Description
Code Sample, a copy-pastable example if possible
In [30]: df = pd.DataFrame({'random1': [random.random() for i in range(10)],
...: 'random2': [random.random() for i in range(10)],
...: 'type': ['duck', 'bird']*5},
...: index=range(10,20))
...:
...: df.pivot_table(index='type',
...: aggfunc={'random1': [np.median, np.mean],
...: 'random2': np.sum})
...:
Out[30]:
random1 random2
mean median sum
type
bird 0.420249 0.428048 1.869603
duck 0.422977 0.518311 3.395530
import pandas as pd
from pandas.api.types import CategoricalDtype
import numpy as np
# Load data
df = pd.read_excel('http://pbpython.com/extras/sales-funnel.xlsx')
# Make categories
df["Status"] = pd.Categorical(df["Status"], categories=["won","pending","presented","declined"], ordered=False)
# Create pivot table
pd.pivot_table(df, index=['Manager', 'Status'],
values=['Quantity', 'Price'],
aggfunc={'Quantity': len, 'Price': [np.sum, np.mean]},
fill_value=0)
Problem description
Documentation for pivot_table method and aggfunc parameter
reports, that valid inputs are:
- function or
- list of functions
It misses option, that also dictionary can be used, which is one of the very useful options.
This missing knowledge causes misleading posts on stackoverflow like here:
Best answer claims:
The aggfunc argument of pivot_table takes a function or list of functions but not dict
That is not true, as dict is valid input into aggfunc parameter - but as it is not documented,
people believe it is invalid input. Incomplete documetation causes confusion here and should be updated.
Output of pd.show_versions()
pandas: 0.21.0
pytest: 3.3.0
pip: 9.0.1
setuptools: 36.5.0.post20170921
Cython: 0.27.3
numpy: 1.13.3
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: 1.6.3
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.1.0
openpyxl: 2.4.9
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.2
lxml: 4.1.1
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None