

Multimethods as dynamic C++
overloading.

Or:

How to stop worrying about Multimethod
declarations and instead let the caller decide.

Julian Smith
jsmith@undo-software.com

Multimethod syntax

Stroustrup D&E and 2007
bool intersect(virtual Shape&, virtual Shape&); // open method

bool intersect(virtual Rectangle&, virtual Circle&); // overrider

WG21/N1529 2003
bool overlap(virtual shape& a, virtual shape& b);

bool overlap(static square& a, static triangle& b) {...}

bool overlap(static triangle& a, static square& b) {…}

Jean-Louis Leroy 2015 (this conference)

Problems with existing proposals

● Is declaration of the 'base' implementation special ?
– Why ?

– Needed by implementation to decide when to generate
dynamic dispatch code.

● Callers need to have seen multimethod declaration first.
– Could cause different behaviour in different compilation units.

● Difficult to call a specific implementation function
without virtual dispatch.
– Might be useful inside an implementation.

Issues with implementations

● Don't complicate the linker.
● Cope with loading/unloading of dynamic

libraries.
● What the minimum we can put into the

language, that will allow the rest to be
implemented in library code?

Cmm – Adds Multimethods to C++

● Written in parallel with WG21/N1529
● Shows that multimethods can be implemented:

– Without special linker support.

– Mostly in a library, with specific language additions.

● Gives direct access to pointer to multimethod function
that would be called for a particular set of parameters.
– E.g. avoid lookup in tight loop.

● Constant-time dispatch if classes are assigned unique
small integers.

● Easy to extend to shared pointers as well as references.
● Caller dispatch.

Implementation - Cmm

● Other:
– Worlds worst C++ parser.

– Optionally supports Stroustrup alternative
declaration syntax (see D&E):

● main: (argc: int, argv: []->char) int ...

– Optionally supports 'autoblocks' – python-style
block-structure-from-indentation for C++.

Caller dispatch

● Multimethod dispatch algorithms for C++:
– Are like compile-time overloading.

– Except that they use dynamic types instead of static
types.

● So... instead of declaring something is a
multimethod...

● … can we let the caller decide whether to use
static type or dynamic type?

Caller dispatch – Cmm syntax

Base& x = . . .;

Base& y = . . .;

bool a = foo(x, y); // resolve using static types.

bool b = foo(virtual x, virtual y); resolve using dynamic types.

● Very similar to conventional C++ overloading.

– No special declarations required.
– Base-implementation is not special.
– Easy to call specific implementations directly.

● Differences:

– Uses dynamic types, not static types.
– Gives access to all functions in executable, not just the ones

visible to this compilation unit.
– Throws exception if no match or ambiguous match.

Caller dispatch - implementation

● Implementation is easy as long as we have:

– A compiler that knows about new calling syntax.
● E.g. compile to a call to special dispatch

function.
– A library with runtime access to:

● Prototypes of all functions in the programme.
● Inheritance information.

– Will C++ introspection gives us these things?

Multimethods and caller dispatch -
summary

● Generalisation of C++ overloading, not virtual functions.

– Little mention of classes.
● No need for member functions.

– what have they ever done for us?
● (apart from destructors.)

● Programme differently:

– Use plain structs for data.
– Use free functions for access and manipulation of this data.
– Use caller-dispatch as required to make behaviour depend on

dynamic types.
● Simpler lookup rules.
● Almost like a new language...

New language?

C++ Without Classes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

