Skip to content

Multinomial probabilities are not rescaled as tensors #5978

Closed as not planned
@Armavica

Description

@Armavica

Description of your problem

Hi, it looks like the Multinomial distribution does not rescale the probabilities (as indicated by the documentation) when they are themselves random variables.

import pymc as pm
import aesara.tensor as at
with pm.Model() as model:
    a = pm.Exponential("a", 1)
    b = pm.Exponential("b", 1)
    x = pm.Multinomial("x", n=10, p=at.stack([a, b])) # Does not work
    # x = pm.Multinomial("x", n=10, p=at.stack([a, b]) / (a+b)) # Works fine
    # x = pm.Multinomial("x", n=10, p=[1, 1]) # Works fine
    pm.sample()

Please provide the full traceback.

Complete error traceback
File ~/.miniconda3/envs/nathan_sequencing/lib/python3.10/site-packages/pymc/sampling.py:558, in sample(draws, step, init, n_init, initvals, trace, chain_idx, chains, cores, tune, progressbar, model, random_seed, discard_tuned_samples, compute_convergence_checks, callback, jitter_max_retries, return_inferencedata, idata_kwargs, mp_ctx, **kwargs)
    556 # One final check that shapes and logps at the starting points are okay.
    557 for ip in initial_points:
--> 558     model.check_start_vals(ip)
    559     _check_start_shape(model, ip)
    561 sample_args = {
    562     "draws": draws,
    563     "step": step,
   (...)
    573     "discard_tuned_samples": discard_tuned_samples,
    574 }

File ~/.miniconda3/envs/nathan_sequencing/lib/python3.10/site-packages/pymc/model.py:1794, in Model.check_start_vals(self, start)
   1791 initial_eval = self.point_logps(point=elem)
   1793 if not all(np.isfinite(v) for v in initial_eval.values()):
-> 1794     raise SamplingError(
   1795         "Initial evaluation of model at starting point failed!\n"
   1796         f"Starting values:\n{elem}\n\n"
   1797         f"Initial evaluation results:\n{initial_eval}"
   1798     )

SamplingError: Initial evaluation of model at starting point failed!
Starting values:
{'a_log__': array(0.), 'b_log__': array(0.), 'x': array([ 0, 10])}

Initial evaluation results:
{'a': -1.0, 'b': -1.0, 'x': -inf}

Versions and main components

  • PyMC/PyMC3 Version: 4.1.2
  • Aesara/Theano Version: 2.7.5
  • Python Version: 3.10.5
  • Operating system: linux
  • How did you install PyMC/PyMC3: conda

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions