
A Better Android 
Architecture

https://github.com/alphonzo79/AndroidArchitectureExample



Traditional Android - MVC(ish)



• Distinction between View and Controller is not clear 

• Has no clear division between logic layers 

• Lends itself to very large Activity/Fragment classes 

• Pollutes the View/Controller with data access duties 

• Changes to the view structure tend to become 
large projects 

• Virtually all testing requires instrumentation or other 
“non-unit” support (Robolectric)



Architecture: Driving Forces

• Separate 
Responsibilities 

• Hide Internal Details 

• Encapsulate Change 

• Manage Dependency 
Flow

Adapted from https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html



Model-View-Presenter
With the addition of Interactors





View Layer
• Strictly View duties - Dumb 

• Inflate, Input, Output 

• Makes as few decisions as possible 

• Exceptions: 

• Instantiates Presenter, Interactor, Gateways 

• Handles View components like adapters, 
etc 

• Keep Android in this layer as much as 
possible 

• Should be “swappable” (View Model 
Interface)



Presenter Layer
• View Logic 

• What to show; What to hide, 
How to handle user interaction; 
When to get data; Convert 
Server Model to View Model 

• Communicates with the view 
through a View Model interface 

• Ideally clean of anything “Android” 

• Makes no business decisions, 
Handles no data fetching 

• Implements Response Model 
interface to receive updates from 
Interactor



Interactor/Gateway Layer
• Business Logic: Source(s) of data, 

caching/refresh, etc 

• Provides models/data back to the 
Presenter through Response Model 
interface 

• Holds Gateways (DAOs), but ideally 
is unaware of their internals. Only 
requests data from them 

• Ideally knows nothing of Android 

• (Gateways must, since they 
handle network and file IO or 
SQLite access)



Pros / Cons
• Better separation of 

duties & logic 

• Smaller classes 

• Clear dependency flow 

• More portable - swap 
views, presenters or 
interactions for various 
scenarios 

• Class Structure 
Explosion 

• Interfaces 
implemented exactly 
once? 

• Pass-throughs show 
up sometimes





Testability
• Business logic is (should be) completely 

independent of instrumentation 

• View logic is (should be) completely 
independent of instrumentation 

• With a mocking library you can now do real unit 
tests on big parts of the app that used to be 
wrapped up in instrumented components


