Skip to content

AmbiguousTimeError when retrieving Series from HDFStore in table format with DST change #11624

Closed
@JackKelly

Description

@JackKelly

In Pandas 0.17, if I put a Series into an HDFStore in table format, and if this Series contains a day light saving transition, then Pandas crashes with an AmbiguousTimeError.

Here's the minimal code example to reproduce the bug:

import pandas as pd
index = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
                      tz="Europe/London", freq="H")
series = pd.Series(0, index=index)
with pd.HDFStore("test.hdf", mode="w") as store:
    store.put("series", series, format='table')
    store["series"]

And here's the traceback:

In [4]: ---------------------------------------------------------------------------
AmbiguousTimeError                        Traceback (most recent call last)
<ipython-input-4-5deb3c83fafd> in <module>()
----> 1 __pyfile = open('''/tmp/py7201vZi''');exec(compile(__pyfile.read(), '''/home/jack/temp/pandas_dst_bug.py''', 'exec'));__pyfile.close(); import os; os.remove('''/tmp/py7201vZi''')

/home/jack/temp/pandas_dst_bug.py in <module>()
      2 index = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
      3                       tz="Europe/London", freq="H")
----> 4 series = pd.Series(0, index=index)
      5 with pd.HDFStore("test.hdf", mode="w") as store:
      6     store.put("series", series, format='table')

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in date_range(start, end, periods, freq, tz, normalize, name, closed)
   1912     return DatetimeIndex(start=start, end=end, periods=periods,
   1913                          freq=freq, tz=tz, normalize=normalize, name=name,
-> 1914                          closed=closed)
   1915 
   1916 

/usr/local/lib/python2.7/dist-packages/pandas/util/decorators.pyc in wrapper(*args, **kwargs)
     87                 else:
     88                     kwargs[new_arg_name] = new_arg_value
---> 89             return func(*args, **kwargs)
     90         return wrapper
     91     return _deprecate_kwarg

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in __new__(cls, data, freq, start, end, periods, copy, name, tz, verify_integrity, normalize, closed, ambiguous, dtype, **kwargs)
    234             return cls._generate(start, end, periods, name, freq,
    235                                  tz=tz, normalize=normalize, closed=closed,
--> 236                                  ambiguous=ambiguous)
    237 
    238         if not isinstance(data, (np.ndarray, Index, ABCSeries)):

/usr/local/lib/python2.7/dist-packages/pandas/tseries/index.pyc in _generate(cls, start, end, periods, name, offset, tz, normalize, ambiguous, closed)
    450 
    451                 if end is not None and end.tz is None:
--> 452                     end = end.tz_localize(tz)
    453 
    454             if start and end:

pandas/tslib.pyx in pandas.tslib.Timestamp.tz_localize (pandas/tslib.c:11965)()

pandas/tslib.pyx in pandas.tslib.tz_localize_to_utc (pandas/tslib.c:64516)()

AmbiguousTimeError: Cannot infer dst time from Timestamp('2013-10-27 01:00:00'), try using the 'ambiguous' argument

Everything works fine if:

  • we use format=fixed instead of format=table
  • we used format=table but the Series does not include a DST change

I'm not certain but I expect this bug is related to #11619

I'm 99.999% certain that this bug did not exist in Pandas 0.16.2

In [30]: show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 2.7.9.final.0
python-bits: 64
OS: Linux
OS-release: 3.19.0-33-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8

pandas: 0.17.0
nose: 1.3.7
pip: 1.5.6
setuptools: 15.2
Cython: 0.23.1
numpy: 1.10.1
scipy: 0.16.0
statsmodels: 0.6.1
IPython: 4.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.2
pytz: 2015.7
blosc: None
bottleneck: None
tables: 3.2.2
numexpr: 2.4.6
matplotlib: 1.4.3
openpyxl: None
xlrd: 0.9.2
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.3.2
html5lib: 0.999
httplib2: 0.9
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: 2.5.3 (dt dec pq3 ext)

Finally, just to say another huge thank you to everyone who supports Pandas. It must be a huge amount of work and I am hugely grateful. Pandas is an awesome tool. Thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions