Assembling cohort queries
with FunSQL

http://github.com/MechanicalRabbit/FunSQL.jl

Kyrylo Simonov

OHDSI DevCon 2023

FunSQL is...
a library for constructing SQL queries
released under open-source MIT license

written in Julia, but can also be used with R
and

designed for assembling analytical queries
from reusable components

Introduction
Cohort definitions and SQL query builders

Examples

Reusable query components with joins,
recursion, and aggregate and window functions

Conclusion
Build yourself a query language

What makes translating cohort definitions difficult?

Acute Myocardial Infarction

QL L Occurrence of

{ In Observation Period } . P Visit }
~ SELECT
KQEEQE?\\ /?éé?éé/ person_id,
[During 1 @ cohort_start_date,
cohort_end _date
JL FROM

[Collapse Episodes J

[Occurrence of }

within 180 days

Expressed in multi-stage logic
Requires advanced SQL

Translated dynamically

SQL query building libraries

Active Record in Ruby

SQLAlchemy in Python
dbplyrinR

Laravel Query Builder in PHP

LINQ For EF in C#

FunSQL in Julia

Assemble SQL syntax tree Assemble data processing pipeline

Table / From
person

|

!

-
|
|

year _of birth

Laravel Query Builder in PHP: JL FunSQL in Julia:

Limit
DB: :table('person') 100 from(person)
->orderBy('year_of birth') JL order(year_of _birth)
->1imit(100) ; 1limit(100)

. 0 Where / Filter . :
->where('gender_concept_1id', d tid=8507 filter(gender_concept_1id
=", 8507) gender_concept id = —= 8507)
->select('person_id"') JL select(person_id)

Select
~ person_id
100 oldest Males among

male patients 100 oldest patients

Laravel Query Builder in PHP: Pipeline that builds SQL syntax tree:

DB::table('person')
->orderBy('year_of birth')
->1Limit(100)
->where('gender_concept_id', '=', 8507)
->select('person_id"')

year_of birth

@ @ (FROM person]

{ Table }
SELECT person_1id { Limit } (iV

person

\/
Order By }

ORDER BY year_of_birth]
FROM person 100 V4
WHERE gender_concept_id = 8507

(LIMIT 100]
ORDER BY year_of birth 4£-~’—‘-‘~*~”~——

LIMIT 100 Where
@ gender_concept _id = 8507

(FROM person]
— N
. (WHERE gender_concept_id = 8507 |
100 oldest male patients

Select
person_id

N/
QL ([LIMIT 100]

| ORDER BY year_of_birth]

Pipeline that processes data:

person_id

year_of_birth

gender_concept_id | ...

37455

1913

8532

42383

1922

8507

30091

1932

8532

person_id

year_of_birth

gender_concept_id | ...

42383

1922

8507

|

From
person

\/

|

Order
year_of birth

I

|

Limit
100

——

|

Filter
gender_concept _id = 8507

7

|

Select
person_id

|
|
|
|
|

!

FunSQL in Julia:

from(person)

order(year_of birth)

1imit(100)
filter(gender_concept_id == 8507)
select(person_id)

4

SELECT person_id
FROM (
SELECT person_id,
gender_concept_id
FROM person
ORDER BY year_of _birth
LIMIT 100) AS person
WHERE gender_concept_id = 8507

4

Males among 100 oldest patients

In FunSQL, pipeline components are...

Coherent
person_id | gender_concept_id |
k 37455 8532 Every component is interpreted as a data transformation
42383 8507
30091 8532
[Filter J Composable
{47\ Any compatible components can be connected
person_id | gender_concept _id | ...
Comprehensive

42383 8507

Components can represent aggregate and window functions,
correlated subqueries, lateral joins, CTEs, recursive queries,
and more

Introduction
Cohort definitions and SQL query builders

Examples

Reusable query components with joins,
recursion, and aggregate and window functions

Conclusion
Build yourself a query language

SNOMED 22298006 "Myocardial infarction”

begin From
from(concept) concept
filter(JL
vocabulary_id == "SNOMED" && Filter
concept_code == "22298006") vocabulary_id = "SNOMED" &
end concept_code = "22298006"

!

SNOMED 22298006 "Myocardial infarction”

L

snomed("22298006") From
... concept
snomed(code) = begin JL
from(concept) Filter
filter(vocabulary id = "SNOMED" &
vocabulary id == "SNOMED" && concept _code = "22298006"
concept_code == code) JL

end

SNOMED
22298006

|

!

Find immediate children of the concept

SNOMED 22298006 "Myocardial infarction”

|

From
concept

concept_id

concept_name | ...

Filter

\

From

[concept_relationship }

[

Join

From
concept

|

concept _id

concept_name

concept _id

concept_name | ...

concept_id

concept_name | ...

How to deal with duplicate column names?

SQL:
table aliases

dplyr:
mangled column names

FunSQL:
nested records
From
Concept concept_id | concept_name | ...
[parent } parent

4£/ concept_id | concept_name | ...

Find immediate children of the concept
SNOMED 22298006 "Myocardial infarction”

snomed("22298006")
children()

children() = begin
as(parent)
join(
from(concept_relationship).
filter(
relationship_id ==
parent.concept_id ==
join(
from(concept),
concept_1id 2 ==
end

"Subsumes"),
concept_id 1)

concept_id)

[SNOMED }

[Children }«

!

22298006
As From
| parent concept_relationship).

VA

. Filter |

/} From
concept |

—

Find all occurrences of diagnosis 121.09 [From } [From }
in male patients age 65 or younger condition_occurrence pegon
As
N person
| Optional Join™ |
From
concept
o - ~7 T
Hierarchical View of Condition Occurrence ~ [Define } As
age
@ [~ concept }
Filter
source_concept.concept code = "121.09" <7 From
JL | Optional Join | concept
Filter
person.gender_concept _id =8507 & age <= 65 ﬂ/{ coUrce concep ‘ 1
JL [Optlonal Left Join |

) !

Concept SNOMED 22298006 "Myocardial infarction”

and its immediate children

SNOMED SNOMED
22298006 22298006
Children

{ Append }

4

snomed("22298006")
append(snomed("22298006").children())

[Append }

|

SNOMED
22298006

Concept SNOMED 22298006 "Myocardial infarction”

and all its descendants
SNOMED SNOMED - SNOMED
22298006 22298006 22298006
i i —
Children
Children } { Children L
A ¢
J [Children }
[Children } <
Children }

\/

|

Append

=

4

Concept SNOMED 22298006 "Myocardial infarction”
and all its descendants

SNOMED
22298006
snomed ("22298006") J i
with_descendants() [Children J @
... _ Wlth
with_descendants() = / Descendants
iterate(child RV
iterate(children()) [lterate] QL
I J

Acute Ml is SNOMED 22298006 "Myocardial infarction” and all its descendants
excluding SNOMED 1755008 "Old myocardial infarction” and all its descendants

L

As
ex

\/

I

Left Join

concept_id = ex.concept_id

I

Filter

is_null(ex.concept_id)

[SNOMED }
22298006 SNOMED
JL 1755008
{ with } J
Descendants { With
Descendants

I

— [Excluding

)

!

4

acute_mi() =

— [Acute M }

4

snomed("22298006") .with_descendants().
excluding(snomed("1755008") .with_descendants())

|

Related
relationship

!

Yy

Including

!

!

With

} { Children } [Descendants

|

Yy

!

Excluding

!

All occurrences of Acute M|

L Acute M| }

From
|_condition_occurrence

Y

condition_occurrence(concept_set) = begin
from(condition_occurrence)
join(
concept_set,
condition_concept_id == concept_id)
end

From

visit_occurrence

—

4

visit_occurrence

From

I

Partition
person_id

person_id | visit_start date | ...
1780 2008-04-09
1780 2009-05-22

/e

Group
person_id
person_id | visit_start_date | ...
1780 2008-04-09
person_id 1780 2009-05-22
1780
30091
37455
person_id | visit_start date | ...
30091 2009-07-30
30091 2009-08-02
person_id | visit_start _date | ...
37455 2010-08-15

max[visit_start _date]

person_id | visit_start _date | ...
QL 1780 2008-04-09
1780 2009-05-22
person_id |visit_start_date
1780 2008-04-09
1780 2009-05-22 person_id | visit_start_date | ...
e T e o
37455 5010-08-15 30091 2009-08-02
|
person_id | visit_start_date | ...
30091 2009-07-30
30091 2009-08-02
person_id | visit_start date | ...
37455 2010-08-15

An aggregate function when applied to the output of the universal aggregate function

A window function when applied to the output of the universal window function

For each patient, find their latest visit

from(visit_occurrence) From
first(visit_start_date.desc()) visit_occurrence

... ~ JL

first(order_by...) = begin -
partition(@ [Partition }
person_id, .
order_by = [order_by...]) { First } A JL
filter(row_number[] == 1) QL { Filter }
end

-

Find 10 most common care sites and the number of associated visits

|

from(visit_occurrence)
top_values(care site_id)

top_values(column, n = 10) = begin

group(column)
define(count => count[])
order(count.desc())
limit(n)

end

4

{ Top Values } ~

!

From }

visit_occurrence

—

\/

|

Group
care_ site id

|
|
L

Deﬁne
count[]
Order
count. desc()
L|m|I: }

and the remainder visit_occurrence

-

Find 10 most common care sites with their visit counts [From }

. | Group |
from(visit_occurrence)
top_with_remainder(care_site_id) JL
... . Define |
top_with_remainder(column, n = 10) = begin JL
group(column) | Partition |
define(count => count[]) JL JL
partition(order_by = [count.desc()])

—

define(remainder => row_number[] > n 2 1 : 0) [TOP With Remainder} < | Define

group(@
column => remainder == 0 ? column : missing, JL [Group]
remainder)
define(count => sum[count]) JL
order(remainder, count.desc()) [Define |
end JL
| Order |

-4

Merge overlapping visits

from(visit_occurrence)

partition(

person_1id,

order_by = [visit_start_date],

frame = (mode = rows,

start = -Inf, finish = -1))

define(

new =>

visit_start _date <=
max[visit_end date] 2 0 : 1)

partition(

person_1id,

order_by = [visit _start _date, -new],

frame = (mode = rows))

define(era => sum[new])

group(person_id, era)

define(
visit _start _date => min[visit_start_date],
visit _end date => max[visit_end date])

|

From
visit_occurrence
|
\/
_ Partition |
\/
. Define |

| Partition |

| Define |
M
. Group |
S
| Define |

[visit_start_date, visit_end_date]

[visit_start_date, visit_end_date]

new

OOk

[visit_start_date, visit_end_date]

new

era

O |O|F

NN (-

[visit_start_date, visit_end_date]

era

Find all patients with at least one visit
since 2010-01-01

Hierarchical View of Person

I

Filter
visits.max/visit_start_date] >= "2010-01-01"

4

From
person

!

ﬂn/

|

Optional Left Join

!

From
visit_occurrence

<7

Group
person_id

7

As
VISits

Introduction
Cohort definitions and SQL query builders

Examples

Reusable query components with joins,
recursion, and aggregate and window functions

Conclusion
Build yourself a query language

Occurrence of
Acute Myocardial Infarction

JL { Occurrence of

[In Observation Period } ~ ERVisit

—

Build yourself a query language: During
condition_occurrence(acute mi()) JL
in_observation_period()

during(visit_occurrence(ip_visit())) Collapse Episodes
collapse_episodes(180) within 180 days

!

