Origami assembly line.

Building An Assembly Line For Origami Pigeons

When it comes to hacks, the best ones go to extremes. Either beautiful in their simplicity, or magnificent in their excess. And, well, today’s hack is the latter: excessive. [HTX Studio] built an assembly line for origami pigeons!

One can imagine the planning process went something like this:

  1. Make origami pigeon assembly line
  2. ?
  3. Profit

But whatever the motivation, this is an impressive and obviously very well engineered machine. Even the lighting is well considered. It’s almost as if it were made for show…

Now, any self-respecting nerd should know the difference between throughput and latency. From what we could glean from the video, the latency through this assembly line is in the order of 50 seconds. Conservatively it could probably have say 5 birds in progress at a time. So let’s say every 10 seconds we have one origami pigeon off the assembly line. This is a machine and not a person so it can operate twenty four hours a day, save downtime for repairs and maintenance, call it 20 hours per day. We could probably expect more than 7,000 paper pigeons out of this machine every day. Let’s hope they’ve got a buyer lined up for all these birds.

If you’re interested in assembly lines maybe we could interest you in a 6DOF robotic arm, or if the origami is what caught your eye, check out the illuminating, tubular, or self-folding kind!

Continue reading “Building An Assembly Line For Origami Pigeons”

Saving Green Books From Poison Paranoia

You probably do not need us to tell you that Arsenic is not healthy stuff. This wasn’t always such common knowledge, as for a time in the 19th century a chemical variously known as Paris or Emerald Green, but known to chemists as copper(II) acetoarsenite was a very popular green pigment. While this pigment is obviously not deadly on-contact, given that it’s taken 200 years to raise the alarm about these books (and it used to be used in candy (!)), arsenic is really not something you want in your system. Libraries around the world have been quarantining vintage green books ̶f̶o̶r̶ ̶f̶e̶a̶r̶ ̶b̶i̶b̶l̶i̶o̶p̶h̶i̶l̶i̶es ̶m̶i̶g̶h̶t̶ ̶b̶e̶ ̶t̶e̶m̶p̶t̶e̶d̶ ̶t̶o̶ ̶l̶i̶c̶k̶ ̶t̶h̶e̶m̶  out of an abundance of caution, but researchers at The University of St. Andrews have found a cheaper method to detect the poison pigment than XRF or Raman Spectroscopy previously employed.

The hack is simple, and in retrospect, rather obvious: using a a hand-held vis-IR spectrometer normally used by geologists for mineral ID, they analyzed the spectrum of the compound on book covers. (As an aside, Emerald Green is similar in both arsenic content and color to the mineral conichalcite, which you also should not lick.)  The striking green colour obviously has a strong response in the green range of the spectrum, but other green pigments can as well. A second band in the near-infrared clinches the identification.

A custom solution was then developed, which sadly does not seem to have been documented as of yet. From the press release it sounds like they are using LEDs and photodetectors for color detection in the green and IR at least, but there might be more to it, like a hacked version of common colour sensors that put filters on the photodetectors.

While toxic books will still remain under lock and key, the hope is that with quick and easy identification tens of thousands of currently-quarantined texts that use safer green pigments can be returned to circulation.

Tip of the hat to [Jamie] for the tip off, via the BBC.

Two white, cylindrical speakers are shown. The sides and most of the tops of the speakers are covered in holes, and at the center of the top of each, there is a circular LCD display. The top of the speaker is marked “Braun.”

A Modern Take On Iconic Industrial Design

The Functionalist design philosophy that Dieter Rams brought to Braun from the 50s to the 90s still inspires the look of a few devices, including Apple’s iPod, Teenage Engineer’s synthesizers and recorders – and [2dom]’s IR7 streaming radio.

The streaming radio was inspired by Braun’s portable radios, particularly the SK2, TP1, and the T3 pocket radio. [2dom] started with the T3’s circular pattern of holes and experimented with several variations, finally settling on a cylindrical shape with a central display; a prototype with a low-power monochrome rectangular display was eventually rejected in favor of a circular LCD. The housing consists of four 3D-printed components: an upper and lower shell, a resonator for the speaker, and a knob for a rotary encoder.

Electronics-wise, an ESP32 handles the computing requirements, while the LCD and rotary encoder provide a user interface. For audio, it uses a VS1053 MP3 decoder, PAM8403 amplifier, and a wideband speaker, with an audio isolation transformer to clean up the audio. To reduce power consumption, a MOSFET cuts power to the peripheral components whenever the device is in sleep mode. The full design is available on GitHub.

The end result of this effort is a quite authentic-looking 21st-century adaptation of Rams’s original designs. If you’re interested in more Braun designs, check out this replica of one of their desk fans. We’ve also seen a restoration of one of Braun’s larger radios, the TS2.

Run A Lawnmower On Diesel With Hot Bulb Hack

If you’re into automotive hacks and don’t watch [Robot Cantina], you are missing out. This hack has [Jimbo] taking a break from automotive hacking to butcher a poor, innocent Tecumseh lawnmower to run diesel fuel (or anything else) by converting the motor into a hot bulb engine. (Video embedded below.)

The secret is a long stack of anti-fouling adapters, which are essentially extension tubes that move the spark plug out of the combustion chamber to keep it from getting crudded up in an engine that’s burning too much oil. In this case, burning is what’s happening inside the anti-fouling adapters: by stacking seven of them, [Robot Cantina] is able to create a hot-bulb– volume that stays hot enough between strokes to induce spontaneous combustion of the fuel-air mix.

Hot-bulb engines were popular for certain tractors (the Lanz Bulldog being the most famous) and stationary engines from the late 19th century until Rudolf Diesel’s eponymous invention drove them out of their niche completely sometime after WWII.

Continue reading “Run A Lawnmower On Diesel With Hot Bulb Hack”

2025 Pet Hacks Contest: Fort Bawks Is Guarded By Object Detection

One of the difficult things about raising chickens is that you aren’t the only thing that finds them tasty. Foxes, raccoons, hawks — if it can eat meat, it probably wants a bite of your flock. [donutsorelse] wanted to protect his flock and to be able to know when predators were about without staying up all night next to the hen-house. What to do but outsource the role of Chicken Guardian to a Raspberry pi?

Object detection is done using a YOLOv8 model trained on images of the various predators local to [donutorelse]. The model is running on a Raspberry Pi and getting images from a standard webcam. Since the webcam has no low-light capability, the system also has a motion-activated light that’s arguably goes a long way towards spooking predators away itself. To help with the spooking, a speaker module plays specific sound files for each detected predator — presumably different sounds might work better at scaring off different predators.

If that doesn’t work, the system phones home to activate a siren inside [donutorelse]’s house, using a Blues Wireless Notecarrier F as a cellular USB modem. The siren is just a dumb unit; activation is handled via a TP-Link smart plug that’s hooked into [donutorelse]’s custom smart home setup. Presumably the siren cues [donutorelse] to take action against the predator assault on the chickens.

Weirdly enough, this isn’t the first time we’ve seen an AI-enabled chicken coop, but it is the first one to make into our ongoing challenge, which incidentally wraps up today.

Information Density: Microfilm And Microfiche

Today, we think nothing of sticking thousands of pages of documents on a tiny SD card, or just pushing it out to some cloud service. But for decades, this wasn’t possible. Yet companies still generated huge piles of paper. What could be done? The short answer is: microfilm.

However, the long answer is quite a bit more complicated. Microfilm is, technically, a common case of the more generic microform. A microform is a photographically reduced document on film. A bunch of pages on a reel of film is microfilm. If it is on a flat card — usually the size of an index card — that’s microfiche. On top of that, there were a few other incidental formats. Aperture cards were computer punch cards with a bit of microfilm included. Microcards were like microfiche, but printed on cardboard instead of film.

In its heyday, people used specialized cameras, some made to read fanfold computer printer paper, to create microfilm. There were also computer output devices that could create microfilm directly.

Continue reading “Information Density: Microfilm And Microfiche”

Turning Up The Heat On HT-PLA’s Marketing

PLA is probably the most-printed filament on the market these days, and is there any wonder? It’s cheap, it’s easy, and it doesn’t poison you (as quickly as its competitors, anyway). What it doesn’t do very well is take the heat. Polymaker’s new HT-PLA formulation promises to solve that, and [My Tech Fun] put those claims to the test in a recent video.

Polymaker claims its HT-PLA is heat-stable up-to 150 C, but still prints as easily as standard PLA at up to 300 mm/s. By “heat stable” they mean able to maintain dimensions and form at that temperature when not under any load, save perhaps its own weight. If you need high-temp mechanical properties, they also offer a glass-fiber infused HT-PLA-GF that they claim is heat resistant up to 110 C (that is, able to withstand load at that temperature) which is hard to sneeze at, considering you  you could print it on a stock Ender so long as you tossed a hardened nozzle on it.

Now it’s not a free lunch: to get the very best results, you do need to anneal the parts, which can introduce shrinkage and warping in HT-PLA, but that’s where HT-PLA-GF shines. If you want to see the results of the tests you can jump to 19:27 in the video, but the short version is that this is mechanically like PLA and can take the heat.

The verdict? If you like printing PLA and want to shove something in a hot car, you might want to try HT-PLA. Otherwise, it’s just like PLA. It prints like PLA, it looks like PLA, and when cold it behaves mechanically like PLA, which we suppose was rather what Polymaker was going for. There is no word yet on whether the additives that make it high-temp increase off-gassing or toxicity but since this stuff prints like PLA and can stand a little airflow, it should be easy to ventilate, which might make for fewer trade-offs when building an enclosure.

What do you think, will you be trying HT-PLA anytime soon? Let us know in the comments.

Continue reading “Turning Up The Heat On HT-PLA’s Marketing”