|
1 |
| -import ..Flux: Flux, relu |
2 |
| - |
3 |
| -CuRNN{T} = Flux.RNNCell{<:Union{typeof(tanh),typeof(relu)},<:CuArray{T,2},<:CuArray{T,1}} |
4 |
| -CuGRU{T} = Flux.GRUCell{<:CuArray{T,2},<:CuArray{T,1}} |
5 |
| -CuLSTM{T} = Flux.LSTMCell{<:CuArray{T,2},<:CuArray{T,1}} |
6 |
| -CuRNNs{T} = Union{CuRNN{T},CuGRU{T},CuLSTM{T}} |
7 |
| - |
8 |
| -function CUDNN.RNNDesc(m::CuRNNs{T}) where T |
9 |
| - h, i = length(m.h), size(m.Wi, 2) |
10 |
| - mode = m isa CuRNN ? |
11 |
| - (m.σ == tanh ? CUDNN.CUDNN_RNN_TANH : CUDNN.CUDNN_RNN_RELU) : |
12 |
| - m isa CuGRU ? CUDNN.CUDNN_GRU : CUDNN.CUDNN_LSTM |
13 |
| - r = CUDNN.RNNDesc{T}(mode, i, h) |
14 |
| - return r |
15 |
| -end |
16 |
| - |
17 |
| -const descs = WeakKeyDict() |
18 |
| - |
19 |
| -function desc(rnn) |
20 |
| - d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = CUDNN.RNNDesc(rnn)) |
21 |
| - CUDNN.setweights!(d, rnn.Wi, rnn.Wh, rnn.b) |
22 |
| - return d |
23 |
| -end |
24 |
| - |
25 |
| -import Zygote |
26 |
| -using Zygote: @adjoint |
27 |
| - |
28 |
| -function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
29 |
| - y, h′ = CUDNN.forward(desc(m), x, h) |
30 |
| - return h′, y |
31 |
| -end |
32 |
| - |
33 |
| -function (m::CuGRU{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
34 |
| - y, h′ = CUDNN.forward(desc(m), x, h) |
35 |
| - return h′, y |
36 |
| -end |
37 |
| - |
38 |
| -function (m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64} |
39 |
| - y, h′, c′ = CUDNN.forward(desc(m), x, h[1], h[2]) |
40 |
| - return (h′, c′), y |
41 |
| -end |
42 |
| - |
43 |
| -(m::CuRNN{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
44 |
| -(m::CuGRU{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
45 |
| -(m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
46 |
| - |
47 |
| -trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x)))) |
48 |
| - |
49 |
| -unbroadcast(x::AbstractArray, Δ) = |
50 |
| - size(x) == size(Δ) ? Δ : |
51 |
| - length(x) == length(Δ) ? trim(x, Δ) : |
52 |
| - trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ))))) |
53 |
| - |
54 |
| -coerce_cuda(x::Union{CuArray,Nothing}) = x |
55 |
| -coerce_cuda(x::Tuple) = coerce_cuda.(x) |
56 |
| - |
57 |
| -coerce_cuda(x::AbstractArray) = x .+ CUDA.fill(0) |
58 |
| - |
59 |
| -function struct_grad!(cx::Zygote.Context, x, x̄) |
60 |
| - for f in fieldnames(typeof(x)) |
61 |
| - Zygote.accum_param(cx, getfield(x, f), getfield(x̄, f)) |
62 |
| - end |
63 |
| - dx = Zygote.grad_mut(cx, x) |
64 |
| - dx[] = Zygote.accum(dx[], x̄) |
65 |
| - return dx |
66 |
| -end |
67 |
| - |
68 |
| -for RNN in (CuRNN, CuGRU) |
69 |
| - @eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
70 |
| - (y, ho), back = CUDNN.pullback(desc(m), x, h) |
71 |
| - (ho, y), function (Δ) |
72 |
| - dho, dy = coerce_cuda(Δ) # Support FillArrays etc. |
73 |
| - m̄ = back(dy, dho) |
74 |
| - dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(m̄.Wi),Wh=transpose(m̄.Wh),b=m̄.b,h=nothing)) |
75 |
| - (dm, unbroadcast(h, m̄.h), m̄.x) |
76 |
| - end |
77 |
| - end |
78 |
| -end |
79 |
| - |
80 |
| -@adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64} |
81 |
| - (y, ho, co), back = CUDNN.pullback(desc(m), x, h, c) |
82 |
| - ((ho, co), y), function (Δ) |
83 |
| - dhc, dy = coerce_cuda(Δ) # Support FillArrays etc. |
84 |
| - dho, dco = dhc === nothing ? (nothing, nothing) : dhc |
85 |
| - m̄ = back(dy, dho, dco) |
86 |
| - dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(m̄.Wi),Wh=transpose(m̄.Wh),b=m̄.b,h=nothing,c=nothing)) |
87 |
| - (dm, (unbroadcast(h, m̄.h), unbroadcast(c, m̄.c)), m̄.x) |
88 |
| - end |
89 |
| -end |
| 1 | +# import ..Flux: relu |
| 2 | +# |
| 3 | +# CuRNN{T} = Flux.RNNCell{<:Union{typeof(tanh),typeof(relu)},<:CuArray{T,2},<:CuArray{T,1}} |
| 4 | +# CuGRU{T} = Flux.GRUCell{<:CuArray{T,2},<:CuArray{T,1}} |
| 5 | +# CuLSTM{T} = Flux.LSTMCell{<:CuArray{T,2},<:CuArray{T,1}} |
| 6 | +# CuRNNs{T} = Union{CuRNN{T},CuGRU{T},CuLSTM{T}} |
| 7 | +# |
| 8 | +# function CUDNN.RNNDesc(m::CuRNNs{T}) where T |
| 9 | +# if isa(m, CuRNN) |
| 10 | +# m.σ == tanh ? mode = CUDNN.CUDNN_RNN_TANH : mode = CUDNN.CUDNN_RNN_RELU |
| 11 | +# h, i = length(m.b), size(m.Wi, 2) |
| 12 | +# elseif isa(m, CuGRU) |
| 13 | +# mode = CUDNN.CUDNN_GRU |
| 14 | +# h, i = length(m.b)÷3, size(m.Wi, 2) |
| 15 | +# elseif isa(m, CuLSTM) |
| 16 | +# mode = CUDNN.CUDNN_LSTM |
| 17 | +# h, i = length(m.b)÷4, size(m.Wi, 2) |
| 18 | +# println("h: ", h, ", i:", i) |
| 19 | +# else |
| 20 | +# error("typeof m ∉ {CuRNN, CuGRU, CuLSTM}") |
| 21 | +# end |
| 22 | +# r = CUDNN.RNNDesc{T}(mode, i, h) |
| 23 | +# return r |
| 24 | +# end |
| 25 | +# |
| 26 | +# const descs = WeakKeyDict() |
| 27 | +# |
| 28 | +# function desc(rnn) |
| 29 | +# d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = CUDNN.RNNDesc(rnn)) |
| 30 | +# CUDNN.setweights!(d, rnn.Wi, rnn.Wh, rnn.b) |
| 31 | +# return d |
| 32 | +# end |
| 33 | +# |
| 34 | +# function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
| 35 | +# y, h′ = CUDNN.forward(desc(m), x, h) |
| 36 | +# return h′, y |
| 37 | +# end |
| 38 | +# |
| 39 | +# function (m::CuGRU{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
| 40 | +# y, h′ = CUDNN.forward(desc(m), x, h) |
| 41 | +# return h′, y |
| 42 | +# end |
| 43 | +# |
| 44 | +# function (m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64} |
| 45 | +# y, h′, c′ = CUDNN.forward(desc(m), x, h[1], h[2]) |
| 46 | +# return (h′, c′), y |
| 47 | +# end |
| 48 | +# |
| 49 | +# (m::CuRNN{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
| 50 | +# (m::CuGRU{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
| 51 | +# (m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x)) |
| 52 | +# |
| 53 | +# trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x)))) |
| 54 | +# |
| 55 | +# unbroadcast(x::AbstractArray, Δ) = |
| 56 | +# size(x) == size(Δ) ? Δ : |
| 57 | +# length(x) == length(Δ) ? trim(x, Δ) : |
| 58 | +# trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ))))) |
| 59 | +# |
| 60 | +# coerce_cuda(x::Union{CuArray,Nothing}) = x |
| 61 | +# coerce_cuda(x::Tuple) = coerce_cuda.(x) |
| 62 | +# |
| 63 | +# coerce_cuda(x::AbstractArray) = x .+ CUDA.fill(0) |
| 64 | +# |
| 65 | +# function struct_grad!(cx::Zygote.Context, x, x̄) |
| 66 | +# for f in fieldnames(typeof(x)) |
| 67 | +# Zygote.accum_param(cx, getfield(x, f), getfield(x̄, f)) |
| 68 | +# end |
| 69 | +# dx = Zygote.grad_mut(cx, x) |
| 70 | +# dx[] = Zygote.accum(dx[], x̄) |
| 71 | +# return dx |
| 72 | +# end |
| 73 | +# |
| 74 | +# for RNN in (CuRNN, CuGRU) |
| 75 | +# @eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64} |
| 76 | +# (y, ho), back = CUDNN.pullback(desc(m), x, h) |
| 77 | +# (ho, y), function (Δ) |
| 78 | +# dho, dy = coerce_cuda(Δ) # Support FillArrays etc. |
| 79 | +# m̄ = back(dy, dho) |
| 80 | +# dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(m̄.Wi),Wh=transpose(m̄.Wh),b=m̄.b,h=nothing)) |
| 81 | +# (dm, unbroadcast(h, m̄.h), m̄.x) |
| 82 | +# end |
| 83 | +# end |
| 84 | +# end |
| 85 | +# |
| 86 | +# @adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64} |
| 87 | +# (y, ho, co), back = CUDNN.pullback(desc(m), x, h, c) |
| 88 | +# ((ho, co), y), function (Δ) |
| 89 | +# dhc, dy = coerce_cuda(Δ) # Support FillArrays etc. |
| 90 | +# dho, dco = dhc === nothing ? (nothing, nothing) : dhc |
| 91 | +# m̄ = back(dy, dho, dco) |
| 92 | +# dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(m̄.Wi),Wh=transpose(m̄.Wh),b=m̄.b,h=nothing,c=nothing)) |
| 93 | +# (dm, (unbroadcast(h, m̄.h), unbroadcast(c, m̄.c)), m̄.x) |
| 94 | +# end |
| 95 | +# end |
0 commit comments