@@ -15996,73 +15996,76 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
15996
15996
static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
15997
15997
const ggml_tensor *src1,
15998
15998
ggml_tensor *dst) try {
15999
- #if 0
16000
- ggml_sycl_mul_mat_id_sycl(dst );
16001
- // TODO: mmq/mmv support
16002
- #endif
15999
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT &&
16000
+ "mul_mat_id does not support split buffers" );
16001
+ const ggml_tensor *ids = dst->src[2];
16002
+ const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
16003
16003
16004
- const int64_t nb11 = src1->nb[1];
16005
- const int64_t nb1 = dst->nb[1];
16004
+ const size_t nb11 = src1->nb[1];
16005
+ const size_t nb1 = dst->nb[1];
16006
16006
16007
- const struct ggml_tensor * ids = src0;
16008
- const int32_t id = ((int32_t *) dst->op_params)[0];
16009
- const int32_t n_as = ((int32_t *) dst->op_params)[1];
16007
+ const int32_t id = ((int32_t *)dst->op_params)[0];
16008
+ const int32_t n_as = src0->ne[2];
16010
16009
16011
16010
std::vector<char> ids_host(ggml_nbytes(ids));
16011
+ const char *ids_dev = (const char *)ids->data;
16012
16012
16013
- const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
16014
-
16015
- if (ids->backend == GGML_BACKEND_TYPE_GPU) {
16016
- const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
16017
- SYCL_CHECK(CHECK_TRY_ERROR(
16018
- stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids)).wait()));
16019
- // SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
16020
- } else {
16021
- memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
16022
- }
16013
+ SYCL_CHECK(CHECK_TRY_ERROR(
16014
+ stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
16015
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
16023
16016
16024
- const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
16025
- const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
16017
+ const ggml_tensor_extra_gpu *src0_extra =
16018
+ (const ggml_tensor_extra_gpu *)src0->extra;
16019
+ const ggml_tensor_extra_gpu *src1_extra =
16020
+ (const ggml_tensor_extra_gpu *)src1->extra;
16021
+ const ggml_tensor_extra_gpu *dst_extra =
16022
+ (const ggml_tensor_extra_gpu *)dst->extra;
16026
16023
16024
+ ggml_tensor_extra_gpu src0_row_extra;
16027
16025
ggml_tensor_extra_gpu src1_row_extra;
16028
16026
ggml_tensor_extra_gpu dst_row_extra;
16029
16027
16028
+ ggml_tensor src0_row = *src0;
16030
16029
ggml_tensor src1_row = *src1;
16031
16030
ggml_tensor dst_row = *dst;
16032
16031
16033
16032
src1_row.backend = GGML_BACKEND_TYPE_GPU;
16034
16033
dst_row.backend = GGML_BACKEND_TYPE_GPU;
16035
16034
16035
+ src0_row.extra = &src0_row_extra;
16036
16036
src1_row.extra = &src1_row_extra;
16037
16037
dst_row.extra = &dst_row_extra;
16038
16038
16039
- char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
16040
- (char *) src1->data : (char *) src1_extra->data_device[g_main_device];
16041
- char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
16042
- (char *) dst->data : (char *) dst_extra->data_device[g_main_device];
16039
+ char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
16040
+ ? (char *)src0->data
16041
+ : (char *)src0_extra->data_device[g_main_device];
16042
+ char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
16043
+ ? (char *)src1->data
16044
+ : (char *)src1_extra->data_device[g_main_device];
16045
+ char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
16046
+ ? (char *)dst->data
16047
+ : (char *)dst_extra->data_device[g_main_device];
16043
16048
16044
- if (src1-> ne[1 ] == 1) {
16045
- GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU) ;
16046
- GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU) ;
16049
+ src0_row. ne[2 ] = 1;
16050
+ src0_row.ne[3] = 1 ;
16051
+ src0_row.nb[3] = src0->nb[2] ;
16047
16052
16053
+ if (src1->ne[1] == 1) {
16048
16054
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
16049
- //int32_t row_id;
16050
- //SYCL_CHECK(syclMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), syclMemcpyDeviceToHost, g_syclStreams[g_main_device][0]));
16051
- //SYCL_CHECK(syclStreamSynchronize(g_syclStreams[g_main_device][0]));
16052
-
16053
- const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
16055
+ const int32_t row_id =
16056
+ *(const int32_t *)(ids_host.data() + i01 * ids->nb[1] +
16057
+ id * ids->nb[0]);
16054
16058
16055
16059
GGML_ASSERT(row_id >= 0 && row_id < n_as);
16056
16060
16057
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
16061
+ src0_row_extra.data_device[g_main_device] =
16062
+ src0_original + row_id * src0->nb[2];
16063
+ src1_row_extra.data_device[g_main_device] =
16064
+ src1_original + i01 * src1->nb[1];
16065
+ dst_row_extra.data_device[g_main_device] =
16066
+ dst_original + i01 * dst->nb[1];
16058
16067
16059
- src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
16060
- src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
16061
-
16062
- dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
16063
- dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
16064
-
16065
- ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
16068
+ ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
16066
16069
}
16067
16070
} else {
16068
16071
sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
@@ -16072,8 +16075,6 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
16072
16075
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
16073
16076
16074
16077
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
16075
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
16076
-
16077
16078
int64_t num_src1_rows = 0;
16078
16079
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
16079
16080
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
@@ -16086,14 +16087,17 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
16086
16087
16087
16088
SYCL_CHECK(CHECK_TRY_ERROR(
16088
16089
stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
16089
- src1_original + i01 * nb11, nb11).wait() ));
16090
+ src1_original + i01 * nb11, nb11)));
16090
16091
num_src1_rows++;
16091
16092
}
16092
16093
16093
16094
if (num_src1_rows == 0) {
16094
16095
continue;
16095
16096
}
16096
16097
16098
+ src0_row_extra.data_device[g_main_device] =
16099
+ src0_original + row_id * src0->nb[2];
16100
+
16097
16101
src1_row.ne[1] = num_src1_rows;
16098
16102
dst_row.ne[1] = num_src1_rows;
16099
16103
@@ -16105,7 +16109,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
16105
16109
dst_row.nb[2] = num_src1_rows*nb1;
16106
16110
dst_row.nb[3] = num_src1_rows*nb1;
16107
16111
16108
- ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
16112
+ ggml_sycl_mul_mat(& src0_row, &src1_row, &dst_row);
16109
16113
16110
16114
num_src1_rows = 0;
16111
16115
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
@@ -16119,7 +16123,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
16119
16123
16120
16124
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
16121
16125
dst_original + i01 * nb1,
16122
- dst_contiguous.get() + num_src1_rows * nb1, nb1).wait() ));
16126
+ dst_contiguous.get() + num_src1_rows * nb1, nb1)));
16123
16127
num_src1_rows++;
16124
16128
}
16125
16129
}
0 commit comments