Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
df = pd.DataFrame({
'x': ['a', 'b', 'c', 'd'],
'y': [5, 6, 7, 8],
'g': [1, 2, 3, 3]
})
def myfirst(c):
return c.iloc[0]
# I'd expect the y col dtype to remain int64 in all examples below, but it changes to object
# when using myfirst() with transform() and there is at least one object column in the result.
df.groupby('g').transform('first').dtypes # int64 dtype when using builtin
df.groupby('g').transform(myfirst).dtypes # object dtype when using function
df.groupby('g').agg(myfirst).dtypes # int64 dtype when using function with agg()
df.drop(columns=['x']).groupby('g').transform(myfirst).dtypes # int64 dtype if object column is removed
df.groupby('g').transform(lambda c: type(myfirst(c)))['y'] == np.int64 # Confirm myfirst() is returning int64 scalars
Problem description
The current transform()
behavior is inconsistent with the behavior of other reducers and with agg()
. Those fall in like with my expectation to not change datatypes unless the output would otherwise prevent it (i.e. a reducer adds NaNs). However, here:
df.groupby('g').transform(myfirst).dtypes
the int64 y column is coerced into an object dtype:
x object
y object
dtype: object
The coercion also occurs when the y column is float
or bool
, but not when it is datetime64[ns]
.
Expected Output
x object
y int64
dtype: object
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2cb9652
python : 3.8.7.final.0
python-bits : 64
OS : Darwin
OS-release : 20.4.0
Version : Darwin Kernel Version 20.4.0: Thu Apr 22 21:46:47 PDT 2021; root:xnu-7195.101.2~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8
pandas : 1.2.4
numpy : 1.20.2
pytz : 2021.1
dateutil : 2.8.1
pip : 20.3.4
setuptools : 49.2.1
Cython : 0.29.14
pytest : 6.2.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.6 (dt dec pq3 ext lo64)
jinja2 : 2.11.3
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 2.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.1
sqlalchemy : 1.3.23
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
numba : None