Flip card

LEDs That Flow: A Fluid Simulation Business Card

Fluid-Implicit-Particle or FLIP is a method for simulating particle interactions in fluid dynamics, commonly used in visual effects for its speed. [Nick] adapted this technique into an impressive FLIP business card.

The first thing you’ll notice about this card is its 441 LEDs arranged in a 21×21 matrix. These LEDs are controlled by an Raspberry Pi RP2350, which interfaces with a LIS2DH12TR accelerometer to detect card movement and a small 32Mb memory chip. The centerpiece is a fluid simulation where tilting the card makes the LEDs flow like water in a container. Written in Rust, the firmware implements a FLIP simulation, treating the LEDs as particles in a virtual fluid for a natural, flowing effect.

This eye-catching business card uses clever tricks to stay slim. The PCB is just 0.6mm thick—compared to the standard 1.6mm—and the 3.6mm-thick 3.7V battery sits in a cutout to distribute its width across both sides of the board. The USB-C connection for charging and programming uses clever PCB cuts, allowing the plug to slide into place as if in a dedicated connector.

Inspired by a fluid simulation pendant we previously covered, this board is just as eye-catching. Thanks to [Nick] for sharing the design files for this unique business card. Check out other fluid dynamics projects we’ve featured in the past.

door spring

Compliant Contacts: Hacking Door Locks With Pen Springs

As you may have guessed given our name, we do love hacks around here, and this one is a great example of making some common, everyday things work in uncommon ways. [Nathan] sent in his hack to detect the door lock position in his basement.

Having a house that dates back to the 1890s, much of it was not very conducive to using off-the-shelf home automation devices. [Nathan] wanted a way to check the status of the basement deadbolt. He went about putting together a custom sensor using some spare parts, including a spare BeagleBone Black. Going full MacGyver, [Nathan] used springs from a ballpoint pen to craft a compliant contact for his sensor.

The pair of springs sat in the door frame and came in contact with the deadbolt; given they are springs, the exact position of the sensor was not very sensitive, as if too close it would just compress the springs slightly more. The springs were wired to the BeagleBone Black’s GPIO, acting as a switch to sense when there was conductivity between the springs through the deadbolt.

This wasn’t just a plug-it-in-and-it-works type of project, mind you; the BeagleBone Black was over 15 ft away from the sensors, lending plenty of opportunity for noise to be introduced into the lines. To combat this, [Nathan] created an RC filter to filter out all the high-frequency noise picked up by his sensor. Following the RC filter, he added in some code to handle the debounce of the sensor, as the springs have some inherent noise in them. Thanks [Nathan] for sending in your resourceful hack; we love seeing the resourcefulness of reusing things already on hand for other purposes. Be sure to check out some of the other repurposed components we’ve featured.

330k volts

Sparks Fly: Building A 330 KV Supply From A PC PSU

If you’re hunting for a bench power supply, you’ll quickly notice options dry up above 48 V or so, and you definitely won’t find a 330 kV supply on the shelf at your local electronics shop. But with just a few parts, [Mircemk] has crafted a high-voltage source from a modified PC power supply that delivers electrifying results.

The sparks arcing over a foot of thin air are a dead giveaway, but let’s be clear: this project is not for beginners. High voltage — defined as around 1,000 V and up, with this project hitting 350 times that — carries risks of severe injury or death. Only tackle it if you fully understand the dangers and take precautions like proper insulation and never working alone.

This project showcases a Cockcroft-Walton voltage multiplier, a clever setup using diodes and capacitors to step up voltage. The capacitors charge and discharge in an alternating pattern, doubling the voltage after each diode pair. [Mircemk] uses 3 mm thick Plexiglas as an insulator, providing both structure and electrical isolation for the diode-capacitor cascade.

To achieve the 330,000 V output, [Mircemk] starts by modifying a standard PC ATX power supply, removing the Schottky diodes from the secondary winding’s output to produce a roughly 15 V square wave. This feeds into another transformer, boosting the voltage before it enters the Cockcroft-Walton multiplier. At first glance, the multiplier’s sides look identical, but their opposite polarities create a massive potential difference across the spark gap.

[Mircemk]’s benchtop exploration into high-voltage territory is a shocking success. If this project lights up your curiosity, dive into our other high-voltage adventures, like DIY Tesla coils or plasma speakers, for more electrifying inspiration.

Continue reading “Sparks Fly: Building A 330 KV Supply From A PC PSU”

A DIY Fermenter For Flavorful Brews

Fermentation is a culinary art where tiny organisms transform simple ingredients into complex flavors — but they’re finicky about temperature. To keep his brewing setup at the perfect conditions, [Ken] engineered the Fermenter, a DIY insulated chamber controlled by Home Assistant for precision and remote monitoring.

The Fermenter build starts with an insulated chamber constructed from thick, rigid foam board, foil tape, weather strips, and a clever use of magnets to secure the front and top panels, allowing quick access to monitor the fermentation process. The chamber is divided into two sections: a larger compartment housing the fermentation vessel and a smaller one containing frozen water bottles. A fan, triggered by the system, circulates cool air from the bottle chamber to regulate temperature when things get too warm.

The electronics are powered by an ESP8266 running ESPHome firmware, which exposes its GPIO pins for seamless integration with Home Assistant, an open-source home automation platform. A DS18B20 temperature sensor provides accurate readings from the fermentation chamber, while a relay controls the fan for cooling. By leveraging Home Assistant, [Ken] can monitor and adjust the Fermenter remotely, with the flexibility to integrate additional devices without rewiring. For instance, he added a heater using a heat mat and a smart outlet that operates independently of the ESP8266 but is still controlled via Home Assistant.

Thanks [Ken] for sending us the tip on this ingenious project he’s been brewing. If you’re using Home Assistant in a unique way, be sure to send in your project for us to share. Don’t forget to check out some of the other Home Assistant projects we’ve published over the years. Like a wind gauge, maybe. Or something Fallout-inspired.

Continue reading “A DIY Fermenter For Flavorful Brews”

Business Card-Tro

ATtiny-Powered Business Card Plays Cracktro Hits

These cards plug into a USB port for power and have over a dozen small LEDs that light up the stars on the front, and a small buzzer that can play over ten minutes of cracktro music. To keep the cost down, [VCC] went with an ATtiny1616 microcontroller costing under 50 cents and still having plenty of outputs to drive the buzzer and LEDs. The final per-unit cost prior to shipping came out to only 1.5 euros, enabling them to be handed out without worrying about breaking the bank.

To aid in the assembly of the cards, [VCC] 3D printed a jig to apply material to the back of the USB connector, building up its thickness to securely fit in the USB port. He also wrote a small script for assembly-line programming the cards, getting the programming process down to around ten seconds per card and letting him turn through prepping the cards. Thanks, [VCC], for sending in your project—it’s a great addition to other PCB business cards we’ve featured.

Continue reading “ATtiny-Powered Business Card Plays Cracktro Hits”

RPI TinynumberHat9

2025 One Hertz Challenge: RPI TinynumberHat9

This eye-catching entry to the One Hertz Challenge pairs vintage LED indicators with a modern RPi board to create a one-of-a-kind clock. The RPI TinynumberHat9 by [Andrew] brings back the beautiful interface from high end electronics of the past.

This project is centered around the red AL304 and green ALS314V 7-segment display chips. These 7-segment displays were produced in the 1970s and 1980s in the Soviet Union; you can still find them, but you’ll have to do some digging as they are only becoming more rare. [Andrew] included the data sheet for these which was a good find, it is written in Russian but doesn’t hold any surprises, these tiny LEDs typically forward current is 5mA at 2V. One of the things that jumps out about these LEDs is the gold leads, a sure sign of being a high-end component of their day.

When selecting a driving chip for the LEDs, [Andrew] looked at the MAX7219 and HT16K33; he settled on the HT16K33 as it supports I2C as well as allows the easy addition of buttons to the HAT. Due to being driven by I2C, he was also able to add a Qwiic/Stemma I2C connector, so while designed initially to be a HAT for a Raspberry Pi Zero 2 W board, it can be connected to other things in the Qwiic/Stemma ecosystem.

Thanks [Andrew] for submitting this beautiful entry into the One Hertz Challenge. We love unique 7-segment displays, and so it’s pretty awesome to see 40-year-old display tech brought into the present.

 

Compass CNC

Human In The Loop: Compass CNC Redefines Workspace Limits

CNCs come in many forms, including mills, 3D printers, lasers, and plotters, but one challenge seems universal: there’s always a project slightly too large for your machine’s work envelope. The Compass CNC addresses this limitation by incorporating the operator as part of the gantry system.

The Compass CNC features a compact core-XY gantry that moves the router only a few inches in each direction, along with Z-axis control to set the router’s depth. However, a work envelope of just a few inches would be highly restrictive. The innovation of the Compass CNC lies in its reliance on the operator to handle gross positioning of the gantry over the workpiece, while the machine manages the precise, detailed movements required for cutting.

Most of the Compass CNC is constructed from 3D printed parts, with a commercial router performing the cutting. A Teensy 4.1 serves as the control unit, managing the gantry motors, and a circular screen provides instructions to guide the operator on where to position the tool.

Those familiar with CNC routers may notice similarities to the Shaper Origin. However, key differences set the Compass CNC apart. Primarily, it is an open source project with design files freely available for those who want to build their own. Additionally, while the Shaper Origin relies on a camera system for tracking movement, the Compass CNC uses four mouse sensors to detect its position over the workpiece.

The Compass CNC is still in development, and kits containing most of the necessary components for assembly are available. We’re excited to see the innovative creations that emerge from this promising new tool.

Continue reading “Human In The Loop: Compass CNC Redefines Workspace Limits”