Closed
Description
Name and Version
version: 4882 (be7c303)
built with cc (GCC) 11.2.0 for x86_64-slackware-linux
Operating systems
Linux
GGML backends
CUDA
Hardware
gtx 1070
Models
madlad400 7b q6_k
Problem description & steps to reproduce
gibberish now comes out of the model after b4882 commit.
First Bad Commit
b4882
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: yes
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1070, compute capability 6.1, VMM: yes
build: 4882 (be7c3034) with cc (GCC) 11.2.0 for x86_64-slackware-linux
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce GTX 1070) - 7932 MiB free
llama_model_loader: loaded meta data with 26 key-value pairs and 1110 tensors from /datahd/models/madlad400-7b-mt.Q6_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = t5
llama_model_loader: - kv 1: general.name str = T5
llama_model_loader: - kv 2: t5.context_length u32 = 512
llama_model_loader: - kv 3: t5.embedding_length u32 = 2048
llama_model_loader: - kv 4: t5.feed_forward_length u32 = 8192
llama_model_loader: - kv 5: t5.block_count u32 = 48
llama_model_loader: - kv 6: t5.attention.head_count u32 = 16
llama_model_loader: - kv 7: t5.attention.key_length u32 = 128
llama_model_loader: - kv 8: t5.attention.value_length u32 = 128
llama_model_loader: - kv 9: t5.attention.layer_norm_epsilon f32 = 0.000001
llama_model_loader: - kv 10: t5.attention.relative_buckets_count u32 = 32
llama_model_loader: - kv 11: t5.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 12: t5.decoder_start_token_id u32 = 0
llama_model_loader: - kv 13: general.file_type u32 = 18
llama_model_loader: - kv 14: tokenizer.ggml.model str = t5
llama_model_loader: - kv 15: tokenizer.ggml.pre str = default
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "\n", "<2ace>...
llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,256000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,256000] = [2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.add_space_prefix bool = true
llama_model_loader: - kv 20: tokenizer.ggml.remove_extra_whitespaces bool = false
llama_model_loader: - kv 21: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 1
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = true
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - type f32: 242 tensors
llama_model_loader: - type q6_K: 866 tensors
llama_model_loader: - type bf16: 2 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q6_K
print_info: file size = 6.34 GiB (6.56 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 3
load: token to piece cache size = 1.7509 MB
print_info: arch = t5
print_info: vocab_only = 0
print_info: n_ctx_train = 512
print_info: n_embd = 2048
print_info: n_layer = 48
print_info: n_head = 16
print_info: n_head_kv = 16
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 2048
print_info: n_embd_v_gqa = 2048
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 8192
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = -1
print_info: rope scaling = linear
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 512
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = ?B
print_info: model params = 8.30 B
print_info: general.name = T5
print_info: vocab type = UGM
print_info: n_vocab = 256000
print_info: n_merges = 0
print_info: EOS token = 2 '</s>'
print_info: UNK token = 2 '</s>'
print_info: PAD token = 1 '<s>'
print_info: LF token = 805 '▁'
print_info: EOG token = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CPU_Mapped model buffer size = 2917.78 MiB
load_tensors: CUDA0 model buffer size = 6082.05 MiB
..........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 512
llama_context: n_ctx_per_seq = 512
llama_context: n_batch = 512
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: yarn_log_mul = 0
llama_context: CUDA_Host output buffer size = 0.98 MiB
init: kv_size = 512, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
init: CUDA0 KV buffer size = 192.00 MiB
llama_context: KV self size = 192.00 MiB, K (f16): 96.00 MiB, V (f16): 96.00 MiB
llama_context: CUDA0 compute buffer size = 508.03 MiB
llama_context: CUDA_Host compute buffer size = 23.00 MiB
llama_context: graph nodes = 2742
llama_context: graph splits = 98
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 4
system_info: n_threads = 4 (n_threads_batch = 4) / 4 | CUDA : ARCHS = 520,610,700,750 | FORCE_MMQ = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: interactive mode on.
sampler seed: 2258604974
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 512
top_k = 40, top_p = 0.950, min_p = 0.000, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.000
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- To return control to the AI, end your input with '\'.
- To return control without starting a new line, end your input with '/'.
<2de> Today it rains.- 4e, ldn.-kamgain, da Vinci20000000000000010100010001010180002: Lassen)a) "Usa,5) HPV ’шумф- rigth 1 1600000000000000001 )obs,Gayna,92) ’s) 24) ’s) и
llama_perf_sampler_print: sampling time = 38.19 ms / 128 runs ( 0.30 ms per token, 3351.84 tokens per second)
llama_perf_context_print: load time = 4342.57 ms
llama_perf_context_print: prompt eval time = 11356.43 ms / 9 tokens ( 1261.83 ms per token, 0.79 tokens per second)
llama_perf_context_print: eval time = 6090.48 ms / 120 runs ( 50.75 ms per token, 19.70 tokens per second)
llama_perf_context_print: total time = 19497.55 ms / 129 tokens
Interrupted by user