@@ -430,23 +430,23 @@ def conditional_logp(
430
430
431
431
.. math::
432
432
433
- \Sigma ^2 \sim& \operatorname{InvGamma}(0.5, 0.5) \\
434
- Y \sim& \operatorname{N}(0, \Sigma )
433
+ \sigma ^2 \sim& \operatorname{InvGamma}(0.5, 0.5) \\
434
+ Y \sim& \operatorname{N}(0, \sigma^2 )
435
435
436
436
If we create a value variable for ``Y_rv``, i.e. ``y_vv = pt.scalar("y")``,
437
437
the graph of ``conditional_logp({Y_rv: y_vv})`` is equivalent to the
438
- conditional log-probability :math:`\log p(Y = y \mid \Sigma ^2)`, with a stochastic
438
+ conditional log-probability :math:`\log p_{Y \mid \sigma^2}( y \mid s ^2)`, with a stochastic
439
439
``sigma2_rv``.
440
440
441
441
If we specify a value variable for ``sigma2_rv``, i.e.
442
- ``s_vv = pt.scalar("s2")``, then ``conditional_logp({Y_rv: y_vv, sigma2_rv: s_vv })``
442
+ ``s2_vv = pt.scalar("s2")``, then ``conditional_logp({Y_rv: y_vv, sigma2_rv: s2_vv })``
443
443
yields the conditional log-probabilities of the two variables.
444
444
The sum of the two terms gives their joint log-probability.
445
445
446
446
.. math::
447
447
448
- \log p(Y = y , \Sigma^2 = \sigma ^2) =
449
- \log p(Y = y \mid \Sigma^2 = \sigma ^2) + \log p(\Sigma^2 = \sigma ^2)
448
+ \log p_{Y , \sigma^2}(y, s ^2) =
449
+ \log p_{Y \mid \sigma^2}(y \mid s ^2) + \log p_{\sigma^2}(s ^2)
450
450
451
451
452
452
Parameters
0 commit comments