The ZX Spectrum Logic Analyzer

We know [Happy Little Diodes] frequently works with logic analyzer projects. His recent wireless logic analyzer for the ZX Spectrum is one of the oddest ones we’ve seen in a while. The heart of the system is an RP2040, and there are two boards. One board interfaces with the computer, and another hosts the controller.

The logic analyzer core is powered by a common open-source analyzer from [Eldrgusman]. This is one of the nice things about open source tools. Most people probably don’t need a logic analyzer that plugs directly into a ZX Spectrum. But if you do, it is fairly simple to repurpose a more generic piece of code and rework the hardware, if necessary.

Continue reading “The ZX Spectrum Logic Analyzer”

Simulating Cable TV

[Wrongdog Recons] suffers from a severe case of nostalgia. His earlier project simulated broadcast TV, and he was a little surprised at how popular the project was on GitHub. As people requested features, he realized that he could create a simulated cable box and emulate a 1990s-era cable TV system. Of course, you also needed a physical box, which turned into another project. You can see more about the project in the video below.

Inside is, unsurprisingly, a Raspberry Pi. Then you have to pretend to be a cable TV scheduler and organize your different video files for channels. You can interleave commercials and station breaks.

One addition was a scheduler so you could set up things like football games only play during football season. You can also control timing so you don’t get beer commercials during Saturday morning cartoons.

Continue reading “Simulating Cable TV”

An LLM For The Raspberry Pi

Microsoft’s latest Phi4 LLM has 14 billion parameters that require about 11 GB of storage. Can you run it on a Raspberry Pi? Get serious. However, the Phi4-mini-reasoning model is a cut-down version with “only” 3.8 billion parameters that requires 3.2 GB. That’s more realistic and, in a recent video, [Gary Explains] tells you how to add this LLM to your Raspberry Pi arsenal.

The version [Gary] uses has four-bit quantization and, as you might expect, the performance isn’t going to be stellar. If you are versed in all the LLM lingo, the quantization is the way weights are stored, and, in general, the more parameters a model uses, the more things it can figure out.

Continue reading “An LLM For The Raspberry Pi”

Kaleidoscopico Shows Off Pi Pico’s Capabilities

In the early days of computing, and well into the era where home computers were common but not particularly powerful, programming these machines was a delicate balance of managing hardware with getting the most out of the software. Memory had to be monitored closely, clock cycles taken into account, and even video outputs had to be careful not to overwhelm the processor. This can seem foreign in the modern world where double-digit gigabytes of memory is not only common, it’s expected, but if you want to hone your programming skills there’s no better way to do it than with the limitations imposed by something like a retro computer or a Raspberry Pi Pico.

This project is called Kaleidoscopio, built by [Linus Ã…kesson] aka [lft] and goes deep into the hardware of the Pi Pico in order to squeeze as much out of the small, inexpensive platform as possible. The demo is written with 17,000 lines of assembly using the RISC-V instruction set. The microcontroller has two cores on it, with one core acting as the computer’s chipset and the other acts as the CPU, rendering the effects. The platform has no dedicated audio or video components, so everything here is done in software using this setup to act as a PC from the 80s might. In this case, [lft] is taking inspiration from the Amiga platform, his favorite of that era.

The only hardware involved in this project apart from the Pi Pico itself are a few resistors, an audio jack, and a VGA port, further demonstrating that the software is the workhorse in this build. It’s impressive not only for wringing out as much as possible from the platform but for using the arguably weaker RISC-V cores instead of the ARM cores, as the Pi Pico includes both. [lft] goes into every detail on the project’s page as well, for those who are still captivated by the era of computer programming where every bit mattered. For more computing demos like this, take a look at this one which is based on [lft]’s retrocomputer of choice, the Amiga.

Continue reading “Kaleidoscopico Shows Off Pi Pico’s Capabilities”

Going To The Top With A Raspberry Pi Elevator

[BorisDigital] was mesmerised by a modern elevator. He decided to see how hard it would be to design his own elevator based on Raspberry Pis. He started out with a panel for the elevator and a call panel for the elevator lobby. Of course, he would really need three call panels since he is pretending to have a three-floor building.

It all looks very professional, and he has lots of bells and whistles, including an actual alarm. With the control system perfected, it was time to think about the hydraulics and mechanical parts to make a door and an actual lift.

Continue reading “Going To The Top With A Raspberry Pi Elevator”

A Portable Electronics Workstation

You don’t see them as often as you used to, but it used to be common to see “electronics trainers” which were usually a collection of components and simple equipment combined with a breadboard, often in a little suitcase. We think [Pro Maker_101’s] portable electronics workstation is in the same kind of spirit, and it looks pretty nice.

The device uses a 3D printed case and a custom PC board. There are a number of components, although no breadboard. There is a breakout board for Raspberry Pi GPIO, though. So you could use the screw terminals to connect to an external breadboard. We were thinking you could almost mount one as a sort of lid so it would open up like a book with the breadboard on one side and the electronics on the other. Maybe version two?

One thing we never saw on the old units? An HDMI flat-screen display! We doubt you’d make one exactly like this, of course, but that’s part of the charm. You can mix and match exactly what you want and make the prototyping station of your dreams. Throw in a small portable soldering iron, a handheld scopemeter, and you can hack anywhere.

We’d love to see something like this that was modular. Beats what you could build in 1974.

Continue reading “A Portable Electronics Workstation”

An Elegant Writer For A More Civilized Age

One of the most exciting trends we’ve seen over the last few years is the rise of truly personal computers — that is, bespoke computing devices that are built by individuals to fit their specific needs or wants. The more outlandish of these builds, often inspired by science fiction and sporting non-traditional layouts, tend to be lumped together under the term “cyberdecks”, but there are certainly builds where that description doesn’t quite stick, including the Cyber Writer from [Darbin Orvar].

With a 10-inch screen, you might think it was intended to be a portable, but its laser-cut Baltic birch plywood construction says otherwise. Its overall design reminds us of early computer terminals, and the 60% mechanical keyboard should help reinforce that feeling that you’re working on a substantial piece of gear from yesteryear.

There’s plenty of room inside for additional hardware.

The Cyber Writer is powered by the Raspberry Pi Zero W 2, which might seem a bit underpowered, but [Darbin] has paired it with a custom minimalist word processor. There’s not a lot of detail about the software, but the page for the project says it features integrated file management and easy email export of documents.

The software isn’t yet available to the public, but it sounds like [Darbin] is at least considering it. Granted, there’s already distraction-free writing software out there, but we’re pretty firm believers that there’s no such thing as too many choices.

If you’re looking for something a bit more portable, the impressive Foliodeck might be more your speed.

Continue reading “An Elegant Writer For A More Civilized Age”