Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the master branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
data = {
'a': np.random.randint(0, 1000, 300000),
'b': np.random.randint(0, 1000, 300000),
'c': np.random.randint(0, 1000, 300000),
'd': np.random.randint(0, 1000, 300000),
'e': np.random.randint(0, 1000, 300000),
'target': np.random.randint(0, 2, 300000)
}
df = pd.DataFrame(data)
df = df.astype(dtype={"a": "category",
"b": "category",
"c": "category",
"d": "category",
"e": "category",
"target": "int"})
group_unique_data = df.groupby(['a', 'b', 'c', 'd', 'e'], dropna=False)
group_unique_labels = group_unique_data.nunique()['target']
Issue Description
When trying to group by a DataFrame with many categories, the following exception is raised:
group_unique_labels = group_unique_data.nunique()['target']
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/generic.py", line 1804, in nunique
results = self._apply_to_column_groupbys(
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/generic.py", line 1710, in _apply_to_column_groupbys
results = [
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/generic.py", line 1711, in <listcomp>
func(col_groupby) for _, col_groupby in self._iterate_column_groupbys(obj)
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/generic.py", line 1805, in <lambda>
lambda sgb: sgb.nunique(dropna), obj=obj
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/generic.py", line 673, in nunique
return self._reindex_output(result, fill_value=0)
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/groupby/groupby.py", line 3164, in _reindex_output
index, _ = MultiIndex.from_product(
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/indexes/multi.py", line 620, in from_product
codes = cartesian_product(codes)
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/reshape/util.py", line 54, in cartesian_product
return [tile_compat(np.repeat(x, b[i]), np.product(a[i])) for i, x in enumerate(X)]
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/pandas/core/reshape/util.py", line 54, in <listcomp>
return [tile_compat(np.repeat(x, b[i]), np.product(a[i])) for i, x in enumerate(X)]
File "<__array_function__ internals>", line 5, in repeat
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/numpy/core/fromnumeric.py", line 479, in repeat
return _wrapfunc(a, 'repeat', repeats, axis=axis)
File "/Users/itaygabbay/.virtualenvs/mlchecks/lib/python3.9/site-packages/numpy/core/fromnumeric.py", line 57, in _wrapfunc
return bound(*args, **kwds)
numpy.core._exceptions.MemoryError: Unable to allocate 1.78 PiB for an array with shape (1000000000000000,) and data type int16
However, when I cast the category columns to object dtype everything works smoothly.
Expected Behavior
I would expect that I'll get the output of the groupby operation
Installed Versions
INSTALLED VERSIONS
commit : 945c9ed
python : 3.9.0.final.0
python-bits : 64
OS : Darwin
OS-release : 21.1.0
Version : Darwin Kernel Version 21.1.0: Wed Oct 13 17:33:23 PDT 2021; root:xnu-8019.41.5~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 1.3.4
numpy : 1.21.4
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 58.3.0
Cython : None
pytest : 6.2.5
hypothesis : 6.31.6
sphinx : 4.3.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.30.1
pandas_datareader: None
bs4 : 4.10.0
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.5.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.7.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None