-
Notifications
You must be signed in to change notification settings - Fork 2.2k
Description
Description
I converted parseq ocr model from pytorch to onnx and tested it on onnx model and every thing is ok, but when I convert onnx to fp32 or fp16 tensorrt engine, output of the model is very different from onnx model.
I use onnsim to simplify onnx. if i dont use onnxsim all results are nan.
model repo : https://github.com/baudm/parseq
Environment
TensorRT Version: TensorRT-8.6.1.6
NVIDIA GPU: RTX 3060
NVIDIA Driver Version: 531.79
CUDA Version: cuda-12.0
CUDNN Version:cudnn-8.9.1.23_cuda12
Operating System: Win 10
Python Version: 3.8
PyTorch Version: 1.13
Onnx opset : 14
Relevant Files
onnx model: https://drive.google.com/file/d/1CRXsD8Zk5Mo50JYCZytrAtBbFm2oOqvc/view?usp=sharing
trtexec.exe --onnx=parseq/test.onnx --workspace=10000 --saveEngine=parseq/test_fp32.trs --verbose
trt engine fp32: https://drive.google.com/file/d/17eecl4QrRrE1BiLqDE8HJT0wZCVm3BkB/view?usp=sharing
trt engine fp32 log: https://drive.google.com/file/d/1i9KkbKainaNIz5QQvolmScIu53DzFHHv/view?usp=sharing
trtexec.exe --onnx=parseq/test.onnx --fp16 --workspace=10000 --saveEngine=parseq/test_fp16.trs --verbose
trt engine fp16: https://drive.google.com/file/d/1CIzRZ-71a2hXZWnMNtWn7k2tuM3Pi6K_/view?usp=sharing
trt engine fp16 log: https://drive.google.com/file/d/15LOBtarM6RZiiyZaz66qt6Z8nu67JyrN/view?usp=sharing
Steps To Reproduce
I wrote a sample code to compare similarity of onnx and trt inference result. when I use real data, mean of similarity is 0.3 and when I use random number it is near 0.85
sample code:
https://drive.google.com/file/d/1dLo9iD3ZUPVuvU6LNFnwQSCjcLDTiKQr/view?usp=sharing
sample real data:
https://drive.google.com/file/d/1VtQgOYw5ZYQSZmUOGyJ7xPKElC7caFMl/view?usp=sharing