Open
Description
This is a follow-up of #232. Right now I would be interested in LV's support of the whole erf
family (erfc
and erfcx
in particular), but since we are at it maybe it is useful to track the whole special functions' family:
- gamma(z) gamma function \Gamma(z)Γ(z)
- loggamma(x) accurate log(gamma(x)) for large x
- logabsgamma(x) accurate log(abs(gamma(x))) for large x
- logfactorial(x) accurate log(factorial(x)) for large x; same as loggamma(x+1) for x > 1, zero otherwise
- digamma(x) digamma function (i.e. the derivative of loggamma at x)
- invdigamma(x) invdigamma function (i.e. inverse of digamma function at x using fixed-point iteration algorithm)
- trigamma(x) trigamma function (i.e the logarithmic second derivative of gamma at x)
- polygamma(m,x) polygamma function (i.e the (m+1)-th derivative of the loggamma function at x)
- gamma(a,z) upper incomplete gamma function \Gamma(a,z)Γ(a,z)
- loggamma(a,z) accurate log(gamma(a,x)) for large arguments
- gamma_inc(a,x,IND) incomplete gamma function ratio P(a,x) and Q(a,x)
- beta_inc(a,b,x,y) incomplete beta function ratio Ix(a,b) and Iy(a,b)
- gamma_inc_inv(a,p,q) inverse of incomplete gamma function ratio P(a,x) and Q(a,x)
- beta(x,y) beta function at x,y
- logbeta(x,y) accurate log(beta(x,y)) for large x or y
- logabsbeta(x,y) accurate log(abs(beta(x,y))) for large x or y
- logabsbinomial(x,y) accurate log(abs(binomial(n,k))) for large n and k near n/2
- expint(ν, z) exponential integral
- expinti(x) exponential integral
- expintx(x) scaled exponential integral
- sinint(x) sine integral
- cosint(x) cosine integral
- erf(x) : ref. error with erf #232
- erf(x,y)
- erfc(x) complementary error function,
- erfcinv(x) inverse function to erfc()
- erfcx(x) scaled complementary error function
- logerfc(x) log of the complementary error function
- logerfcx(x) log of the scaled complementary error function
- erfi(x) imaginary error function defined as -i \operatorname{erf}(ix)−ierf(ix)
- erfinv(x) inverse function to erf()
- dawson(x) scaled imaginary error function, a.k.a. Dawson function,
- airyai(z) Airy Ai function at z
- airyaiprime(z) derivative of the Airy Ai function at z
- airybi(z) Airy Bi function at z
- airybiprime(z) derivative of the Airy Bi function at z
- airyaix(z), airyaiprimex(z), airybix(z), airybiprimex(z) scaled Airy Ai function and kth derivatives at z
- besselj(nu,z) Bessel function of the first kind of order nu at z
- besselj0(z) besselj(0,z)
- besselj1(z) besselj(1,z)
- besseljx(nu,z) scaled Bessel function of the first kind of order nu at z
- sphericalbesselj(nu,z) Spherical Bessel function of the first kind of order nu at z
- bessely(nu,z) Bessel function of the second kind of order nu at z
- bessely0(z) bessely(0,z)
- bessely1(z) bessely(1,z)
- besselyx(nu,z) scaled Bessel function of the second kind of order nu at z
- sphericalbessely(nu,z) Spherical Bessel function of the second kind of order nu at z
- besselh(nu,k,z) Bessel function of the third kind (a.k.a. Hankel function) of order nu at z; k must be either 1 or 2
- hankelh1(nu,z) besselh(nu, 1, z)
- hankelh1x(nu,z) scaled besselh(nu, 1, z)
- hankelh2(nu,z) besselh(nu, 2, z)
- hankelh2x(nu,z) scaled besselh(nu, 2, z)
- besseli(nu,z) modified Bessel function of the first kind of order nu at z
- besselix(nu,z) scaled modified Bessel function of the first kind of order nu at z
- besselk(nu,z) modified Bessel function of the second kind of order nu at z
- besselkx(nu,z) scaled modified Bessel function of the second kind of order nu at z
- jinc(x) scaled Bessel function of the first kind divided by x. A.k.a. sombrero or besinc
- ellipk(m) complete elliptic integral of 1st kind K(m)K(m)
- ellipe(m) complete elliptic integral of 2nd kind E(m)E(m)
- eta(x) Dirichlet eta function at x
- zeta(x) Riemann zeta function at x
- binomial(n, p)
Metadata
Metadata
Assignees
Labels
No labels