Closed
Description
Hi,
For illustration purpose, I'll assume the following dataset:
In [1]: d=pd.DataFrame({'col1':[9.999e-8, 1e-7, 1.0001e-7, 2e-7, 4.999e-7, 5e-7, 5.0001e-7, 6e-7]})
In [2]: d
Out[2]:
col1
0 9.999000e-08
1 1.000000e-07
2 1.000100e-07
3 2.000000e-07
4 4.999000e-07
5 5.000000e-07
6 5.000100e-07
7 6.000000e-07
I've noticed the following behavior (in pandas 0.16 and 0.15.2):
- When values from range [1e-7, 5e-7] are displayed along with values that are less than 1e-7, the output is OK:
In [3]: d[0:6]
Out[3]:
col1
0 9.999000e-08
1 1.000000e-07
2 1.000100e-07
3 2.000000e-07
4 4.999000e-07
5 5.000000e-07
- When values exclusively from that range are displayed, the output is 0:
In [4]: d[1:6]
Out[4]:
col1
1 0
2 0
3 0
4 0
5 0
- When values from that range are displayed along with values greater than 5e-7, the output for them is 0.000000:
In [5]: d[1:8]
Out[5]:
col1
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000001
7 0.000001
I'm assuming it's a rounding / output formatting error.
Also:
In [6]: pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.4.2.final.0
python-bits: 64
OS: Linux
OS-release: 2.6.32-431.el6.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
pandas: 0.16.0
nose: 1.3.4
Cython: 0.21.2
numpy: 1.9.2
scipy: 0.14.0
statsmodels: 0.6.1
IPython: 2.3.1
sphinx: None
patsy: 0.3.0
dateutil: 2.4.1
pytz: 2015.2
bottleneck: None
tables: None
numexpr: None
matplotlib: 1.4.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: None