Closed
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
A = pd.DataFrame({'X': [1, 2, 3]})
B = pd.DataFrame({'Y': [1.0, 3.0]})
B = B.merge(A, left_on='Y', right_on='X')
print(B.dtypes)
Problem description
The output is
Y object
X int64
dtype: object
meaning that Y was incorrectly upcast to object.
In pandas 0.19, the dtype of B.Y after merging is float64.
In pandas 0.20, the dtype of B.Y after merging is object.
The problem only occurs if some keys in B.Y are missing (try adding 2.0)
Expected Output
Y float64
X int64
dtype: object
Output of pd.show_versions()
commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.9.0-2-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.1
pytest: None
pip: 9.0.1
setuptools: 35.0.2
Cython: None
numpy: 1.12.1
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None