Skip to content

KV cache bug: llama-speculative and llama-server choose different kv cache quantization when cache quantization specified #11200

Open
@bitbottrap

Description

@bitbottrap

Name and Version

llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
Device 1: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
version: 4462 (c05e8c9)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

AMD EPYC 7773X + 2x RTX 3090 TI

Models

qwen2.5-coder:32b-instruct-q8_0.gguf
qwen2.5-coder:1.5b-instruct-q8_0.gguf

Problem description & steps to reproduce

KV cache bug: llama-speculative and llama-server choose different kv cache quantization when cache quantization specified for the draft model kv cache.

The following command:
llama-server -a qwenv25coder-32b --host 0.0.0.0 --port 8081 -b 512 -ub 256 -ts 10,6 --threads 8 -ngl 99 -c 32768 --flash-attn --cache-type-k q8_0 --cache-type-v q8_0 -m qwen2.5-coder:32b-instruct-q8_0.gguf -md qwen2.5-coder:1.5b-instruct-q8_0.gguf -devd CUDA1 -ngld 99 --draft-max 10 --draft-min 4 --top-k 4

Uses a KV cache for the main model:
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 28, can_shift = 1
And a KV cache for the draft model:
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1

While the behavior of llama-speculative changes the quantization for both the main and draft model caches:
llama-speculative -b 512 -ub 256 -ts 10,6 --threads 8 -ngl 99 -c 32768 --flash-attn --cache-type-k q8_0 --cache-type-v q8_0 -m qwen2.5-coder:32b-instruct-q8_0.gguf -md qwen2.5-coder:1.5b-instruct-q8_0.gguf -devd CUDA1 -ngld 99 --draft-max 10 --draft-min 4 --top-k 4 --prompt "just say 'hi'"

Uses a KV cache for the main model:
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 64, can_shift = 1
Uses a KV cache for the draft model:
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 28, can_shift = 1

The desired/expected behavior is the behavior of llama-speculative.

First Bad Commit

No response

Relevant log output

llama-server -a qwenv25coder-32b --host 0.0.0.0 --port 8081 -b 512 -ub 256 -ts 10,6 --threads 8 -ngl 99 -c 32768 --flash-attn --cache-type-k q8_0 --cache-type-v q8_0 -m qwen2.5-coder:32b-instruct-q8_0.gguf -md qwen2.5-coder\:1.5b-instruct-q8_0.gguf -devd CUDA1 -ngld 99 --draft-max 10 --draft-min 4 --top-k 4
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090 Ti, compute capability 8.6, VMM: yes
build: 4462 (c05e8c99) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 128

system_info: n_threads = 8 (n_threads_batch = 8) / 128 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: HTTP server is listening, hostname: 0.0.0.0, port: 8081, http threads: 127
main: loading model
srv    load_model: loading model 'qwen2.5-coder:32b-instruct-q8_0.gguf'
llama_model_load_from_file: using device CUDA0 (NVIDIA GeForce RTX 3090 Ti) - 23854 MiB free
llama_model_load_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090 Ti) - 23854 MiB free
llama_model_loader: loaded meta data with 34 key-value pairs and 771 tensors from qwen2.5-coder:32b-instruct-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen2.5 Coder 32B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen2.5-Coder
llama_model_loader: - kv   5:                         general.size_label str              = 32B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                       general.license.link str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv   8:                   general.base_model.count u32              = 1
llama_model_loader: - kv   9:                  general.base_model.0.name str              = Qwen2.5 Coder 32B
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv  12:                               general.tags arr[str,6]       = ["code", "codeqwen", "chat", "qwen", ...
llama_model_loader: - kv  13:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  14:                          qwen2.block_count u32              = 64
llama_model_loader: - kv  15:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv  16:                     qwen2.embedding_length u32              = 5120
llama_model_loader: - kv  17:                  qwen2.feed_forward_length u32              = 27648
llama_model_loader: - kv  18:                 qwen2.attention.head_count u32              = 40
llama_model_loader: - kv  19:              qwen2.attention.head_count_kv u32              = 8
llama_model_loader: - kv  20:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  21:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  22:                          general.file_type u32              = 7
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  28:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  29:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  31:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  321 tensors
llama_model_loader: - type q8_0:  450 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 152064
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_layer          = 64
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 5
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 27648
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 32B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 32.76 B
llm_load_print_meta: model size       = 32.42 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Qwen2.5 Coder 32B Instruct
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: EOT token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 'ÄĬ'
llm_load_print_meta: FIM PRE token    = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token    = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token    = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token    = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token        = 151645 '<|im_end|>'
llm_load_print_meta: EOG token        = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token        = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token        = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 64 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 65/65 layers to GPU
llm_load_tensors:        CUDA0 model buffer size = 20259.29 MiB
llm_load_tensors:        CUDA1 model buffer size = 12153.89 MiB
llm_load_tensors:   CPU_Mapped model buffer size =   788.91 MiB
.................................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32768
llama_new_context_with_model: n_ctx_per_seq = 32768
llama_new_context_with_model: n_batch       = 512
llama_new_context_with_model: n_ubatch      = 256
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 64, can_shift = 1
llama_kv_cache_init:      CUDA0 KV buffer size =  2788.00 MiB
llama_kv_cache_init:      CUDA1 KV buffer size =  1564.00 MiB
llama_new_context_with_model: KV self size  = 4352.00 MiB, K (q8_0): 2176.00 MiB, V (q8_0): 2176.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=4)
llama_new_context_with_model:      CUDA0 compute buffer size =   233.00 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =   237.51 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =   133.01 MiB
llama_new_context_with_model: graph nodes  = 1991
llama_new_context_with_model: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv    load_model: loading draft model 'qwen2.5-coder:1.5b-instruct-q8_0.gguf'
llama_model_load_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090 Ti) - 9866 MiB free
llama_model_loader: loaded meta data with 34 key-value pairs and 338 tensors from qwen2.5-coder:1.5b-instruct-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen2.5 Coder 1.5B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen2.5-Coder
llama_model_loader: - kv   5:                         general.size_label str              = 1.5B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                       general.license.link str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv   8:                   general.base_model.count u32              = 1
llama_model_loader: - kv   9:                  general.base_model.0.name str              = Qwen2.5 Coder 1.5B
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv  12:                               general.tags arr[str,6]       = ["code", "codeqwen", "chat", "qwen", ...
llama_model_loader: - kv  13:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  14:                          qwen2.block_count u32              = 28
llama_model_loader: - kv  15:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv  16:                     qwen2.embedding_length u32              = 1536
llama_model_loader: - kv  17:                  qwen2.feed_forward_length u32              = 8960
llama_model_loader: - kv  18:                 qwen2.attention.head_count u32              = 12
llama_model_loader: - kv  19:              qwen2.attention.head_count_kv u32              = 2
llama_model_loader: - kv  20:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  21:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  22:                          general.file_type u32              = 7
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  28:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  29:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  31:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  141 tensors
llama_model_loader: - type q8_0:  197 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 151936
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 1536
llm_load_print_meta: n_layer          = 28
llm_load_print_meta: n_head           = 12
llm_load_print_meta: n_head_kv        = 2
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 6
llm_load_print_meta: n_embd_k_gqa     = 256
llm_load_print_meta: n_embd_v_gqa     = 256
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 8960
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 1.5B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 1.54 B
llm_load_print_meta: model size       = 1.53 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Qwen2.5 Coder 1.5B Instruct
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: EOT token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 'ÄĬ'
llm_load_print_meta: FIM PRE token    = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token    = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token    = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token    = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token        = 151645 '<|im_end|>'
llm_load_print_meta: EOG token        = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token        = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token        = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors:        CUDA1 model buffer size =  1564.63 MiB
llm_load_tensors:   CPU_Mapped model buffer size =   236.47 MiB
...........................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32768
llama_new_context_with_model: n_ctx_per_seq = 32768
llama_new_context_with_model: n_batch       = 512
llama_new_context_with_model: n_ubatch      = 256
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 28, can_shift = 1
llama_kv_cache_init:      CUDA1 KV buffer size =   476.00 MiB
llama_new_context_with_model: KV self size  =  476.00 MiB, K (q8_0):  238.00 MiB, V (q8_0):  238.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =   149.88 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    33.50 MiB
llama_new_context_with_model: graph nodes  = 875
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32768
llama_new_context_with_model: n_ctx_per_seq = 32768
llama_new_context_with_model: n_batch       = 32768
llama_new_context_with_model: n_ubatch      = 256
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_kv_cache_init: kv_size = 32768, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1
llama_kv_cache_init:      CUDA1 KV buffer size =   896.00 MiB
llama_new_context_with_model: KV self size  =  896.00 MiB, K (f16):  448.00 MiB, V (f16):  448.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =   149.88 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    33.50 MiB
llama_new_context_with_model: graph nodes  = 875
llama_new_context_with_model: graph splits = 2
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32768
main: model loaded
main: chat template, chat_template: (built-in), example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://0.0.0.0:8081 - starting the main loop
srv  update_slots: all slots are idle

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions