
Motivations

Geometry

Arrows

Folds

Functional Geometry
(folds in computed forms)

Pablo Colapinto
Robert W. Deutsch Fellow at the AlloSphere Research Group

UCSB, Media Arts and Technology Program

C++Now May 16, 2015

Pablo Colapinto Functional Geometry (folds in computed forms)

1 Motivations

2 Geometry

3 Arrows

4 Folds

The study of models is the study of man

–Robert Rosen, Anticipatory Systems

The obstacles of achieving a facile

relationship of people and things

seems to inhere not so much in the

structure of things themselves as the

structure of our ideas and values.

– Ron Resch, The Topological Design of

Sculptural and Architectural Systems, 1973.

Motivations

Geometry

Arrows

Folds

Our Program is To Map Function to Structure

f : a! b

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Structured Morphisms ! Morphing Structures

p

q

p

q

p

q p
q

Pablo Colapinto Functional Geometry (folds in computed forms)

Bennett Spatial Linkage Mechanism

Networked Bennett mechanisms inspired by the work of Z. You and
Y. Chen’s Motion Structures (Spon Press, 2012).

Motivations

Geometry

Arrows

Folds

Fold-Expressions! Folding Transformations

ji

✓i

zi

ji+1

✓i+1

zi+1

↵i

ai

ji

✓i

zi

Ri+1

ji+1

✓i+1

zi+1

↵i

ai

M
i

= M
i�1

M
L

i�1

M
J

i

(1)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Space, Which Calculates

Integration Calculations. Image from Konrad Zuse Calculating Space
“Rechnender Raum”, 1969 better translated as: Space which Calculates

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Computing with Gears in 1822

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Computing with Linkages in 1876

Figure: Kempe’s Angle Multiplicator. He also invented an Additor and
Translator. In 1876, Kempe (mis)proved the Universality Theorem –

there is a linkage which can trace any planar curve.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Computing with Folds in 1936

Figure: Beloch’s fold to solve the cube-root of 2. From Hull, Thomas C.,
"Solving Cubics With Creases: The Work of Beloch and Lill", The
American Mathematical Monthly 118, 4 (2011), pp. pp. 307-315.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Computing with Braids in 1997

Kitaev’s Topological Quantum Computation

Image: Kitaev’s Lecture Notes at
http://pitp.physics.ubc.ca/archives/misc/kitaev/

Pablo Colapinto Functional Geometry (folds in computed forms)

Versor is a C++ library for forming

The PROBLEM of SPATIAL
ARTICULATION
Q: How do we pose questions to space?
A: Use forms in well-formed formulas.

Motivations

Geometry

Arrows

Folds

The Problem of Spatial Articulation is Two-fold

1 A Computation Problem: Articulating Movements
2 A Design Problem: Articulating Concepts

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

The Nature of Space is (a) Complex

Complicate: to fold
Evolve: to unfold

a0 a1

a0 a1

a2

a0 a1

a3

a2

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Geometry () Function

GA FP
language of space language of process
coordinate free

´
M

dL =
´
@M L point free

covariant F (va) = F (v)F (a) composable
implicit  = p

a

^ p
b

^ p
c

declarative
n-dimensional generic
denotes form denotes process

universal construction of relations
STRUCTURE PRESERVING MAPPINGS

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Point-free Expressions

sum x:xs = x + sum xs
sum = fold (+) 0
gets rid of need to specify “head” and “tail”

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Coordinate-free Expressions

v
0
= �nvn

n is a versor
n�⇤ is the dual of n

gets rid of need to specify x y and z (or dimension or metric)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

N-dim

rotations in any dimension

1 /*! ND Rotor from ND Bivector b*/

2 template<c l a s s A>
3 auto r o t (con s t A& b) �>
4 de c l t y p e (b + 1)
5 {
6 A : : va lue_t c = s q r t (� (b . wt ())) ;
7 A : : va lue_t sc = �s i n (c) ;
8 i f (c != 0) sc /= c ;
9 r e t u r n b ⇤ s c + cos (c) ;

10 }

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

David Hestenes Resurrects Clifford’s Geometric Algebra in
the 60s

Multivector Calculus

Spacetime Algebra

New Foundations for Classical Mechanics

Geometric Algebra to Geometric Calculus

See Also:
G. Sobczyk, A. Lasenby, J. Lasenby, E. Bayro-Corrochano, C.
Doran, C. Perwass, L. Dorst, S. Mann, D. Fontijne, R.
Wareham, J. Cameron, ...

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Many Applications of Geometric Algebra

Classical Mechanics and Particle Physics
Molecular Modeling and Crystallography
Electrodynamics and Optics
Digital Signal Processing and Computer Vision
Robotics and Kinematics
Relativistic Physics and Gauge Theory
3D Computer Graphics and Experimental Visualization

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Vectors are Directed Magnitudes

Linear combinations of these
basis blades define a vector :
v = ↵e

1

+ �e
2

+ �e
3

.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Bivectors are Directed Areas

Basis 2-blades e
12

,e
13

, and e
23

in G 3 represent directed unit
areas. Linear combinations of
these basis blades define a
plane or bivector : B =
v
a

^ v
b

= ↵e
12

+ �e
13

+ �e
23

.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

The Pseudoscalar is a Directed Volume

The basis trivector e
123

in G 3

is also known as the
pseudoscalar I . As the highest
grade blade I is sometimes
referred to as the tangent

space.

I =
n^

i=1

e
i

= e
1

^ e
2

^ e
3

= e
123

(2)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Simple Rules To Type Generic Spaces

The inner product of basis blades (in a Euclidean Metric) :

e
i

· e
j

=

(
0 i 6= j

1 i = j

The outer product annhilates if the blades are the same :

e
i

^ e
j

=

(
e
ij

i 6= j

0 i = j

The geometric product, unique to GA, is the sum of these two :

e
i

e
j

= e
i

· e
j

+ e
i

^ e
j

=

(
e
ij

i 6= j

1 i = j

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

A ring of types

Anti-commutation powers the orientability of the algebra (really
useful for spatial calculations !)

e
ij

= �e
ji

so, for example :

e
23

e
2

= e
232

= �e
223

= �e
3

and :

e2

12

= e
12

e
12

= e
1212

= �e
1122

= �1

where 1 is the zero object

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Compile-Time Combinatorics

ab = (a
1

e
1

+ a
2

e
2

+ a
3

e
3

) ⇤ (b
1

e
1

+ b
2

e
2

+ b
3

e
3

)

= a
1

(b
1

e
1

e
1

+ b
2

e
1

e
2

+ b
3

e
1

e
3

) + a
2

(b
1

e
2

e
1

+ b
2

e
2

e
2

+ b
3

e
2

e
3

)

+ a
3

(b
1

e
3

e
1

+ b
2

e
3

e
2

+ b
3

e
3

e
3

)

= a
1

(b
1

+b
2

e
12

+b
3

e
13

)+a
2

(�b
1

e
12

+b
2

+b
3

e
23

)+a
3

(�b
1

e
13

�b
2

e
23

+b
3

)

= (a
1

b
1

+ a
2

b
2

+ a
3

b
3

) + (a
1

b
2

� a
2

b
1

)e
12

+ (a
1

b
3

� a
3

b
1

)e
13

+ (a
2

b
3

� a
3

b
2

)e
23

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Generate Compile-Time Combinatorics

some combinatorics : product of bivectors a and b in twistor
algebra :
-a[5] * b[5] /*s*/ a[4] * b[4] /*s*/ a[3] * b[3] /*s*/ a[2] * b[2]
/*s*/ a[1] * b[1] /*s*/ -a[0] * b[0] /*s*/
-a[4] * b[3] /*e12*/ a[3] * b[4] /*e12*/ -a[2] * b[1] /*e12*/ a[1] *
b[2] /*e12*/ -a[5] * b[3] /*e13*/ a[3] * b[5] /*e13*/ -a[2] * b[0]
/*e13*/ a[0] * b[2] /*e13*/ -a[5] * b[4] /*e23*/ a[4] * b[5]
/*e23*/ a[1] * b[0] /*e23*/ -a[0] * b[1] /*e23*/ a[5] * b[1]
/*e14*/ -a[4] * b[0] /*e14*/ -a[1] * b[5] /*e14*/ a[0] * b[4]
/*e14*/ a[5] * b[2] /*e24*/ a[3] * b[0] /*e24*/ -a[2] * b[5]
/*e24*/ -a[0] * b[3] /*e24*/ a[4] * b[2] /*e34*/ a[3] * b[1]
/*e34*/ -a[2] * b[4] /*e34*/ -a[1] * b[3] /*e34*/ a[5] * b[0]
/*e1234*/ -a[4] * b[1] /*e1234*/ a[3] * b[2] /*e1234*/ a[2] * b[3]
/*e1234*/ -a[1] * b[4] /*e1234*/ a[0] * b[5] /*e1234*/

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Product of Two Bases

basis blades combine using xor

1 template<sho r t x> s t r u c t b l ade {
2 s t a t i c con s t s h o r t v a l u e = x ;
3 } ;
4
5 template<typename a , typename b>
6 s t r u c t geomet r i c_product {
7 u s i n g type = blade<a : : v a l u e ^ b : : va lue >;
8 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Round and Flat Multivectors (and more)

Graphic Symbol Geometric State Grade Algebraic Form Abbr.

Point 1 p = n

o

+ a + 1

2

a2

n1 Pnt

Point Pair 2 ⌧ = p

a

^ p

b

Par

Circle 3  = p

a

^ p

b

^ p

c

Cir

Sphere 4 ⌃ = p

a

^ p

b

^ p

c

^ p

d

Sph

Flat Point 2 � = p ^ n1 Flp

Line 3 ⇤ = p

a

^ p

b

^ n1 Lin

Dual Line 2 � = B + dn1 Dll

Plane 4 ⇧ = p

a

^ p

b

^ p

c

^ n1 Pln

Dual Plane 1 ⇡ = v + �n1 Dlp

Minkowski Plane 2 E = n

o

^ n1 Mnk

Basic Rounds and Flats in 5D Conformal Geometric Algebra and
their Algebraic Constructions. Bold symbols represent Euclidean
elements.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Conformal Versors Completely Represent All Euclidean
Transformations

Graphic Symbol Geometric State Grade(s) Algebraic Form Abbr.

Rotor 0, 2 R = e

� ✓
2 I = cos

✓
2

� sin

✓
2

I Rot

Translator 0, 2 T = e

d
2 1 = 1 � d

2

1 Trs

Motor 0, 2, 4 M =e

B+d1
Mot

Dilator 0, 2 D =e

�
2 E = cosh

�
2

+ sinh

�
2

E Dil

Boost 0, 2 B =e

ot = 1 + ot Trv

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Versor Enables Working in any Dimension or Metric

Instantiating an 3-Dimensional Euclidean Space

1 //........................<p>, field>

2 u s i n g ega = a lgeb ra <met r i c <3>, double >;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Versor Enables Working in any Dimension or Metric

Instantiating an 4-Dimensional Spacetime

1 //........................<p,q>, field>

2 u s i n g s t a = a lgeb ra <met r i c <1,3>, double >;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Versor Enables Working in any Dimension or Metric

Instantiating a 5-Dimensional Conformal Space

1 //........................<p,q,conf>, field>

2 u s i n g cga = a lgeb ra <met r i c <4 ,1 , t rue >, double >;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Versor Enables Working in any Dimension or Metric

Instantiating an 6-Dimensional Twistor Space (quantum gravity!)

1 //............................<p,q,conf>, field>

2 u s i n g t w i s t o r = a l geb ra <met r i c <2 ,4 , t rue >, double >;

Is there an even more generic way to build compile-time
algebras?

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

3 Elements of Programming

...
(,)

(,...)
*incomplete

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

A C++ syntax of point-free programming

... stream
(,) pair

(,...) fold

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Universal Categories (maybe? if not why not)

... firstness
(,) secondness

(,...) thirdness
*see Kumiko Tanaka-Ishii’s Semiotics of Programming

... a search for the most general, most terse, most expressive
syntax of structure

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Arrows are a secondness for building computations

John Hughes, Generalising Monads to Arrows, 2000
Useful for thinking of computations in terms of streams
Can be used to organize template compilation
Helps us communicate programming logic
There is also an Arrow calculus if you like ...

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Arrows are processes built from 3 combinators

combinator description
arr lifts a process
pipe connects arrows
first selects stream

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

The Product of Two Lists by writing head and tail

Distributive property (mainloop):
(a+ b+ c)(d + e+ f) = a(d + e+ f)+ b(d + e+ f)+ c(d + e+ f)

procedure Product(A, B)
if A=; then

return ;
else

first SubProduct(A::HEAD, B)
rest Product(A::TAIL,B)
return cat(first, rest)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Disributing over One List

Distributive property (subloop): a(d + e + f) = ad + ae + af

procedure SubProduct(a, B)
if B=; then

return ;
else

sign sign(a, B::HEAD)
first evaluate(a, B::HEAD)
rest SubProduct(a, B::TAIL)
return cat(first, rest)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

We could use the hana library

lifting a metafunction

1 //Lift product

2 con s t e xp r auto geomet r i c_product =
3 meta funct ion<v s r : : geometr ic_product >;
4 //a basis . . .

5 con s t e xp r auto vec = ba s i s <1 ,2 ,4>;
6 //compile-time distributed multiplication

7 con s t e xp r auto r e s u l t = ap (
8 l i f t <Tuple >(geometr i c_product) , vec , vec) ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

But I Need to back trace the evaluation

Maybe I want ARROWS to keep track of which indices from
which input types contribute to which indices of which return
types.
exec_list< computation_instruction<A, B::HEAD, idxA,
idxB> >

As a reminder we want to do this at compile-time because it makes
fast code and all sorts of researchers use it.
Also its good for you.

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Arrows help with tacit, point-free programming

Distributing a metafunction over two lists:

1 template<c l a s s A, c l a s s B> s t r u c t p a i r {} ;
2 template<c l a s s A, c l a s s B> s t r u c t a l l _ p a i r s {} ;
3
4 template<typename . . . xs , typename . . . ys>
5 s t r u c t a l l_p a i r s < l i s t <xs . . . > , l i s t <ys . . . > >{
6 u s i ng type = l i s t <
7 typename p a r t i a l < pa i r , x s >::
8 t emp la t e eva l < ys . . . > // expands ys

9 . . . >; // expands xs

10 } ;

What is this partial function?

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

arr: (A⇥ B ! C)! (B ! C

A)

arr curries n-ary functions into unary functions

1 template<
2 template<c l a s s . . . > c l a s s F , //<-- metafunction

3 typename . . . a> //<-- n-1 arguments

4 s t r u c t a r r {
5
6 u s i n g type = ar r<F , a . . . > ;
7
8 template<typename x>
9 u s i n g e v a l = typename F<a . . . , x >: : e v a l ;

10 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

arr: (a ⇥ b ! c)! (arrow b c)

arr can be used to apply any function over a list

1 u s i n g pa i r_with_zero = ar r< pa i r , int_<0> >;
2
3 template< typename . . . x s >
4 u s i n g pair_me = l i s t <
5 typename pa i r_with_zero : :
6 t emp la t e eva l <xs > . . .
7 >;
8
9 u s i n g p a i r e d = pair_me<int_ <1>,int_ <2>,int_<3>>;

list: (pair:< 0 , 1 >) (pair:< 0 , 2 >) (pair:< 0 , 3 >)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

stream:(arrow b c ⇥ [b])! [c]

stream will take any arrow process and map it over a list

1 ///process is a type with Arrow concept

2 template<typename proce s s , typename . . . xs>
3 u s i n g st ream = l i s t <
4 typename p r o c e s s : : t emp la t e eva l <xs > . . .
5 >;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

OK, so

a list of streams

1 template<c l a s s A, c l a s s B> s t r u c t a l l _ p a i r s {} ;
2 template<typename . . . xs , typename . . . ys>
3 s t r u c t a l l_p a i r s < l i s t <xs . . . > , l i s t <ys . . . > >{
4 u s i ng type = l i s t <
5 stream< ar r< pa i r , x s >, ys . . . >
6 . . . > ;
7 } ;

list: (pair:< 0 , 5 >) (pair:< 0 , 6 >) (pair:< 0 , 7 >)
list: (pair:< 1 , 5 >) (pair:< 1 , 6 >) (pair:< 1 , 7 >)
list: (pair:< 2 , 5 >) (pair:< 2 , 6 >) (pair:< 2 , 7 >)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

pipe: ((arrow b c)⇥ (arrow c d))! (arrow b d)

pipe feeds the output of one arrow into the input of another

1 template< c l a s s PA, c l a s s PB > //<-- two arrows

2 s t r u c t p i p e {
3
4 u s i n g proces sA = PA;
5 u s i n g proces sB = PB;
6
7 template<typename x> us i ng e v a l =
8 typename proces sB : : t emp la t e eva l <
9 typename proce s sA : : t emp la t e eva l <x>

10 >;
11 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

first: (arrow b c)! (arrow (b, d) (c , d))

first applies an arrow to the first part of a pair

1 template<c l a s s PA> //<-- an arrow

2 s t r u c t f i r s t {
3
4 u s i n g p r o c e s s = PA;
5
6 template<typename x> us i ng e v a l = //<-- a pair

7 pa i r <
8 typename p r o c e s s : :
9 t emp la t e eva l <typename x : : f i r s t >,

10 typename x : : second //<-- pass through

11 >;
12 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

A Simple Example of Arrows in Action

pipe an arrow to a first

1 //lift a pair<> by partially applying it

2 u s i n g pa i r_with_zero = ar r<pa i r , int_<0>>;
3 //lift a successor function

4 u s i n g add_one = ar r<succ >;
5 //pipe together

6 u s i n g proc = pipe<pai r_with_zero , f i r s t <add_one>>;
7 //apply process to a stream

8 u s i n g stream< proc , int_ <1>,int_ <2>,int_<3>>;

list: (pair:< 1 , 1 >) (pair:< 1 , 2 >) (pair:< 1 , 3 >)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

The succ function

succ

1 template<i n t N>
2 s t r u c t int_{
3 u s i ng type = int_<N>;
4 u s i n g one = int_ <1>;
5 s t a t i c con s t i n t e v a l = N;
6 } ;
7
8 template<typename seq>
9 s t r u c t succ {

10 u s i n g e v a l = d e c l t y p e (
11 seq () + typename seq : : one ()) ;
12 u s i n g type = succ<seq >;
13 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

splitand:(arrow b c ⇥ arrow b d)! arrow b (c , d)

splitand sends one input to two processes

1 ///PA &&& PB

2 template< c l a s s PA, c l a s s PB >
3 s t r u c t s p l i t a n d {
4 u s i n g proces sA = PA;
5 u s i n g proces sB = PB;
6 template<typename x> us i ng e v a l = pa i r <
7 typename proces sA : : t emp la t e eva l <x>,
8 typename proces sB : : t emp la t e eva l <x> >;
9 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

parallel:(arrow b c ⇥ arrow b d)! arrow b (c , d)

parallel sends an input to two processes

1 ///PA *** PB

2 template< c l a s s PA, c l a s s PB >
3 s t r u c t p a r a l l e l {
4 u s i n g proces sA = PA;
5 u s i n g proces sB = PB;
6 template<typename x> us i ng e v a l = pa i r <
7 typename proces sA : : t emp la t e eva l <x : : f i r s t >,
8 typename proces sB : : t emp la t e eva l <x : : second>
9 >;

10 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

(,...)

Motivations

Geometry

Arrows

Folds

Let’s take stock of some patterns

Lists (...) (of arguments, of types, etc)
Pairs (,) (of functions, of results, etc)

How can these combine to make a third computational strategy?
(because we’re not fully point-free yet really)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Fold-Expressions in C++17!

Takes a binary operator like + and nests it

1 template<typename . . . xs>
2 u s i n g f o l d = d e c l t y p e ((xs () + . . .)) ;
3
4 u s i n g r e s u l t = fo l d <int_ <1>, int_ <1>, int_<1> >;

3

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Fold can be used to make a simple filter

+ operator on list<xs...>, list<ys...> returns list<xs...,ys...>

1 //, ... uses right fold

2 template<typename proce s s , typename . . . xs>
3 u s i n g f i l t e r = d e c l t y p e (
4 (typename l i s t <
5 typename p r o c e s s : :
6 t emp la t e eva l <xs >>:: type () + . . .)) ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Fold can be used to make a simple filter

a remove func lifted into an arrow

1
2 template< typename T, typename S>
3 s t r u c t remove{
4 u s i n g e v a l =
5 typename e i t h e r <
6 s td : : is_same<T, S>: : va lue ,
7 noth ing , S >:: t ype ;
8 } ;
9

10 u s i n g r e s u l t =
11 f i l t e r < ar r<remove , byte <1>>,
12 byte <1>, byte <2>, byte <1>, byte <3>>;

2 3
Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

What about a + operator for our Pairs?

perhaps a + operator on pairs calculates pairwise +

1 template<c l a s s a , c l a s s b , c l a s s c , c l a s s d>
2 con s t e xp r auto op e r a t o r +(
3 pa i r <a , b>&& pa , pa i r <c , d>&& pb){
4 r e t u r n typename pa i r <
5 d e c l t y p e (a () + c ()) ,
6 d e c l t y p e (b () + d ())
7 >:: type () ;
8 }

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

A Generic Sink should just Fold a Stream...

folding a pair with sink

1 template<typename proce s s , typename . . . xs>
2 u s i n g s i n k = de c l t y p e (
3 (typename p r o c e s s : : t emp la t e
4 eva l <xs >() + . . .)
5) ;
6
7 u s i n g proc = s ink <
8 ar r<pa i r , int_<1>>, int_ <3>, int_<5> >;

(pair:< 2 , 8 >)

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

But there is something missing

1 We can only apply our simple arrows before the evaluated
result is folded, not while it is being folded

Hmmm, if could we lift arrows to arrows...

2 No way to keep track of computation results
Maybe just another type of fold will do the trick?

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Nesting Pairs To Scan a Fold

A different operator: every recursion, value is stored

1 template<c l a s s a , c l a s s b , c l a s s c , c l a s s d>
2 con s t e xp r auto op e r a t o r <<(//another operator

3 pa i r <a , b>&& pa , pa i r <c , d>&& pb){
4 r e t u r n typename pa i r <
5 d e c l t y p e (a () + c ()) ,
6 pa i r <a , b> //extension

7 >:: type () ;
8 }
9

10 template<typename proce s s , typename . . . xs>
11 u s i n g s i n kL = de c l t y p e (
12 (. . . <= typename p r o c e s s : : t emp la t e eva l <xs >())
13) ; //a left fold

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Stream of ints ! Scanned fold

sinkL (arr(\x ! <x,void>)) (1,1,1)
(pair:< 3 , (pair:< 2 , (pair:< 1 , >) >) >)

sinkR (arr(\x! <void,x>)) (1,1,1)
(pair:< (pair:< (pair:< , 1 >) , 2 >) , 3 >)

its an impulse train . . .

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Still not close to an Index Sort

the things we tmp’ers do to insert-sort at compile time

1 i n s e r t
2 i n s e r t_ imp l <t r u e | f a l s e >
3 so r t i n g_ i nd e x
4 s o r t i n g_ i nd e x_a l r e a d y_ex i s t s
5 sort ing_index_end_check<t r u e | f a l s e >
6 sor t ing_index_imp l<t r u e_ f a l s e >
7 . . . and l i m i t c a s e s <>

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

We want to be able to fold arrows themselves, not just their
evaluations

we could overload the + operator for pipes

consider unfolding a pair into a list

1 u s i n g unf1 = f i r s t <ar r<id >>;
2 u s i n g unf2 = pipe<unf1 , second<unf1> >;
3 u s i n g unf3 = pipe<unf2 , second<unf1> >;
4
5 u s i n g unfN = pipe<unfN�1, second<ar r<make_void>>>;
6
7 //

8 u s i n g p a t t e r n = pipe<unf1 , second<unf1 >>;
9 template<typename x>

10 u s i n g sou r c e = ?// no parameter pack to unfold

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Pipe + Pipe = Pipe

pipe a piping (to be folded in with a stream, to later unfold it...)

1 template< c l a s s PA, c l a s s PB, c l a s s PC, c l a s s PD>
2 con s t e xp r auto op e r a t o r +
3 (p ipe<PA,PB> pa , pipe_<PC,PD> pb)
4 {
5 r e t u r n p ipe<d e c l t y p e (pa) , d e c l t y p e (pb) >();
6 } ;

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

Summary of This Simple Construction So Far

Products (pairs) and Arrows Seem Destined To Work Together
Both are good for folding and unfolding
We can fold Arrows too (we think)

Questions:
What is missing from this Universal Construction?
Does Folding Pairs provide any compile-time advantage /
disadvantage?
Could we build a spectral basis for Algebras? Keep track of
indices more naturally?
Is this recursive style really pointless (in the right way)?

Pablo Colapinto Functional Geometry (folds in computed forms)

Motivations

Geometry

Arrows

Folds

The Tacit Point of it all...

the demonstration of a pointless style towards the formulation of
algebraic and geometric points

Pablo Colapinto Functional Geometry (folds in computed forms)

	Motivations
	Geometry
	Arrows
	Folds

