Closed as not planned
Description
Description of your problem
Hi, it looks like the Multinomial
distribution does not rescale the probabilities (as indicated by the documentation) when they are themselves random variables.
import pymc as pm
import aesara.tensor as at
with pm.Model() as model:
a = pm.Exponential("a", 1)
b = pm.Exponential("b", 1)
x = pm.Multinomial("x", n=10, p=at.stack([a, b])) # Does not work
# x = pm.Multinomial("x", n=10, p=at.stack([a, b]) / (a+b)) # Works fine
# x = pm.Multinomial("x", n=10, p=[1, 1]) # Works fine
pm.sample()
Please provide the full traceback.
Complete error traceback
File ~/.miniconda3/envs/nathan_sequencing/lib/python3.10/site-packages/pymc/sampling.py:558, in sample(draws, step, init, n_init, initvals, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, callback, jitter_max_retries, return_inferencedata, idata_kwargs, mp_ctx, **kwargs)
556 # One final check that shapes and logps at the starting points are okay.
557 for ip in initial_points:
--> 558 model.check_start_vals(ip)
559 _check_start_shape(model, ip)
561 sample_args = {
562 "draws": draws,
563 "step": step,
(...)
573 "discard_tuned_samples": discard_tuned_samples,
574 }
File ~/.miniconda3/envs/nathan_sequencing/lib/python3.10/site-packages/pymc/model.py:1794, in Model.check_start_vals(self, start)
1791 initial_eval = self.point_logps(point=elem)
1793 if not all(np.isfinite(v) for v in initial_eval.values()):
-> 1794 raise SamplingError(
1795 "Initial evaluation of model at starting point failed!\n"
1796 f"Starting values:\n{elem}\n\n"
1797 f"Initial evaluation results:\n{initial_eval}"
1798 )
SamplingError: Initial evaluation of model at starting point failed!
Starting values:
{'a_log__': array(0.), 'b_log__': array(0.), 'x': array([ 0, 10])}
Initial evaluation results:
{'a': -1.0, 'b': -1.0, 'x': -inf}
Versions and main components
- PyMC/PyMC3 Version: 4.1.2
- Aesara/Theano Version: 2.7.5
- Python Version: 3.10.5
- Operating system: linux
- How did you install PyMC/PyMC3: conda
Metadata
Metadata
Assignees
Labels
No labels