Skip to content

CLBlast segfaulting with Phi q3_k_m and GPU offload (broken after backend integration) #5116

Closed
@LostRuins

Description

@LostRuins

CLBlast is segfaulting when using phi-2-uncensored.q3_k_m.gguf in the latest release, since the backend integration.

C:\test> main.exe -ngl 8 -m E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf -p "Hi, my name is"
Log start
main: build = 1961 (1387ea21)
main: built with MSVC 19.37.32826.1 for x64
main: seed  = 1706113455
ggml_opencl: selecting platform: 'NVIDIA CUDA'
ggml_opencl: selecting device: 'NVIDIA GeForce RTX 2060'
ggml_opencl: device FP16 support: false
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = phi2
llama_model_loader: - kv   1:                               general.name str              = Phi2
llama_model_loader: - kv   2:                        phi2.context_length u32              = 2048
llama_model_loader: - kv   3:                      phi2.embedding_length u32              = 2560
llama_model_loader: - kv   4:                   phi2.feed_forward_length u32              = 10240
llama_model_loader: - kv   5:                           phi2.block_count u32              = 32
llama_model_loader: - kv   6:                  phi2.attention.head_count u32              = 32
llama_model_loader: - kv   7:               phi2.attention.head_count_kv u32              = 32
llama_model_loader: - kv   8:          phi2.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv   9:                  phi2.rope.dimension_count u32              = 32
llama_model_loader: - kv  10:                          general.file_type u32              = 12
llama_model_loader: - kv  11:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,51200]   = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,51200]   = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  15:                      tokenizer.ggml.merges arr[str,50000]   = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 50256
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 50256
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 50256
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  195 tensors
llama_model_loader: - type q3_K:   33 tensors
llama_model_loader: - type q4_K:   94 tensors
llama_model_loader: - type q5_K:    2 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: mismatch in special tokens definition ( 910/51200 vs 944/51200 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = phi2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 51200
llm_load_print_meta: n_merges         = 50000
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 2560
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 32
llm_load_print_meta: n_embd_head_k    = 80
llm_load_print_meta: n_embd_head_v    = 80
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 2560
llm_load_print_meta: n_embd_v_gqa     = 2560
llm_load_print_meta: f_norm_eps       = 1.0e-05
llm_load_print_meta: f_norm_rms_eps   = 0.0e+00
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 10240
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 3B
llm_load_print_meta: model ftype      = Q3_K - Medium
llm_load_print_meta: model params     = 2.78 B
llm_load_print_meta: model size       = 1.38 GiB (4.25 BPW)
llm_load_print_meta: general.name     = Phi2
llm_load_print_meta: BOS token        = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token        = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token        = 50256 '<|endoftext|>'
llm_load_print_meta: LF token         = 30 '?'
llm_load_tensors: ggml ctx size =    0.25 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/33 layers to GPU
llm_load_tensors:        CPU buffer size =  1317.88 MiB
llm_load_tensors:     OpenCL buffer size =   311.88 MiB
............................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =   160.00 MiB
llama_new_context_with_model: KV self size  =  160.00 MiB, K (f16):   80.00 MiB, V (f16):   80.00 MiB
llama_new_context_with_model:        CPU input buffer size   =     6.01 MiB
llama_new_context_with_model:        CPU compute buffer size =   105.00 MiB
llama_new_context_with_model: graph splits (measure): 1

the program segfaults at this point

I've tested build = 1844 (3fe8178) and it fails too.

It seems to be broken since the backend integration. This model loaded successfully previously before build 1842. Currently, it still loads fine if 0 layers are offloaded, otherwise it segfaults. Other llama based models seem to work fine.

Earlier successful build:

C:\test2> main.exe -ngl 8 -m E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf -p "Hi, my name is"
Log start
main: build = 1842 (584d674)
main: built with MSVC 19.37.32826.1 for x64
main: seed  = 1706114088
ggml_opencl: selecting platform: 'NVIDIA CUDA'
ggml_opencl: selecting device: 'NVIDIA GeForce RTX 2060'
ggml_opencl: device FP16 support: false
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from E:\LLaMA\models\phi-2-uncensored.q3_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = phi2
llama_model_loader: - kv   1:                               general.name str              = Phi2
llama_model_loader: - kv   2:                        phi2.context_length u32              = 2048
llama_model_loader: - kv   3:                      phi2.embedding_length u32              = 2560
llama_model_loader: - kv   4:                   phi2.feed_forward_length u32              = 10240
llama_model_loader: - kv   5:                           phi2.block_count u32              = 32
llama_model_loader: - kv   6:                  phi2.attention.head_count u32              = 32
llama_model_loader: - kv   7:               phi2.attention.head_count_kv u32              = 32
llama_model_loader: - kv   8:          phi2.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv   9:                  phi2.rope.dimension_count u32              = 32
llama_model_loader: - kv  10:                          general.file_type u32              = 12
llama_model_loader: - kv  11:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,51200]   = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,51200]   = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  15:                      tokenizer.ggml.merges arr[str,50000]   = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 50256
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 50256
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 50256
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  195 tensors
llama_model_loader: - type q3_K:   33 tensors
llama_model_loader: - type q4_K:   94 tensors
llama_model_loader: - type q5_K:    2 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: mismatch in special tokens definition ( 910/51200 vs 944/51200 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = phi2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 51200
llm_load_print_meta: n_merges         = 50000
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 2560
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 32
llm_load_print_meta: n_embd_head_k    = 80
llm_load_print_meta: n_embd_head_v    = 80
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 2560
llm_load_print_meta: n_embd_v_gqa     = 2560
llm_load_print_meta: f_norm_eps       = 1.0e-05
llm_load_print_meta: f_norm_rms_eps   = 0.0e+00
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 10240
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 3B
llm_load_print_meta: model ftype      = Q3_K - Medium
llm_load_print_meta: model params     = 2.78 B
llm_load_print_meta: model size       = 1.38 GiB (4.25 BPW)
llm_load_print_meta: general.name     = Phi2
llm_load_print_meta: BOS token        = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token        = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token        = 50256 '<|endoftext|>'
llm_load_print_meta: LF token         = 30 '?'
llm_load_tensors: ggml ctx size       =    0.12 MiB
llm_load_tensors: using OpenCL for GPU acceleration
llm_load_tensors: system memory used  = 1098.23 MiB
llm_load_tensors: VRAM used           =  311.80 MiB
llm_load_tensors: offloading 8 repeating layers to GPU
llm_load_tensors: offloaded 8/33 layers to GPU
............................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: KV self size  =  160.00 MiB, K (f16):   80.00 MiB, V (f16):   80.00 MiB
llama_build_graph: non-view tensors processed: 774/774
llama_new_context_with_model: compute buffer total size = 113.19 MiB

system_info: n_threads = 6 / 12 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
sampling:
        repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0


Hi, my name is John and I'm a software engineer. I work for a small company that develops custom software

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions