A Better Androiad
Architecture

- https://github.com/alphonzo79/AndroidArchitectureExample

Controller

Activity/Fragment

Data Access Objects

Traditional Android - MVC(ish)

Distinction between View and Controller is not clear

as no clear division between logic layers
Lends itself to very large Activity/Fragment classes

Pollutes the View/Controller with data access duties

D o« — . X » o = | o - \] N
A AW N Al “(*".-l \ <'\ INA L\ N\ }‘ 71 L\ -5
T ' n { O e A SRRl st

- - » = v
g ¢ o S A Ay Y
LN § i '

Arcnitecture: Driving Forces

Separate
Responsibilities

Hide Internal Details Business Depgr:li:ncy
Rusl‘es
Encapsulate Change Entities

Manage Dependency
Flow

Database

Adapted from https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

_ _) - Business Logic
- View Logic P - No Androidy Stuff

- No Androidy Presenter — Interactor - No View Knowledge
Stuff (Ideally)

View Model Model
Response Model
Entity

- No Logic Activity
(Virtually)* Fragment
Custom View
- Androidy tia
Stuff o Gateways/DAOs
o (SQLite, Network, etc)
- React & Layout XML

Report

- Fully Encapsulate Data
Access

- Androidy Stuff

- Interface-Driven to hide
Android details

odel-View-Presenter

With the addition of Interactors

View Layer

Strictly View duties - Dumb
Inflate, Input, Output

Makes as few decisions as possible
Exceptions:
e |nstantiates Presenter, Interactor, Gateways

« Handles View components like adapters,
etc

Keep Android In this layer as much as
possible

Should be “swappable” (View Model
Interface)

- No Logic
(Virtually)*

- Androidy
Stuff

- React &
Report

Activity
Fragment
Custom View

Layout XML

Presenter Layer

View Logic

 What to show; What to hide,
How to handle user interaction;
When to get data; Convert
Server Model to View Model

Communicates with the view
through a View Model interface

ldeally clean of anything “Android”

Makes no business decisions,
Handles no data fetching

Implements Response Model
interface to receive updates from
Interactor

- View Logic

- No Androidy Presenter
Stuff (Ideally)

View Model

- No Logic Activity
(Virtually)* Fragment
Custom View

- Android

Interactor/Gateway Layer

Business Logic: Source(s) of data, o - Business Logic
: o - No Androidy Stuff
cachi Nng / refresh , etc — Interactor - No View Knowledge

Provides models/data back to the
Presenter through Response Model

Holds Gateways (DAOs), but ideally
Is unaware of their internals. Only
requests data from them

|deally knows nothing of Android o e
« (Gateways must, since they - Fully Encapsulate Data
handle network and file 10 or caree i

. L - Interface-Driven to hide
SQLite access) Android details

Pros / Cons

Better separation of e Class Structure
duties & logic Explosion

e Smaller classes * |nterfaces
implemented exactly

e Clear dependency flow o C e e

e, e YT

A1
-

._..,. o

; ; - Business Logic
- View Logl.c o - No Androidy Stuff
- No Androidy Presenter — - Interactor - No View Knowledge
Stuff (Ideally) S
o Entity
View Model Model
Response Model
Entity

i —————————— - - —————————————————— -

4 =)

- No Logic Activity i
(Virtually)* Fragment i

Custom View i
- Androidy)
Stuff) Gateways/DAOs

o (SQLite, Network, etc)
- React & Layout XML é i
Report e
\ / - Fully Encapsulate Data
. i Access
b i - Androidy Stuff

- Interface-Driven to hide
Android details

lTestanility

* Business logic is (should be) completely
independent of instrumentation

* View logic is (should be) completely
- Independent of instrumentation

[N
e e B T
S = ar

