Skip to content

BUG?: value_counts(normalize=True) normalizes over all observations including NaN. #12558

Closed
@nickeubank

Description

@nickeubank

By default, value_counts ignores missing values. To get them displayed, one must add the option dropna=False. But when one normalizes, they are entering into the denominator even when dropna=True.

Code Sample, a copy-pastable example if possible

s = pd.Series([1,2,3,np.nan, np.nan, np.nan])
s.value_counts(normalize=True)

0.1667
0.1667
0.1667

Expected Output

0.333
0.333
0.333

output of pd.show_versions()

pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.4.4.final.0
python-bits: 64
OS: Darwin
OS-release: 15.3.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8

pandas: 0.17.1
nose: 1.3.7
pip: 8.1.0
setuptools: 20.2.2
Cython: 0.23.4
numpy: 1.10.4
scipy: 0.16.1
statsmodels: None
IPython: 4.0.1
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.4.2
pytz: 2015.7
blosc: None
bottleneck: 1.0.0
tables: 3.2.2
numexpr: 2.4.4
matplotlib: 1.4.3
openpyxl: 2.2.6
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.7.7
lxml: 3.4.4
bs4: 4.4.1
html5lib: 0.999
httplib2: None
apiclient: None
sqlalchemy: 1.0.9
pymysql: None
psycopg2: None
Jinja2: 2.8

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNumeric OperationsArithmetic, Comparison, and Logical operations

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions