Closed
Description
CLBlast is segfaulting when using phi-2-uncensored.q3_k_m.gguf
in the latest release, since the backend integration.
C:\test> main.exe -ngl 8 -m E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf -p "Hi, my name is"
Log start
main: build = 1961 (1387ea21)
main: built with MSVC 19.37.32826.1 for x64
main: seed = 1706113455
ggml_opencl: selecting platform: 'NVIDIA CUDA'
ggml_opencl: selecting device: 'NVIDIA GeForce RTX 2060'
ggml_opencl: device FP16 support: false
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = Phi2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2560
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 10240
llama_model_loader: - kv 5: phi2.block_count u32 = 32
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 12
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 195 tensors
llama_model_loader: - type q3_K: 33 tensors
llama_model_loader: - type q4_K: 94 tensors
llama_model_loader: - type q5_K: 2 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: mismatch in special tokens definition ( 910/51200 vs 944/51200 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2560
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_embd_head_k = 80
llm_load_print_meta: n_embd_head_v = 80
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2560
llm_load_print_meta: n_embd_v_gqa = 2560
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 10240
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q3_K - Medium
llm_load_print_meta: model params = 2.78 B
llm_load_print_meta: model size = 1.38 GiB (4.25 BPW)
llm_load_print_meta: general.name = Phi2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 30 '?'
llm_load_tensors: ggml ctx size = 0.25 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/33 layers to GPU
llm_load_tensors: CPU buffer size = 1317.88 MiB
llm_load_tensors: OpenCL buffer size = 311.88 MiB
............................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 160.00 MiB
llama_new_context_with_model: KV self size = 160.00 MiB, K (f16): 80.00 MiB, V (f16): 80.00 MiB
llama_new_context_with_model: CPU input buffer size = 6.01 MiB
llama_new_context_with_model: CPU compute buffer size = 105.00 MiB
llama_new_context_with_model: graph splits (measure): 1
the program segfaults at this point
I've tested build = 1844 (3fe8178)
and it fails too.
It seems to be broken since the backend integration. This model loaded successfully previously before build 1842. Currently, it still loads fine if 0 layers are offloaded, otherwise it segfaults. Other llama based models seem to work fine.
Earlier successful build:
C:\test2> main.exe -ngl 8 -m E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf -p "Hi, my name is"
Log start
main: build = 1842 (584d674)
main: built with MSVC 19.37.32826.1 for x64
main: seed = 1706114088
ggml_opencl: selecting platform: 'NVIDIA CUDA'
ggml_opencl: selecting device: 'NVIDIA GeForce RTX 2060'
ggml_opencl: device FP16 support: false
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = Phi2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2560
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 10240
llama_model_loader: - kv 5: phi2.block_count u32 = 32
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 12
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 195 tensors
llama_model_loader: - type q3_K: 33 tensors
llama_model_loader: - type q4_K: 94 tensors
llama_model_loader: - type q5_K: 2 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: mismatch in special tokens definition ( 910/51200 vs 944/51200 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2560
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_embd_head_k = 80
llm_load_print_meta: n_embd_head_v = 80
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2560
llm_load_print_meta: n_embd_v_gqa = 2560
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 10240
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q3_K - Medium
llm_load_print_meta: model params = 2.78 B
llm_load_print_meta: model size = 1.38 GiB (4.25 BPW)
llm_load_print_meta: general.name = Phi2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 30 '?'
llm_load_tensors: ggml ctx size = 0.12 MiB
llm_load_tensors: using OpenCL for GPU acceleration
llm_load_tensors: system memory used = 1098.23 MiB
llm_load_tensors: VRAM used = 311.80 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/33 layers to GPU
............................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: KV self size = 160.00 MiB, K (f16): 80.00 MiB, V (f16): 80.00 MiB
llama_build_graph: non-view tensors processed: 774/774
llama_new_context_with_model: compute buffer total size = 113.19 MiB
system_info: n_threads = 6 / 12 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0
Hi, my name is John and I'm a software engineer. I work for a small company that develops custom software