresql.conf
max_connections=50

The error can be discovered by looking at the pg file settings view:

=> SELECT * FROM pg_file_settings WHERE name = 'max_connections'\gx

[RECORD 1 J---mcmmmmmmm e
sourcefile | /etc/postgresql/13/main/postgresql.conf
sourceline | 782

seqno | 25
name | max_connections
setting | 50
applied | f
|

error setting could not be applied

But here, we didn't look at pg file settings and restarted the server right away:
= \q
student$ sudo pg_ctlcluster 13 main restart

Job for postgresql@l3-main.service failed because the service did not take the steps required by its unit configuration.
See "systemctl status postgresql@l3-main.service" and "journalctl -xeu postgresql@l3-main.service" for details.

The server does not start. The reason is recorded in the server log. Here is what it says:
student$ tail -n 5 /var/log/postgresql/postgresql-13-main.log

2024-03-07 13:52:57.360 MSK [147174] LOG: database system is shut down

2024-03-07 13:52:57.714 MSK [147569] LOG: invalid value for parameter "max connections": "50"

2024-03-07 13:52:57.714 MSK [147569] FATAL: configuration file "/etc/postgresql/13/main/postgresql.conf" contains errors
pg_ctl: could not start server

Examine the log output.

Let's fix the error:

student$ sudo sed -i 's/50/50/' /etc/postgresql/13/main/postgresql.conf
Start the server:

student$ sudo pg_ctlcluster 13 main start

The server starts. Check the max connections value:

student$ psql

=> SHOW max_connections;

max_connections

50
(1 row)

Practice+ Pogga’?“ég

1. Set the parameter work_mem = 32MB in the psql tool’s command
line options.

2. In the Ubuntu package distribution, the postgresql.conf file is not
located in the PGDATA directory. How does the server find this
configuration file at startup?

12

1. Use either the options key in the connection string or the PGOPTIONS
environment variable.

More on how connection strings are formed:_

https://postgrespro.ru/docs/postgresgl/13/runtime-config-logging.htmi#RUNT
IME-CONFIG-LOGGING-WHERE

2. To see the location of the postgresqgl.conf file, check the config_file
parameter.

To find where the parameter is set, run the ps command for the postgres
main process. The process ID (PID) is the first line of the postmaster.pid file,
which is located in the data directory (PGDATA).

1. Setting parameters at application start

If the app uses the libpq library to connect to the server, there are two ways you can set parameters at application start.
The first way is to add the options key to the connection string:
student$ psql "options='-c work_mem=32MB'" -c 'SHOW work_mem'

work_mem

The second way is set the PGOPTIONS environment variable:
student$ export PGOPTIONS='-c work_mem=32MB'; psql -c 'SHOW work_mem’

work_mem

2. The config_file variable

The file postgresql.conf isn't located within the data catalog:
=> SHOW config_file;

config file

/etc/postgresql/13/main/postgresql.conf
(1 row)

=> SHOW data_directory;

data_directory
/var/lib/postgresql/13/main
(1 row)

How does the server know where postgresql.conf is?

In the Ubuntu package distribution, the config file value is defined in the server startup command text. This allows the postgresql.conf file to be stored outside of
PGDATA.

The server startup command text is stored in the pg_ctlcluster utility's source code. It can also be found in the description of the postgres process. The process ID (PID)
of the main server process (usually called postmaster) is stored in the first line of the postmaster.pid file. The file itself is stored in the PGDATA catalog.

student$ sudo cat /var/lib/postgresql/13/main/postmaster.pid

147963
/var/lib/postgresql/13/main
1709808788
5432
/var/run/postgresql
localhost

655375 98351
ready

student$ ps 147963

PID TTY STAT TIME COMMAND
147963 ? Ss 0:00 /usr/lib/postgresql/13/bin/postgres -D /var/lib/postgresql/13/main -c config_ file=/etc/postgresql/13/main/postgresql.conf

