Skip to content

getindex overhead #166

@johnnychen94

Description

@johnnychen94

I'm recently building up some cache array with OffsetArrays and realized the performance bottleneck becomes getindex(::OffsetArray, I).

The benchmark result looks interesting; unsure why arr_sum runs faster on OffsetArray 🤔 Any ideas?

using OffsetArrays

X = rand(4, 4, 4, 4, 4, 4);
XO = OffsetArray(X, -1, -2, -3, 1, 2, 3);

function arr_sum(X)
    val = zero(eltype(X))
    R = CartesianIndices(X)
    for i in R
        @inbounds val += X[i]
    end
    val
end

@btime arr_sum($X) # 5.215 μs (0 allocations: 0 bytes)
@btime arr_sum($XO) # 3.730 μs (0 allocations: 0 bytes)
@btime getindex($X, 1, 1, 1, 1, 1, 1) # 1.983 ns (0 allocations: 0 bytes)
@btime getindex($XO, 3, 2, 1, 2, 3, 4) # 5.855 ns (0 allocations: 0 bytes)

getindex_inbounds(X, inds...) = @inbounds X[inds...]
@btime getindex_inbounds($X, 1, 1, 1, 1, 1, 1) # 1.430 ns (0 allocations: 0 bytes)
@btime getindex_inbounds($XO, 3, 2, 1, 2, 3, 4) # 2.323 ns (0 allocations: 0 bytes)

The default checkbounds implementation definitely takes too long here. I believe the additional time is spent on the construction of IdOffsetRange and its generic and thus slower getindex.

julia> @btime axes($X);
  1.431 ns (0 allocations: 0 bytes)

julia> @btime axes($XO);
  4.763 ns (0 allocations: 0 bytes)

These might be benchmark artifacts, though.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions