
ELF Handling For Thread-Local Storage
Ulrich Drepper
drepper@gmail.com

Version 0.21
August 22, 2013

Based on:

Intel Itanium Processorspecific Application Binary Interface, May 2001, Document
Number: 245370-003

Thread-Local Storage, Version 0.68, Sun Microsystems, September 4, 2001

1 Motivation
Increasing use of threads lead developers to wish for a better way of dealing with
thread-local data. The POSIX thread interface defines interfaces which allow storing
void * objects separate for each thread. But the interface is cumbersome to use. A key
for the object has to be allocated dynamically at run-time. If the key isn’t used anymore
it must be freed. While this is already a lot of work and error prone it becomes a real
problem when combined with dynamically loaded code.

To counter these problems it was decided to extend the programming languages to
let the compiler take over the job. For C and C++ the new keyword thread can be
used in variable definitions and declarations. This is not an official extension of the
language but compiler writers are encouraged to implement them to support the new
ABI. Variables defined and declared this way would automatically be allocated local to
each thread:

__thread int i;
__thread struct state s;
extern __thread char *p;

The usefulness of this is not limited to user-programs. The run-time environment
can also take advantage of it (e.g., the global variable errno must be thread-local)
and compilers can perform optimizations which create non-automatic variables. Note
that adding thread to the definition of an automatic variable makes no sense and is
not allowed since automatic variables are always thread-local. Static function-scope
variables on the other hands are candidates, though.

The thread-local variables behave as expected. The address operator returns the
address of the variable for the current thread. The memory allocated for thread-local
variables in dynamically loaded modules gets freed if the module is unloaded. The
only real limitation is that in C++ programs thread-local variables must not require a
static constructor.

To implement this new feature the run-time environment must be changed. The
binary format must be extended to define thread-local variables separate from normal
variables. The dynamic loader must be able to initialize these special data sections.

1 MOTIVATION

The thread library must be changed to allocate new thread-local data sections for new
threads. The rest of this document will describe the changes to ELF format and what
the run-time environment has to do.

Not all architectures ELF is available for are supported in the moment. The list of
architectures which is supported and described in this document are:

• IA-32

• IA-64

• SPARC (32-bit and 64-bit)

• SuperHitachi (SH)

• Alpha

• x86-64

• S390 (31-bit and 64-bit)

The description for HP/PA 64-bit awaits integration into this document and all other
architectures have as of the time of this writing no (finalized) support.

2 Version 0.21, August 22, 2013

2 DATA DEFINITIONS

Table 1: Section table entries for .tbss and .tdata

Field .tbss .tdata
sh name .tbss .tdata
sh type SHT NOBITS SHT PROGBITS
sh flags SHF ALLOC +

SHF WRITE + SHF TLS
SHF ALLOC + SHF WRITE
+ SHF TLS

sh addr virtual address of section virtual address of section
sh offset 0 file offset of initialization image
sh size size of section size of section
sh link SHN UNDEF SHN UNDEF
sh info 0 0
sh addralign alignment of section alignment of section
sh entsize 0 0

2 Data Definitions

The changes required to emit thread-local data objects are minimal. Instead of putting
variables in sections .data and .bss for initialized and uninitialized data respectively,
thread-local variables are found in .tdata and .tbss. These sections are defined just
like the non-threaded counterparts with just one more flag set in the flags for the section.
The section table entries for these sections look as shown in table 1. As can be seen the
only difference to a normal data section is that the SHF TLS flag is set.

The names of the sections, as is in theory the case for all sections in ELF files, are
not important. Instead the linker will treat all sections of type SHT PROGBITS with
the SHF TLS flags set as .tdata sections, and all sections of type SHT NOBITS with
SHF TLS set as .tbss sections. It is the responsibility of the producer of the input files
to make sure the other fields are compatible with what is described in table 1.

Unlike the normal .data sections the running program will not use the .tdata

section directly. The section is possibly modified at startup time by the dynamic linker
performing relocations but after that the section data is kept around as the initializa-
tion image and not modified anymore. For each thread, including the initial one, new
memory is allocated into which then the content of the initialization image is copied.
This ensures that all threads get the same starting conditions.

Since there is no one address associated with any symbol for a thread-local variable
the normally used symbol table entries cannot be used. In executables the st value

field would contain the absolute address of the variable at run-time, in DSOs the value
would be relative to the load address. Neither is viable for TLS variables. For this
reason a new symbol type STT TLS is introduced. Entries of this type are created for
all symbols referring to thread-local storage. In object files the st value field would
contain the usual offset from the beginning of the section the st shndx field refers to.
For executables and DSOs the st value field contains the offset of the variable in the
TLS initialization image.

Version 0.21, August 22, 2013 3

2 DATA DEFINITIONS

Table 3: Program header table entry for initialization image

Field Value
p type PT TLS
p offset File offset of the TLS initialization image
p vaddr Virtual memory address of the TLS initialization image
p paddr Reserved
p filesz Size of the TLS initialization image
p memsz Total size of the TLS template
p flags PF R
p align Alignment of the TLS template

The only relocations which are allowed to use symbols of type STT TLS are those
which are introduced for handling TLS. These relocations cannot use symbols of any
other type.

To allow the dynamic linker to perform this initialization the position of the initial-
ization image must be known at run-time. The section header is not usable; instead a
new program header entry is created. The content is as specified in table 3.

Beside the program header entry the only other information the dynamic linker
needs is the DF STATIC TLS flag in the DT FLAGS entry in the dynamic section. This
flag allows to reject loading modules dynamically which are created with the static
model. The next section will introduce these two models.

Each thread-local variable is identified by an offset from the beginning of the
thread-local storage section (in memory, the .tbss section is allocated directly fol-
lowing the .tdata section, with the aligment obeyed). No virtual address can be
computed at link-time, not even for executables which otherwise are completely relo-
cated.

4 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS

3 Run-Time Handling of TLS

As mentioned above, the handling of thread-local storage is not as simple as that of
normal data. The data sections cannot simply be made available to the process and
then used. Instead multiple copies must be created, all initialized from the same initial-
ization image.

In addition the run-time support should avoid creating the thread-local storage if
it is not necessary. For instance, a loaded module might only be used by one thread
of the many which make up the process. It would be a waste of memory and time to
allocate the storage for all threads. A lazy method is wanted. This is not much extra
burden since the requirement to handle dynamically loaded objects already requires
recognizing storage which is not yet allocated. This is the only alternative to stopping
all threads and allocating storage for all threads before letting them run again.

We will see that for performance reasons it is not always possible to use the lazy
allocation of thread-local storage. At least the thread-local storage for the application
itself and the initially loaded DSOs are usually always allocated right away.

With the allocation of the memory the problems with using thread-local storage
are not yet over. The symbol lookup rules the ELF binary format defines do not allow
to determine the object which contains the used definition at link-time. And if the
object is not known the offset of the variable inside the thread-local storage section
for the object cannot be determine either. Therefore the normal linking process cannot
happen.

A thread-local variable is therefore identified by a reference to the object (and
therefore thread-local storage section of the object) and the offset of the variable in
the thread-local storage section. To map these values to actual virtual addresses the
run-time needs some data structures which did not exist so far. They must allow to
map the object reference to an address for the respective thread-local storage section
of the module for the current thread. For this two variants are currently defined. The
specifics of the ABIs for different architectures require two variants.1

t
tp

gen dtv dtv dtv dtv
t,2 t,3 t,4 t,5

t

TLS Blocks for

Dynamically−loaded modules

TCB

tlsoffset
1 2

tlsoffset tlsoffset
3

dtv
t,1

dtv

t

Figure 1: Thread-local storage data structures, variant I

1One reason to use variant II is that for historic reasons the layout of the memory pointed to by the thread
register is incompatible with variant I.

Version 0.21, August 22, 2013 5

3 RUN-TIME HANDLING OF TLS

Variant I (see figure 1) for the thread-local storage data structures were developed
as part of the IA-64 ABI. Being brand-new, compatibility was no issue. The thread
register for thread t is denoted by tpt. It points to a Thread Control Block (TCB) which
contains at offset zero a pointer to the dynamic thread vector dtvt for the thread.

The dynamic thread vector contains in the first field a generation number gent

which is used in the deferred resizing of the dtvt and allocation of TLS blocks de-
scribed below. The other fields contain pointers to the TLS blocks for the various
modules loaded. The TLS blocks for the modules loaded at startup time are located di-
rectly following the TCB and therefore have an architecture-specific, fixed offset from
the address of the thread pointer. For all initially available modules the offset of any
TLS block (and therefore thread-local variable) from the TCB must be fixed after the
program start.

tp
t

gen dtv dtv dtv dtv
t,2 t,3 t,4 t,5

t

tlsoffset tlsoffset
12

TLS Blocks for

Dynamically−loaded modules

TCB

tlsoffset
3

dtv
t,1

dtv

t

Figure 2: Thread-local storage data structures, variant II

Variant II has a similar structure. The only difference is that the thread pointer
points to a Thread Control Block of unspecified size and content. Somewhere the TCB
contains a pointer to the dynamic thread vector but it is not specified where. This is
under control of the run-time environment and the pointer must not be assumed to be
directly accessible; compilers are not allowed to emit code which directly access the
dtvt.

The TLS blocks for the executable itself and all the modules loaded at startup are
located just below the address the thread pointer points to. This allows compilers to
emit code which directly accesses this memory. Access to the TLS blocks is possible
again through the dynamic thread vector, which has the same structure as in variant I,
but also relative to the thread pointer with some offset which is fixed after the program
starts. The offset of TLS data for the executable itself is even known at link-time.

At program start time the TCB along with the dynamic thread vector is created
for the main thread. The position of the TLS blocks for the individual modules is
computed using architecture specific formulas based on the size and alignment require-
ments (tlssizex and alignx) of the respective TLS block. In the architecture specific sec-
tions the formulas will use a function ‘round’ which returns its first argument rounded
up to the next multiple of its second argument:

round(x, y) = y × dx/ye

6 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS 3.1 Startup and Later

The memory for the TLS blocks does not necessarily has to be allocated right away.
It depends on the model, static or dynamic, the module is compiled with whether it is
necessary or not. If the static model is used the address (better said, offset from the
thread pointer tpt) is computed using relocations by the dynamic linker at program
start time and compiler generated code directly uses these offsets to find the variable
addresses. In this case memory has to be allocated right away. In the dynamic model
finding the address of a variable is deferred to a function named tls get addr which
is provided by the run-time environment. This function is also able to allocate and
initialize the necessary memory if this has not happened yet.

3.1 Startup and Later
For programs using thread-local storage the startup code must set up the memory for the
initial thread before transferring control. Support for thread-local storage in statically
linked applications is limited. Some platforms (like IA-64) don’t define static linking
in the ABI (if it is supported it is non-standard), other platforms like Sun’s discourage
the use of static linking since only limited functionality is available. In any case is
dynamically loading modules in statically linked code severely limited or completely
impossible. Therefore is the handling of thread-local storage very much simpler since
only one module, the executable itself, exists.

The more interesting case is handling thread-local-storage in dynamically linked
code. In this case the dynamic linker must include support for handling this kind of
data sections. The requirements added by the ability to dynamically load code which
uses thread-local storage are described in the next section.

To set up the memory for the thread-local storage the dynamic linker gets the infor-
mation about each module’s thread-local storage requirements from the PT TLS pro-
gram header entry (see table 3). The information of all modules is collected. This can
possibly be handled with a linked list of records which contain

• a pointer to the TLS initialization image,

• the size of the TLS initialization image,

• the tlsoffsetm for the module,

• a flag indicating whether the module uses the static TLS model (only if the ar-
chitecture supports the static TLS model).

This list will be extended when dynamically loading additional modules (see next
section) and it will be used by the thread library to set up the TLS blocks for a newly
created thread. It would also be possible to merge two or more initialization records
for the initial set of modules to shorten the list.

If all TLS memory would have to be allocated at startup time the total size would
be tlssizeS = tlsoffsetM + tlssizeM where M is the number of modules present at
startup time. It is not necessary to allocated all this memory right away unless one
module is compiled for the static model. If all modules use the dynamic model it is
possible to defer the allocation. An optimized implementation will not blindly follow

Version 0.21, August 22, 2013 7

3.1 Startup and Later 3 RUN-TIME HANDLING OF TLS

the flag indicating the use of the static model. If the required amount of memory is
small it might not be worth the effort to defer the allocation, it might even save time
and resources.

As explained at the beginning of this section, a variable in thread-local storage is
specified by a reference to a module and an offset in the TLS block. Given the dynamic
thread vector data structure we can define the module reference as an integer starting
with 1 (one) which can be used to index the dtvt array. The number each module
receives is up to the run-time environment. Only the executable itself must receive a
fixed number, 1 (one), and all other loaded modules must have different numbers.

Computing the thread-specific address of a TLS variable is therefore a simple oper-
ation which can be performed by compiler-generated code which uses variant I. But it
cannot be done by the compiler for architectures following variant II and there is also
a good reason to not do it: deferred allocation (see below).

Instead a function named tls get addr is defined which could in theory be im-
plemented like this (this is the form this function has for IA-64; other architectures
might use a different interface):

void *
__tls_get_addr (size_t m, size_t offset)
{
char *tls_block = dtv[thread_id][m];

return tls_block + offset;
}

How the vector dtv[thread id] is located is architecture specific. The sections
describing the architecture-dependent parts of the ABIs will give some examples. One
should regard the expression dtv[thread id] as a symbolic representation of this
process. m is the module ID, assigned by the dynamic linker at the time the module
(application itself or a DSO) was loaded.

Using the tls get addr function has the additional advantage to allow imple-
menting the dynamic model where the allocation of the TLS blocks is deferred to the
first use. For this we simply have to fill the dtv[thread id] vector with a special
value which can be distinguished from any regular value and possibly the value indi-
cating an empty entry. It is simple to change the implementation of tls get addr

to do the extra work:

void *
__tls_get_addr (size_t m, size_t offset)
{
char *tls_block = dtv[thread_id][m];

if (tls_block == UNALLOCATED_TLS_BLOCK)
tls_block = dtv[thread_id][m] = allocate_tls (m);

return tls_block + offset;
}

8 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS 3.2 Dynamic Loading

The function allocate tls needs to determine the memory requirements for the
TLS of module m and initialize it appropriately. As described in section 2 there are two
kinds of data: initialized and uninitialized. The initialized data must be copied from
the relocated initialization image set up when module m was loaded. The uninitialized
data must be set to zero. An implementation could look like this:

void *
allocate_tls (size_t m)
{
void *mem = malloc (tlssize[m]);
memset (mempcpy (mem, tlsinit_image[m], tlsinit_size[m]),
’\0’, tlssize[m] - tlsinit_size[m]);
return mem;

}

tlssize[m], tlsinit_size[m], and tlsinit_image[m] have to be de-
termined in an implementation-dependent way. They are all known after module m has
been loaded. Note that the same image tlsinit_image[m] is used for all threads,
whenever they are created. A thread does not inherit the data from it’s parent.

Both variants for the storage data structures allow using the static model. The
modules which are compiled this way can be recognized by the DF STATIC TLS flag
in the DT FLAGS entry in the dynamic section. If such a module is part of the initial
set of modules (remember, such modules cannot be loaded dynamically) the memory
for the TLS block must be allocated immediately at startup time for the initial thread
and whenever a new thread is created for this new thread. Otherwise the allocation
can be deferred and the elements of dtvt are set to an implementation defined value
(UNALLOCATED TLS BLOCK in the example code above).

3.2 Dynamic Loading
Dynamic loading of modules adds some more complexity to the picture. First, there
should not be a limit on how many modules which use thread-local storage can be
loaded at one point which means the dtvt arrays must be enlarged if necessary. Second,
it is absolutely necessary to avoid memory leaks. This must be kept in mind when
optimizing the implementation for speed. The speed problems arise when deallocating
memory of the TLS block of an unloaded module. The slots in the dynamic thread
vector must be reused sooner or later. Not doing this would mean constantly extending
the vector when loading new modules.

Since deallocating and then reallocating memory is expensive, especially since it
has to be done for each individual thread, one might want to avoid the costs by keeping
the memory around. But this must never lead to memory leaks if the same module is
loaded and unloaded multiple times.

Now that the restrictions of the implementation are clear the actual work which
has to be performed must be described. Dynamically loading modules which contain
thread-local storage requires preparing the application for using the currently running
and all future threads for using this memory. Note that loading modules which do
not use thread-local storage themselves do not require special attention regardless of

Version 0.21, August 22, 2013 9

3.3 Statically Linked Applications 3 RUN-TIME HANDLING OF TLS

whether the rest of the program uses thread-local storage. The information about the
new TLS block must be added to the list of initialization records and the counter for the
number of loaded modules M must be incremented. While this takes care of threads
which will be created afterwards already running threads must be prepared, too.

Loading a new module can mean that the size of the dynamic thread vector allo-
cated for any given thread is possibly too small. This is what the generation counter
gent in each dtvt helps to detect. If the vector is accessed the first thing to do is to make
sure the generation number is up-to-date and if not, allocate a larger vector. While this
theoretically could be done by the thread which creates the new thread (or the new
thread itself) this would only lead to sychronization problems and possibly unneces-
sary work if a thread does not use any thread-local storage. Since dynamically loaded
modules cannot use the static model it is never necessary to allocate new elements in
dtvt right away. It is always possible to defer this until the first use in which case
tls get addr is used.

3.3 Statically Linked Applications

The TLS handling in statically linked applications is much simpler than in dynami-
cally linked code. At least if it is determined that statically linked applications cannot
dynamically load more modules. Even on systems which under some circumstances
allow dynamically loading (such as systems using the GNU C library) dynamic load-
ing might be restricted to loading to very basic modules and disallow those modules
containing code using or defining thread-local storage.

Therefore statically linked code always has exactly one TLS block. And since only
one module is ever used there is also no question about the variable offsets. Since all
thread-local variables must be contained in this one TLS block the offset is also known
at link-time.

The linker will always be able to fill in the module ID and offset and perform code
relaxations. There is no work for the startup code to except setting up the TLS block
for the initial thread. The thread library will have to do the same for newly created
threads. This is a simple task since there is exactly one initialization image.

From the discussions in this section we can already see that the access of the TLS
blocks is very simple since the tlsoffset1 value is known at link-time and adding the
thread pointer, the tlsoffset1 value, and the variable offset results in the address of the
variable. For some architectures the linker can automatically help to improve the code
by rewriting the compiler-generated code. When discussing the thread-local storage
access models we will see how much simpler the code gets and when discussing the
linker relaxations we will see how the linker can perform all the necessary optimiza-
tions.

3.4 Architecture Specific Definitions

Not all architectures use the same variant for the thread-local storage data structures
and some other requirements are also different. The handling of the thread pointer is
so low-level that it naturally is architecture specific. This section describes these bits

10 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS 3.4 Architecture Specific Definitions

to fill in the gaps in the discussion so far and prepares for the description of the inner
workings of the startup code.

3.4.1 IA-64 specific

The IA-64 ABI specifies the use of thread-local storage data structures according to
variant I above. The size of the TCB is 16 bytes where the first 8 bytes contain the
pointer to the dynamic thread vector. The other 8 bytes are reserved for the implemen-
tation.

The address of the dtvt array can be determined by loading the 64-bit word tpt

pointed to by the thread register, tp (GR 13). Each element of dtvt is 8 bytes in size to
accommodate a pointer.

The TLS blocks for all modules present at startup time (i.e. those which cannot
be unloaded) are created consecutively following the TCB. The tlsoffsetx values are
computed as follows:

tlsoffset1 = round(16, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem, alignm+1)

for all m in 1 ≤ m ≤M where M is the total number of modules.
The function tls get addr is defined in the IA-64 ABI as described above:

extern void *__tls_get_addr (size_t m, size_t offset);

It takes the module ID and the offset as parameters requiring relocations to change the
calling code to provide the needed information.

3.4.2 IA-32 specific

The IA-32 ABIs specify the use of thread-local storage data structures according to
variant II. Note the use of the plural: there are two versions of the IA-32 ABI. The
data structure layout does not differ between the two models. The size of the TCB
does not matter for the ABIs. The dynamic thread vector cannot be directly accessed
from compiler generated code. Each element of the dtvt is 4 bytes in size, enough for
a pointer and certainly enough for a generation counter.

Since the IA-32 architecture is low on registers the thread register is encoded in-
directly through the %gs segment register. The only requirement about this register is
that the actual thread pointer tpt can be loaded from the absolute address 0 via the %gs
register. The following code would load the thread pointer in the %eax register:

movl %gs:0, %eax

To access TLS blocks for modules using the static model the tlsoffsetm offsets
have to be known. These values must be subtracted from the thread register value.
Unlike what happens on IA-64 where the offsets are added. The offsets are computed
as follows:

tlsoffset1 = round(tlssize1, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

Version 0.21, August 22, 2013 11

3.4 Architecture Specific Definitions 3 RUN-TIME HANDLING OF TLS

for all m in 1 ≤ m ≤ M where M is the total number of modules. These formulas
differ slightly from the IA-64 formulas because of the fact that the values have to be
subtracted.

The tls get addr function also differs slightly from the IA-64 version. The
prototype is

extern void *__tls_get_addr (tls_index *ti);

where the type tls index is defined as

typedef struct
{

unsigned long int ti_module;
unsigned long int ti_offset;

} tls_index;

The element names are given only for presentation purposes. They are not available
outside the run-time environment. The information passed to the function is the same
as for the IA-64 version of this function but only code to pass one parameter must
be generated and the values need not be loaded from the GOT by the calling code.
Instead this is centralized in the tls get addr function. Note that the elements of
the structure have the same size as individual elements of the GOT. Therefore such a
structure can be defined on the GOT, occupying two GOT entries.

The definition of this function is one of the things which distinguish the two IA-
32 ABIs. The ABI defined by Sun Microsystems uses the traditional IA-32 calling
convention for this function where the parameter is passed to the function on the stack.
The GNU variant of the ABI defines that the parameter is passed to the function in the
%eax register. To avoid conflicts with the Sun interface the function has a different
name (note the three leading underscores):

extern void *___tls_get_addr (tls_index *ti)
__attribute__ ((__regparm__ (1)));

This declaration uses the notation for the GNU C compiler. The difference for the
function itself is not big. But the complexity of the linker operations and the size of the
generated code varies greatly in favor of the GNU variant.

For the implementation on GNU systems we can add one more requirement. The
address %gs:0 represents is actually the same as the thread pointer. I.e., the content of
the word addressed via %gs:0 is the address of the very same location. The advantage
is potentially big since we can access memory directly via the %gs register without
loading the thread pointer first. The documentation for the initial and local exec model
for x86 below shows the advantages.

3.4.3 SPARC specific

The SPARC ABI is virtually the same as the IA-32 ABI. Both were designed by Sun.
The difference between 32-bit and 64-bit SPARC implementations is only the different
size of variables containing pointers.

12 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS 3.4 Architecture Specific Definitions

As for IA-32, the structure of the TCB is not specified. The %g7 register is used as
the thread register containing tpt. Accessing the dynamic thread vector with the thread
register’s help is implementation defined. Each element of the dtvt is 4 bytes in size
for the 32-bit SPARC and 8 bytes in size for 64-bit SPARC.

The TLS blocks of the modules present at startup time are allocated according
to variant II of the data structure layout and the offsets are computed with the same
formulas both, the 32- and the 64-bit, code.

tlsoffset1 = round(tlssize1, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

for all m in 1 ≤ m ≤M where M is the total number of modules.
The tls get addr function has the same interface as on IA-32. The prototype is

extern void *__tls_get_addr (tls_index *ti);

where the type tls index is defined as

typedef struct
{

unsigned long int ti_module;
unsigned long int ti_offset;

} tls_index;

Here as well the element names are given only for presentation purposes. They are
not available outside the run-time environment.

Since the unsigned long int type has 4 bytes on 32-bit SPARC and 8 bytes
on 64-bit SPARC systems the elements of tls index have for both CPU versions the
same size as elements of the GOT and therefore it is here also possible to define object
of this type in the GOT data structure.

3.4.4 SH specific

The SH ABI was designed by Kaz Kojima to follow the design of variant I. There is
not yet any support for 64-bit SH architectures. The tls get addr function has the
same interface as on SPARC:

extern void *__tls_get_addr (tls_index *ti);

where the type tls index is defined as

typedef struct
{

unsigned long int ti_module;
unsigned long int ti_offset;

} tls_index;

Version 0.21, August 22, 2013 13

3.4 Architecture Specific Definitions 3 RUN-TIME HANDLING OF TLS

As usual, the element names are given only for presentation purposes. They are not
available outside the run-time environment.

The details for the currently supported SH ABIs differ from the SPARC, IA-32,
and IA-64 code because of the architecture of the processor. The processor versions
before SH-5 provide only very restricted addressing modes which allow only offsets
with up to 12 bits. Since the compiler cannot make any assumptions on the layout and
size of functions (and therefore the relative position of symbols) addresses of objects
and functions cannot generally be computed at runtime. Instead addresses are stored in
variables and the values are computed by the runtime linker at load time. This abolishes
the need to define any TLS relocations for instructions. It is only necessary to define
relocations for data object. This simplifies the TLS handling significantly since only
very few new relocations are needed.

The code sequences to access TLS are fixed. No scheduling is allowed. It is not
necessary with the SH implementation today since they do not feature sophisticated
out-of-order execution.

3.4.5 Alpha specific

The Alpha ABI is a hybrid between the IA-64 and SPARC models. The thread-local
storage data structures follow variant I above. The size of the TCB is 16 bytes where
the first 8 bytes contain the pointer to the dynamic thread vector. The other 8 bytes are
reserved for the implementation.

The TLS blocks for all modules present at startup time (i.e. those which cannot
be unloaded) are created consecutively following the TCB. The tlsoffsetx values are
computed as follows:

tlsoffset1 = round(16, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem, alignm+1)

for all m in 1 ≤ m ≤M where M is the total number of modules.
The tls get addr function is defined as for SPARC,

extern void *__tls_get_addr (tls_index *ti);

The thread pointer is held in the thread’s process control block. This value is ac-
cessed via the PALcode entry point PAL rduniq.

3.4.6 x86-64 specific

The x86-64 ABI is at its base virtually the same as the IA-32 ABI. The difference is
mainly in different size of variables containing pointers and that it only provides one
variant which closely matches the IA-32 GNU variant.

Instead of segment register %gs it uses the %fs segment register. Accessing the
dynamic thread vector with the thread register’s help is implementation defined. Each
element of the dtvt is 8 bytes in size.

The TLS blocks of the modules present at startup time are allocated according
to variant II of the data structure layout and the offsets are computed with the same
formulas.

14 Version 0.21, August 22, 2013

3 RUN-TIME HANDLING OF TLS 3.4 Architecture Specific Definitions

tlsoffset1 = round(tlssize1, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

for all m in 1 ≤ m ≤M where M is the total number of modules.
The tls get addr function has the same interface as on IA-32. The prototype is

extern void *__tls_get_addr (tls_index *ti);

where the type tls index is defined as

typedef struct
{

unsigned long int ti_module;
unsigned long int ti_offset;

} tls_index;

Here as well the element names are given only for presentation purposes. They are
not available outside the run-time environment.

One major extension over the IA-32 ABI is needed because of the large file sizes.
For efficiency reasons the code sequences for position-independent code used by de-
fault assume that the code segment does not exceed 2 GiB in size. This is what can be
addressed with the signed 32-bit offset which can be efficiently used given the instruc-
tion set. Compilers support the creation of larger binaries, too, (using -mcmodel=large
for gcc) and for those it is necessary to define alternative code sequences which is done
in the appropriate places.

3.4.7 s390 specific

The s390 ABI uses variant II of the thread-local storage data structures. The size of the
TCB does not matter for the ABI. The thread pointer is stored in access register %a0
and needs to get extracted into a general purpose register before it can be used as an
address. One way to get the thread pointer from %a0 to, for example, %r1 is by use of
the ear instruction:

ear %r1, %a0

The TLS blocks of the modules present at startup are allocated according to vari-
ant II of the data structure layout and the offsets are computed with the same formulas.
The tlsoffseti values must be subtracted from the thread register value.

tlsoffset1 = round(tlssize1, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

for all m in 1 ≤ m < M where M is the total number of modules.
The s390 ABI is defined to use the tls get offset function instead of the

tls get addr function used in other ABIs. The prototype is:

Version 0.21, August 22, 2013 15

3.4 Architecture Specific Definitions 3 RUN-TIME HANDLING OF TLS

unsigned long int __tls_get_offset (unsigned long int offset);

The function has a second, hidden parameter. The caller needs to set up the GOT
register %r12 to contain the address of the global offset table of the caller’s module.
The offset parameter, when added to the value of the GOT register, yields the ad-
dress of a tls index structure located in the caller’s global offset table. The type
tls index is defined as

typedef struct
{
unsigned long int ti_module;
unsigned long int ti_offset;

} tls_index;

The return value of tls get offset is an offset to the thread pointer. To get
the address of the requested variable the thread pointer needs to be added to the return
value. The use of tls get offset might seem more complicated than the standard
tls get addr but for s390 the use of tls get offset allows for better code se-

quences.

3.4.8 s390x specific

The s390x ABI is a close match to the s390 ABI. The thread-local storage data struc-
tures follows variant II. The size of the TCB does not matter for the ABI. The thread
pointer is stored in the pair of access registers %a0 and %a1 with the higher 32 bits
of the thread pointer in %a0 and the lower 32 bits in %a1. One way to get the thread
pointer into e.g. register %r1 is to use the following sequence of instructions:

ear %r1,%a0
sllg %r1,%r1,32
ear %r1,%a1

The TLS block allocation of the modules present at startup uses the same formulas
for tlsoffsetm as s390 and the s390x ABI uses the same tls get offset interface
as s390.

16 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS

4 TLS Access Models

The document so far already mentioned two different ways to access thread-local stor-
age, the dynamic and the static model. These are the basic differentiations of the TLS
access models. Different models, falling in one of these two categories, are used to
provide as much performance as possible. The ABIs covered in this document define
four different access models. The ABIs for other platforms might define additional
models.

All models have in common that the dynamic linker at startup-time or when a mod-
ule gets loaded dynamically has to process all the relocations related to thread-local
storage. Processing of none of these relocations can be deferred; just as any other
relocation for variables (instead of function calls) they must be processed right away.

When performing a relocation for STT TLS symbol the result is a module ID and
a TLS block offset. For relocations or normal symbols the result would be the address
of the symbol. The module ID and TLS block offset are then stored in the GOT. The
text segment cannot be modified and therefore the code generated by the compiler and
linker has instructions which read the values from the GOT.

4.1 General Dynamic TLS Model

The general dynamic TLS model is the most generic. Code compiled with it can be
used everywhere and it can access variables defined anywhere else. Compilers will
by default generate code with this model and only use a more restrictive model when
explicitly told to do so or when it can safely use another model without limiting the
generality.

The generated code for this model does not assume that module number nor vari-
able offset is known at link-time (leave alone compile-time). The values for the mod-
ule ID and the TLS block offset are determined by the dynamic linker at run-time
and then passed to the tls get addr function in an architecture-specific way. The
tls get addr function upon return has computed the address of the variable for the

current thread.
The size of the code to implement this model and the time needed at run-time for

relocation and in the code to compute the address makes it necessary to avoid this
model whenever possible. If both the module ID and the TLS block offset or even only
the module ID are known better ways are available.

Since in this model the tls get addr function is called to calculate the variable
address it is possible to defer allocating the TLS block with the techniques described
above. If the linker is changing the code to something more efficient this could be a
model which does not allow deferred allocation.

In the following sections the code shown is determining a address of a thread-local
variable x:

extern __thread int x;

&x;

Version 0.21, August 22, 2013 17

4.1 General Dynamic TLS Model 4 TLS ACCESS MODELS

4.1.1 IA-64 General Dynamic TLS Model

Since the IA-64 version of the tls get addr function is expecting the module ID
and the TLS block offset as parameters the code sequence for the general dynamic TLS
model on IA-64 has to load these two values in the parameter registers out0 and out1.
The result will be in the result register ret0.

It is important to know that the IA-64 ABI does not provide provisions for linker
relaxation. Once code is generated for a certain model the linker cannot help even if it
could find out that the model is not optimal. It is therefore important that the compiler
(sometimes guided by the programmer) generates the right code.

In the code sequences the instructions get assigned addresses of offsets. For IA-64
these only help referring to the instructions easier. The compiler can freely decide to
rearrange them.

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 mov loc0=gp
0x06 addl t1=@ltoff(@dtpmod(x)),gp R IA 64 LTOFF DTPMOD22 x
0x0c addl t2=@ltoff(@dtprel(x)),gp R IA 64 LTOFF DTPREL22 x

;;
0x10 ld8 out0=[t1]
0x16 ld8 out1=[t2]
0x1c br.callrp= tls get addr

;;
0x20 mov gp=loc0

Outstanding Relocations
GOT[m] R IA 64 DTPMOD64LSB x
GOT[n] R IA 64 DTPREL64LSB x

The instruction at address 0x06 determines the address of the GOT entry generated
for the @ltoff(@dtpmod(x)) expression. The linker puts the 22-bit offset of the
entry from the gp register in the instruction and creates a new GOT entry, GOT[m] in
the example, which gets filled at run-time by the dynamic linker. For this the dynamic
linker has to process the R IA 64 DTPMOD64LSB relocation to determine the module ID
for the module containing the symbol x (on platforms using big-endian the relocation
would be R IA 64 DTPMOD64MSB).

Similarly the instruction at address 0x0c is handled. The assembler handles the
@ltoff(@dtprel(x)) expression by storing gp-relative offset of the GOT entry in
the instruction and allocating a new GOT entry. The dynamic linker stores at run-time
in this GOT entry, GOT[n] (where n does not have to have any relation to m), the offset
of the variable x in the TLS block of the module the variable was found in. The value is
determined by processing the R IA 64 DTPREL64LSB relocation attached to this GOT
entry (on big-endian systems it would be R IA 64 DTPREL64MSB).

The remainder of the generated code is straight-forward. The GOT values are
loaded with the two ld8 instructions and stored in the parameter registers for the
following call to the function tls get addr. We have seen the prototype of this
function above and it should be obvious to see that it matches the use in the code here.

18 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.1 General Dynamic TLS Model

Upon return the computed address of the thread-local variable x is stored in the
register ret0.

4.1.2 IA-32 General Dynamic TLS Model

The IA-32 code sequence for the general dynamic model exists in two variants since
the function tls get addr is called differently as explained above. First the version
following Sun’s model:

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leal x@dtlndx(%ebx),%edx R 386 TLS GD 32 x
0x06 pushl %edx R 386 TLS GD PUSH x
0x07 call x@TLSPLT R 386 TLS GD CALL x
0x0c popl %edx R 386 TLS GD POP x
0x0d nop

Outstanding Relocations
GOT[n] R 386 TLS DTPMOD32 x
GOT[n+1] R 386 TLS DTPOFF32 x

The tls get addr function of the IA-32 ABI only takes one parameter which is
the address of the tls index structure containing the information. The R 386 TLS GD 32

relocation created for the x@dtlndx(%ebx) expression instructs the linker to allocate
such a structure in the GOT. The two entries required for the tls index object must
of course be consecutive (GOT[n] and GOT[n+1] in the example code above). These
GOT locations get the relocations R 386 TLS DTPMOD32 and R 386 TLS DTPOFF32

associated with it. The order of the two GOT entries is determined by the order of the
appropriate fields in the definition of tls info.

The instruction at address 0x00 only computes the address of the first GOT entry
by adding the offset from the beginning of the GOT which is known at link-time to the
content of the GOT register %ebx. The result is stored in any of the available 32-bit
registers. The example code above uses the %edx register but the linker is supposed to
be able to handle any register used. The address is then passed to the tls get addr

function on the stack. The pushl and popl instruction perform this work. They get
their own relocations so that the linker can recognize these instructions in case code
relaxations are later possible.

The x@TLSPLT expression is the call to tls get addr. It is not possible to sim-
ply write call tls get addr@plt since this would provide the assembler no in-
formation about the associated symbol (x in this case) and so it would not be able to
construct the correct relocation. This relocation, once more, is necessary for possible
code relaxations.

After the function call the register %eax contains the address of the thread-local
variable x. The nop instruction at address 0x0d is added here to create a code sequence
which allows code relaxations to be performed. As we will see later some of the code

Version 0.21, August 22, 2013 19

4.1 General Dynamic TLS Model 4 TLS ACCESS MODELS

sequences used for other access models need more space.
The code sequence for the GNU variant is similar but significantly simpler:

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leal x@tlsgd(,%ebx,1),%eax R 386 TLS GD x
0x07 call tls get addr@plt R 386 PLT32 tls get addr

Outstanding Relocations
GOT[n] R 386 TLS DTPMOD32 x
GOT[n+1] R 386 TLS DTPOFF32 x

The different calling convention for tls get addr reduces the code sequence
by two instructions. The parameter is passed to the function in the %eax register. This
is what the leal instruction at address 0x00 does. To signal that this instruction is for
the GNU variant of the access model the syntax x@tlsgd(%ebx) is used. This creates
the relocation R 386 TLS GD instead of R 386 TLS GD 32. The effect on the GOT is
the same. The linker allocates two slots in the GOT and places the offset from the
GOT register %ebx in the instruction. Note the form of the first operand of leal which
forces the use of the SIB-form of this instruction, increasing the size of the instruction
by one byte and avoiding an additional nop.

The call instruction also differs. There is no need for a special relocation and so
tls get addr is called using the normal syntax for a function call.

4.1.3 SPARC General Dynamic TLS Model

The SPARC general dynamic access model is very similar to the IA-32 one. The
tls get addr function is called with one parameter which is a pointer to an object

of type tls index.

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 sethi %hi(@dtlndx(x)),%o0 R SPARC TLS GD HI22 x
0x04 add %o0,%lo(@dtlndx(x)),%o0 R SPARC TLS GD LO10 x
0x08 add %l7,%o0,%o0 R SPARC TLS GD ADD x
0x0c call tls get addr R SPARC TLS GD CALL x

Outstanding Relocations, 32-bit
GOT[n] R SPARC TLS DTPMOD32 x
GOT[n+1] R SPARC TLS DTPOFF32 x

Outstanding Relocations, 64-bit
GOT[n] R SPARC TLS DTPMOD64 x
GOT[n+1] R SPARC TLS DTPOFF64 x

The expression @dtlndx(x) causes the linker to create an object of type tls info

in the GOT. Due to SPARC’s RISC architecture the offset has to be loaded in two

20 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.1 General Dynamic TLS Model

steps in the register %o0. The @dtlndx(x) expression used with %hi() produces
a R SPARC TLS GD HI22 relocation while the next instruction uses %lo() to get the
lower 10 bits and this way creates the matching R SPARC TLS GD LO10 relocation.

The offset so loaded is that of the first of two consecutive words in the GOT which
the linker will add when creating an executable or shared object and which get the
relocations R SPARC TLS DTPMOD64 and R SPARC TLS DTPOFF64 assigned. These
relocations will instruct the dynamic linker to look up the thread-local symbol x and
store the module ID of the module it is found in into the first word and the offset in the
TLS block into the second word.

The add instruction at address 0x08 produces the final address. In this example the
%l7 register is expected to contain the GOT pointer. The linker is prepared to deal with
any register, though, not only %l7. The requirement is only that the GOT register must
be the first register in the instruction. To locate the instruction a R SPARC TLS GD ADD

relocation is added to the instruction.
The last instruction in the sequence is the call to tls get addr which causes a

R SPARC TLS GD CALL relocation to be added.
The code sequence must appear in the code as is. It is not possible to move the

second add instruction in the delay slot of the call instruction since the linker would
not recognize the instruction sequence.2

4.1.4 SH General Dynamic TLS Model

Accessing a TLS variable in the general dynamic model is simply the concatenation of
the code to access a global variable and a function call. The global variable contains
the offset of the address TLS variable, a value determined by the linker. The called
function is tls get addr.

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add r0,r1
0x08 jsr @r1
0x0a add r12,r4
0x0c bra 3f
0x0e nop

.align 2
1: .long x@tlsgd R SH TLS GD 32 x
2: .long tls get addr@plt
3:

Outstanding Relocations
GOT[n] R SH TLS DTPMOD32 x
GOT[n+1] R SH TLS DTPOFF32 x

2This is at least what Sun’s documentation says and apparently how Sun’s linker works. Given the
relocations which show exactly what the instructions do this seems not really necessary.

Version 0.21, August 22, 2013 21

4.1 General Dynamic TLS Model 4 TLS ACCESS MODELS

The value stored in the word labeled with 1: contains the link-time constant offset
of the first of two GOT entries which make up the tls index object. The complete
address of the object will be computed in the instruction at offset 0x0a. The second and
third instruction compute the address of tls get addr with the usual code sequence.
In the instruction at offset 0x08 the function is then called and it returns in r0 the result.
Note that the add instruction at offset 0x0a is executed in the branch delay slot. After
tls get addr returns all that is necessary is to skip over the data.

It is worth mentioning that this code is fairly expensive. Each and every access
to a TLS variable in the general dynamic model requires four words of data and two
additional instructions to skip over the data placed in the middle of the text segment.

4.1.5 Alpha General Dynamic TLS Model

The Alpha general dynamic access model is similar to that for IA-32. The tls get addr

function is called with one parameter which is a pointer to an object of type tls index.

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 lda $16,x($gp) !tlsgd!1 R ALPHA TLSGD x
0x04 ldq $27, tls get addr($gp)!literal!1 R ALPHA LITERAL tls get addr
0x08 jsr $26,($27),0 !lituse tlsgd!1 R ALPHA LITUSE 4
0x0c ldah $29,0($26) !gpdisp!2 R ALPHA GPDISP 4
0x10 lda $29,0($29) !gpdisp!2

Outstanding Relocations
GOT[n] R ALPHA DTPMOD64 x
GOT[n+1] R ALPHA DTPREL64 x

The relocation specifier !tlsgd causes the linker to create an object of type tls info

in the GOT. The address of this object is loaded into the first argument register $16 with
the lda instruction. The rest of the sequence is the standard call sequence for a func-
tion, except that !lituse tlsgd is used instead of !lituse jsr. The reason for this
will become apparent when relaxation is discussed.

4.1.6 x86-64 General Dynamic TLS Model

The x86-64 general dynamic access model is very similar to the IA-32 GNU variant.
The tls get addr function is called with one parameter which is a pointer to an
object of type tls index.

General Dynamic Model Code Sequence Initial Relocation Symbol
0x00 .byte 0x66
0x01 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x08 .word 0x6666
0x0a rex64
0x0b call tls get addr@plt R X86 64 PLT32 tls get addr

22 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.1 General Dynamic TLS Model

Outstanding Relocations
GOT[n] R X86 64 DTPMOD64 x
GOT[n+1] R X86 64 DTPOFF64 x

The tls get addr function of the x86-64 ABI only takes one parameter which is
the address of the tls index structure containing the information. The R X86 64 TLSGD

relocation created for the x@tlsgd(%rip) expression instructs the linker to allocate
such a structure in the GOT. The two entries required for the tls index object must
of course be consecutive (GOT[n] and GOT[n+1] in the example code above). These
GOT locations get the relocations R X86 64 DTPMOD64 and R X86 64 DTPOFF64 as-
sociated with it.

The instruction at address 0x00 only computes the address of the first GOT entry
by adding the PC relative address of the beginning of the GOT which is known at link-
time to the current instruction pointer. The result is passed via the %rdi register to the
tls get addr function. Note the instruction must be preceeded by a data16 prefix

and immediately followed by the call instruction at offset 0x08. The call instruction
has to be preceeded by two data16 prefixes and one rex64 prefix to increase the total
size of the whole sequence to 16 bytes. Prefixes and not no-op instructions are used
since the former have no negative impact in the code.

For the x86-64 large code model where the call instruction with an immediate
operand cannot be used because code section can be larger than 2 GiB, a different
sequence is used instead.

General Dynamic Model Large Code Sequence Initial Relocation Symbol
0x00 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x07 movabsq $ tls get addr@pltoff, %rax R X86 64 PLTOFF64 tls get addr

0x11 addq %rbx, %rax
0x14 call *%rax

Outstanding Relocations
GOT[n] R X86 64 DTPMOD64 x
GOT[n+1] R X86 64 DTPOFF64 x

In the large memory model the x86-64 ABI uses a PIC register (in this case %rbx)
which is used to compute the absolute address of the PLT entry for tls get addr

by adding to it the offset of the function in the PLT. Then the register-indirect jump
instruction is used.

Version 0.21, August 22, 2013 23

4.1 General Dynamic TLS Model 4 TLS ACCESS MODELS

4.1.7 s390 General Dynamic TLS Model

For the s390 general dynamic access model the compiler has to set up the GOT register
%r12 before it can call tls get offset. The tls get offset function gets one
parameter which is a GOT offset to an object of type tls index. The return value of
the function call has to be added to the thread pointer to get the address of the requested
variable.

General Dynamic Model Code Sequence Initial Relocation Symbol
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bas %r14,0(%r6,%r13) R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x@tlsgd R 390 TLS GD32 x

Outstanding Relocations
GOT[n] R 390 TLS DTPMOD x

GOT[n+1] R 390 TLS DTPOFF x

The R 390 TLS GD32 relocation created for the literal pool entry x@tlsgd instructs
the linker to allocate a tls index structure in the GOT, occupying two consecutive
GOT entries. These two GOT entries have the relocations R 390 TLS DTPMOD and
R 390 TLS DTPOFF associated with them.

The R 390 TLS GDCALL relocation tags the instruction to call tls get offset.
This instructions is subject to TLS model optimization. The tag is necessary because
the linker needs to known the location of the call to be able to replace it with an in-
struction of a different TLS model. How the instruction tag is specified in the assembler
syntax is up to the assembler implementation.

The instruction sequence is divided into four parts. The first part extracts the thread
pointer from %a0 and loads the branch offset to tls get offset. The first part can
be reused for other TLS accesses. A second TLS access doesn’t have to repeat these
two instruction, but can use %r6 and %r7 if these registers have not been clobbered
between the two TLS accesses. The second part is the core of the TLS access. For
every variable that is accessed by the general dynamic access model these two instruc-
tion have to be present. The first loads the GOT offset to the variables tls index

structure from the literal pool and the second calls tls get offset. The third part
uses the extracted thread pointer in %r7 and the offset in %r2 returned by the call to
tls get offset to perform an operation on the variable. In the example the address

of x is loaded to register %r8. The compiler can choose any other suitable instruction

24 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.2 Local Dynamic TLS Model

to access x, for example a “l %r8,0(%r2,%r7)” would load the content of x to %r8.
That leaves room for optimizations in the compiler. The fourth part is the literal pool
that needs to have an entry for the x@tlsgd offset.

All the instruction in the general dynamic access model for s390 can be scheduled
freely by the compiler as long as the obvious data dependencies are fulfilled and the
registers %r0 - %r5 do not contain any information that is still needed after the bas

instruction (they get clobbered by the function call). Registers %r6, %r7 and %r8 are
not fixed, they can be replaced by any other suitable register.

4.1.8 s390x General Dynamic TLS Model

The general dynamic access model for s390x is more or less a copy of the general
dynamic model for s390. The main differences are the more complicated code for the
thread pointer extraction, the use of the brasl instruction instead of the bas and the
fact the s390x uses 64 bit offsets.

General Dynamic Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

sllg %r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brasl %r14, tls get offset@plt R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L2: .quad x@tlsgd R 390 TLS GD64 x

Outstanding Relocations
GOT[n] R 390 TLS DTPMOD x

GOT[n+1] R 390 TLS DTPOFF x

The relocations R 390 TLS GD64, R 390 TLS DTPMOD and R 390 TLS DTPOFF do
the same as their s390 counterparts, only the bit size of the relocation target is 64 bit
instead of 32 bit.

4.2 Local Dynamic TLS Model

The local dynamic TLS model is an optimization of the general dynamic TLS model.
The compiler can generate code following this model if it can recognize that the thread-
local variable is defined in the same object it is referenced in. This includes, for in-
stance, thread-local variables with file scope or variables which are defined to be pro-
tected or hidden (see the Generic ELF ABI specification for more information on this).
We refer to these kind of variables here as protected.

Version 0.21, August 22, 2013 25

4.2 Local Dynamic TLS Model 4 TLS ACCESS MODELS

Just as a reminder, a thread-local variable is defined by the module ID and the offset
in the TLS block of that module. In the case of variables which are known to be found
in the same object as the references the offsets are known at link-time. The module ID
is not known (unless it is the main application in which case more optimizations can be
performed). It is therefore still necessary to call tls get addr to get the module ID
and eventually allocate the TLS block. If the parameters for tls get addr would
make the function compute the start address of the TLS block by passing zero as the
offset it is then possible to reuse this value many times to access many variables by
adding the offset of the protected thread-local variable to the start address of the TLS
block. The compiler can easily and efficiently generate such code.

But one must keep in mind that it is normally not really an advantage to use the local
dynamic model if only one protected thread-local variable is used this way3. It would
mean a call to tls get addr as for the general dynamic model plus an additional
addition to compute the address. But the equation changes if more than one variable
is treated this way. We still have only one function call and every variable adds an
addition. Because the difference between the general and the local dynamic model
is not just replacing some instructions with a few others but instead generating quite
different code, the optimization from the general to the local dynamic model cannot
be performed by the linker. The compiler has to do it, perhaps with help from the
programmer.

In the architecture specific description the examples implement something equiva-
lent to this piece of code:

static __thread int x1;
static __thread int x2;

&x1;
&x2;

4.2.1 IA-64 Local Dynamic TLS Model

The instruction set of the IA-64 makes it possible that the code sequence to determine
the address of one variable with the local dynamic model is shorter than the general
dynamic model code sequence. In addition the variable offset does not have to be
computed by the dynamic linker and the GOT needs one less element.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 mov loc0=gp
0x06 addl t1=@ltoff(@dtpmod(x)),gp R IA 64 LTOFF DTPMOD22 x
0x0c addl out1=@dtprel(x),r0 R IA 64 DTPREL22 x

;;
0x10 ld8 out0=[t1]
0x16 br.callrp= tls get addr

;;
0x20 mov gp=loc0

3For IA-64 it can be of advantage.

26 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.2 Local Dynamic TLS Model

Outstanding Relocations
GOT[n] R IA 64 DTPMOD64LSB x

The difference to the general dynamic model is that it is not necessary to find the
offset of the variable by adding the @ltoff(@dtprel(x)) value to gp and then load
from this address. Instead the addl instruction at address 0x0c is used to compute
the offset directly (this is how loading an immediate value on IA-64 works). This all
means that one less ld8 instruction is needed in the second bundle and the compiler
could fill the slot with something else.

This code sequence has one limitation, though. The offset in the TLS block has
only 21 bits. If the amount of thread-local data exceeds 221 bytes (2 MiBi) different
code has to be used. Larger offsets must be loaded using the long move instruction
which allows a full 64-bit offset to be loaded. In addition, the compiler could optimize
the addl instruction further if it would be known that the thread-local data require-
ments don’t exceed 213 bytes (8 KiBi). The relocations used in these cases would
be R IA 64 DTPREL64I and R IA 64 DTPREL14 respectively. Whatever the compiler
chooses, there is normally no possibility for the linker to determine the best or nec-
essary instruction so the selection should be up to the user with the help of compiler
switches. The code sequence from the example above is a good compromise and useful
as the default.

In case a function must access more than one protected thread-local variable the
savings can be even larger. In this case the tls get addr call is not used to compute
the address of any variable but instead only to compute the address of the beginning of
the TLS block.

Local Dynamic Model Code Sequence, II Initial Relocation Symbol
0x00 mov loc0=gp
0x06 addl t1=@ltoff(@dtpmod(x1)),gp R IA 64 LTOFF DTPMOD22 x1
0x0c mov out1=r0

;;
0x10 ld8 out0=[t1]
0x16 br.callrp= tls get addr

;;
0x20 mov gp=loc0
0x26 mov r2=ret0

;;
0x30 addl loc1=@dtprel(x1),r2 R IA 64 DTPREL22 x1
0x36 addl loc2=@dtprel(x2),r2 R IA 64 DTPREL22 x2

Outstanding Relocations
GOT[n] R IA 64 DTPMOD64LSB x

The first part of the code is very similar to the previous code where only one vari-
able was used. The only difference is that explicitly zero is passed to tls get addr

as the second parameter. This computes the beginning of the TLS block for the module
x1 is found in, i.e., the module this code is in as well.

Version 0.21, August 22, 2013 27

4.2 Local Dynamic TLS Model 4 TLS ACCESS MODELS

To complete the computations additional code is needed and it starts with saving
the return value of the function call in a place where it can later be used (the register
r2). Finally we see the actual code to compute the variable addresses. It is very simple
since we only have to add the offset of the variable to the base address of the TLS
block. The offset is an immediate value known at link-time replaced in the code with
the R IA 64 DTPREL22 relocation. This relocation is, just as in the code above, a
compromise between size and flexibility. Here as well the compiler could use the short
add instruction or the long move instruction.

4.2.2 IA-32 Local Dynamic TLS Model

The code sequence for the local dynamic model is not providing any advantage over
the general dynamic model unless more than one variable is used. It is easy to see
why. The code to call tls get addr does not change at all since it only computes
the address of the GOT entry. The GOT entry must consists of two words even though
the ti offset word is known at link-time. In case more than one variable is needed
there is an advantage in using this model. The following is the code sequence for Sun’s
variant.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leal x1@tmdnx(%ebx),%edx R 386 TLS LDM 32 x1
0x06 pushl %edx R 386 TLS LDM PUSH x1
0x07 call x1@TLSPLT R 386 TLS LDM CALL x1
0x0c popl %edx R 386 TLS LDM POP x1

...
0x10 movl $x1@dtpoff,%edx R 386 TLS LDO 32 x1
0x15 addl %eax,%edx

...
0x20 movl $x2@dtpoff,%edx R 386 TLS LDO 32 x2
0x25 addl %eax,%edx

Outstanding Relocations
GOT[n] R 386 TLS DTPMOD32 x1

The x1@tmdnx(%ebx) expression in the first instruction instructs the assembler
to generate a R 386 TLS LDM 32. This in turn will tell the linker to create a special
tls index object on the GOT where the ti offset element is zero. This is why in
the code above there is only one outstanding relocation for the GOT. The ti module

element will be filled with the module ID of the module the code is in when it processes
the R 386 TLS DTPMOD32 relocation.

When the call to tls get addr call returns the %eax register contains the address
of the TLS block of the module the code is in for the current thread. All that is needed is
to complete the address computation by adding the variable offsets. The instructions at
address 0x10 and 0x15 compute the address of the variable x1 by adding the offset to
the %eax register content. For this the expression $x1@dtpoff is used which generates

28 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.2 Local Dynamic TLS Model

a relocation of type R 386 TLS LDO 32. This relocation reference the variable x1 and
its offset can be computed by the linker and filled in the instruction.

Using a second variable requires only the repetition of the addition which is less
work than the function call and although two variables are used only one tls index

element is created in the GOT.
The advantages are even more obvious in the code sequence for the GNU variant.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leal x1@tlsldm(%ebx),%eax R 386 TLS LDM x1
0x06 call tls get addr@plt R 386 PLT32 tls get addr

...
0x10 leal x1@dtpoff(%eax),%edx R 386 TLS LDO 32 x1

...
0x20 leal x2@dtpoff(%eax),%edx R 386 TLS LDO 32 x2

Outstanding Relocations
GOT[n] R 386 TLS DTPMOD32 x1

The computation of the base address in the TLS follows the Sun variant, along with
the improvements due to the calling conventions of tls get addr. The GOT con-
tains one special tls index entry with the ti offset element being zero. The only
differences are that the expression x1@tlsldm(%ebx) is used for the address of the
GOT entry. The expression is handled just like x1@tmdnx(%ebx) except that the relo-
cation which is created for the instruction is R 386 TLS LDM instead of R 386 TLS LDM 32.

But the calling convention is not the only advantage. The instructions to compute
the final addresses are optimized as well. Using the power of the leal instruction the
two instructions needed in Sun’s variant can be folded in one. The relocation for the
instruction remains the same. But this is not all. If instead of computing the address of
the variable the value of it has to be loaded one simply uses

movl x1@dtpoff(%eax),%edx

This instruction would get the same relocation as the original �leal instruction. Stor-
ing something in such a variable works exactly the same way.

As long as the base address of the TLS block is kept around in a register loading,
storing, or computing the address of a protected thread-local variable is a matter of one
instruction.

4.2.3 SPARC Local Dynamic TLS Model

For SPARC as for IA-32 the local dynamic model does not provide any advantage
when only one variable is used. The disadvantage is even bigger for SPARC due to the
nature of the RISC instruction set. If more than one variable is used the generated code
could look like this:

Version 0.21, August 22, 2013 29

4.2 Local Dynamic TLS Model 4 TLS ACCESS MODELS

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 sethi %hi(@tmdnx(x1)),%o0 R SPARC TLS LDM HI22 x1
0x04 add %o0,%lo(@tmndx(x1)),%o0 R SPARC TLS LDM LO10 x1
0x08 add %l7,%o0,%o0 R SPARC TLS LDM ADD x1
0x0c call tls get addr R SPARC TLS LDM CALL x1

...
0x10 sethi %hix(@dtpoff(x1)),%l1 R SPARC TLS LDO HIX22 x1
0x14 xor %l1,%lox(@dtpoff(x1)),%l1 R SPARC TLS LDO LOX22 x1
0x18 add %o0,%l1,%l1 R SPARC TLS LDO ADD x1

...
0x20 sethi %hix(@dtpoff(x2)),%l2 R SPARC TLS LDO HIX22 x2
0x24 xor %l2,%lox(@dtpoff(x2)),%l2 R SPARC TLS LDO LOX22 x2
0x28 add %o0,%l2,%l2 R SPARC TLS LDO ADD x2

Outstanding Relocations, 32-bit
GOT[n] R SPARC TLS DTPMOD32 x1

Outstanding Relocations, 64-bit
GOT[n] R SPARC TLS DTPMOD64 x1

The first four instructions are basically equivalent to the code sequence used for the
general dynamic model. But instead of using @dtlndx(x) to generate a tls index

entry for symbol x this code uses tmndx(x1) which creates a special kind of index
which refers to the current module (which contains x1) with an offset zero. The
linker will create only one relocation for the object, depending on the platform ei-
ther R SPARC TLS DTPMOD32 or R SPARC TLS DTPMOD64. The DTPREL relocation is
not necessary.

The reason for this is that the offsets are loaded separately. The @dtpoff(x1)

expression is used to access the offset of the symbol x1. Using the two instructions
at address 0x10 and 0x14 the complete offset is loaded and added to the result of the
tls get addr call in %o0 to produce the result in %l1. The @dtpoff(x1) expres-

sions creates the relocations R SPARC TLS LDO HIX22 and R SPARC TLS LDO LOX22

for the %hix() and %lox() part respectively. The add instruction is marked with a
R SPARC TLS LDO ADD relocation so that the linker can recognize it.

The benefit of using the local dynamic model is that for every additional variable
only three new instructions have to be added and no additional GOT entries or run-
time relocations. Altogether, it might be even preferable to use this model even for
one variable if the run-time overhead of processing the run-time relocations should be
avoided.

4.2.4 SH Local Dynamic TLS Model

As for the other architectures the code generated for the local dynamic model in SH
differs from the general dynamic model in that for the first local symbol which is looked
up additional efforts are necessary. The code sequence for the second and all later
lookups is much cheaper which is especially true for SH.

Local Dynamic Model Code Sequence Initial Relocation Symbol

30 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.2 Local Dynamic TLS Model

0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add r0,r1
0x08 jsr @r1
0x0a add r12,r4
0x0c bra 3f
0x0e nop

.align 2
1: .long x1@tlsgd R SH TLS LD 32 x1
2: .long tls get addr@plt
3: ...

mov.l .Lp,r1
mov.l r0,r1
...
mov.l .Lq,r1
mov.l r0,r1
...

.Lp: .long x1@dtpoff R SH TLS LDO 32 x1

.Lp: .long x2@dtpoff R SH TLS LDO 32 x2

Outstanding Relocations
GOT[n] R SH TLS DTPMOD32 x1

The first seven instruction are equivalent to those in the generic dynamic model.
Only this time the symbol looked up is special as it has the offset zero in the module’s
TLS data segment. This is identical to what is done on SPARC and IA-32. The differ-
ence to the generic dynamic code is that only one of the two GOT slots needed has a
relocation attached. The ti offset field is always zero.

Once these preliminaries are over the code to determine the address of the local
variables is simply. It consists of loading the linktime-constant offset of the variable in
the TLS segment and adding to it the earlier found address of the beginning of the TLS
segment for module and the current thread.

Compared with the generic dynamic model code sequence a lookup of two vari-
ables saves three instructions, one GOT entry, and one function call. For three TLS
variable lookups the benefit would be eight instructions, one data word, two GOT en-
tries, and two function calls. It is easy to see that choosing the local dynamic model
pays off whenever more than one variable is in play.

It is worth noting that in this code sequence the allocation of the memory for the
offsets for the variables, marked by the labels .Lp and .Lq, can be delayed and even-
tually combined with other data (as in the example code above). The mov.l and add
instructions do not have to be touched again after they have been created. Optimiza-
tions of the local dynamic model to the local exec model do not touch these instructions.
Therefore they can be moved around freely by the compiler, they need not have a fixed
relative position to the data.

Version 0.21, August 22, 2013 31

4.2 Local Dynamic TLS Model 4 TLS ACCESS MODELS

4.2.5 Alpha Local Dynamic TLS Model

For Alpha as for IA-32 the local dynamic model does not provide any advantage when
only one variable is used. If more than one variable is used the generated code could
look like this:

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 lda $16,x($gp) !tlsldm!1 R ALPHA TLSLDM x
0x04 ldq $27, tls get addr($gp)!literal!1 R ALPHA LITERAL tls get addr
0x08 jsr $26,($27),0 !lituse tlsldm!1 R ALPHA LITUSE 5
0x0c ldah $29,0($26) !gpdisp!2 R ALPHA GPDISP 4
0x10 lda $29,0($29) !gpdisp!2

...
0x20 lda $1,x1($0) !dtprel R ALPHA DTPREL16 x1

...
0x30 ldah $1,x2($0) !dtprelhi R ALPHA DTPRELHI x2
0x34 lda $1,x2($1) !dtprello R ALPHA DTPRELLO x2

...
0x40 ldq $1,x3($gp) !gotdtprel R ALPHA GOTDTPREL x3
0x44 addq $0,$1,$1

Outstanding Relocations
GOT[n] R ALPHA DTPMOD64 x

The instructions between 0x00 and 0x14 are basically the same as the sequence
used for the general dynamic model. The difference is that !tlsldm is used instead of
!tlsgd, which creates a tls index entry for the current object with a zero offset.

The offset is added later with one of the dtprel relocations. For this we have
three choices of code generation options depending on the expected size of the TLS
data segment. The sequence at 0x20 is good for a 15 bit positive displacement (32
KiB); the sequence at 0x30 is good for a 31 bit positive displacement (2 GiB); and the
final sequence at 0x40 is good for a 64 bit displacement.

4.2.6 x86-64 Local Dynamic TLS Model

Similarly to IA-32 and SPARC this access model has no advantage over global dynamic
model if there is just one local variable accessed this way.

Local Dynamic Model Code Sequence Initial Relocation Symbol
0x00 leaq x1@tlsld(%rip),%rdi R X86 64 TLSLD x1
0x07 call tls get addr@plt R X86 64 PLT32 tls get addr

...
0x10 leaq x1@dtpoff(%rax),%rcx R X86 64 DTPOFF32 x1

...
0x20 leaq x2@dtpoff(%rax),%r9 R X86 64 DTPOFF32 x2

Outstanding Relocations
GOT[n] R X86 64 DTPMOD64 x1

32 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.2 Local Dynamic TLS Model

The first two instructions are basically equivalent to the code sequence used for
the general dynamic model, although lack any padding. The two instructions must
be consecutive. Instead of using x1@tlsgd(%rip) to generate a tls index en-
try for symbol x1 this code uses x1@tlsld(%rip) which creates a special kind of
index which refers to the current module (which contains x1) with an offset zero.
The linker will create only one relocation for the object, R X86 64 DTPMOD64. The
R X86 64 DTPOFF64 relocation is not necessary.

The reason for this is that the offsets are loaded separately. The x1@dtpoff ex-
pression is used to access the offset of the symbol x1. Using the instruction at address
0x10 the complete offset is loaded and added to the result of the tls get addr

call in %rax to produce the result in %rcx. The x1@dtpoff expression creates the
R X86 64 DTPOFF32 relocation. If instead of computing the address of the variable
the value of it has to be loaded one simply uses

movq x1@dtpoff(%rax),%r11

This instruction would get the same relocation as the original �leaq instruction. Stor-
ing something in such a variable works exactly the same way.

As long as the base address of the TLS block is kept around in a register loading,
storing, or computing the address of a protected thread-local variable is a matter of one
instruction.

The benefit of using the local dynamic model is that for every additional variable
only three new instructions have to be added and no additional GOT entries or run-
time relocations. Altogether, it might be even preferable to use this model even for one
variable if the run-time overhead of processing the run-time relocations can be avoided.

For the x86-64 large code model, the initial sequence is similar to the General
Dynamic Large Code Model sequence.

Local Dynamic Model Large Code Sequence Initial Relocation Symbol
0x00 leaq x1@tlsld(%rip),%rdi R X86 64 TLSLD x1

0x07 movabsq $ tls get addr@pltoff, %rax R X86 64 PLTOFF64 tls get addr

0x11 addq %rbx, %rax
0x14 call *%rax

...
0x20 leaq x1@dtpoff(%rax),%rcx R X86 64 DTPOFF32 x1

...
0x30 leaq x2@dtpoff(%rax),%r9 R X86 64 DTPOFF32 x2

Outstanding Relocations
GOT[n] R X86 64 DTPMOD64 x1

The only difference in the initial sequence to the code used for the general dynamic
large code model is the relocation of the first instruction which in this case of course

Version 0.21, August 22, 2013 33

4.2 Local Dynamic TLS Model 4 TLS ACCESS MODELS

must be @tlsld. After this setup phase the code is the same as for the small code
model.

4.2.7 s390 Local Dynamic TLS Model

The code sequence of the local dynamic TLS model for s390 does not provide any
advantage over the general dynamic model if only a single variable is accessed. It is
even slightly worse because an additional literal pool entry is needed (x@tlsldm and
x@dtpoff instead of just x@tlsgd) that has to get loaded and added to the return
value of the tls get offset function call. The local dynamic model is much better
than the global dynamic model if more than a single local variable is accessed because
for every additional variable only a simple literal pool load is needed instead of a full
blown function call.

Local Dynamic Model Code Sequence Initial Relocation Symbol
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bas %r14,0(%r6,%r13) R 390 TLS LDCALL x1

la %r8,0(%r2,%r7)

l %r9,.L3-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x1

l %r9,.L4-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x1@tlsldm R 390 TLS LDM32 x1

.L3: .long x1@dtpoff R 390 TLS LDO32 x1

.L4: .long x2@dtpoff R 390 TLS LDO32 x2

Outstanding Relocations
GOT[n] R 390 TLS DTPMOD x1

As for the IA-32 local dynamic TLS model semantic the x1@tlsldm expression
in the literal pool instructs the assembler to emit a R 390 TLS LDM32 relocations. The
linker will create a special tls index object on the GOT for it with the ti offset

element set to zero. The ti module element will be filled with the module ID of
the module the code is in when it processes the R 390 TLS LDM32 relocation. The
literal pool entries x1@dtpoff and x2@dtpoff are translated by the assembler into
R 390 TLS LDO32 relocations. The linker will calculate the offsets for x1 and x2 in
the TLS block for the module and will write them to the literal pool.

The instruction sequence is divided into four parts. The first part is analog to the
first part of the general dynamic model. The second part calls tls get offset with

34 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.3 Initial Exec TLS Model

the GOT offset to the special tls index object created through the x@tlsldm entry
in the literal pool. The GOT register %r12 has to be set up before the call. After the
third instruction in the second part of the code sequence %r8 contains the address of
the thread local memory for the module the code is in. Part three of the code sequence
shows how the addresses of the thread local variable x1 and x2 are calculated. Part
four shows the literal pool entries needed by the code sequence.

All the instruction of the local dynamic code sequence can be scheduled freely by
the compiler as long as the obvious data dependencies are fulfilled and the function call
semantic of the bas instruction is taken into account.

4.2.8 s390x Local Dynamic TLS Model

The local dynamic access model for s390x is similar to the s390 version. The same
differences as between the two general dynamic models for s390 vs. s390x are present.
The extraction of the thread pointer requires three instruction instead of one, the branch
to tls get offset is done with the brasl instruction and the offsets have 64 bit
instead of 32 bit.

Local Dynamic Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brasl %r14, tls get offset@plt R 390 TLS LDCALL x1

la %r8,0(%r2,%r7)

lg %r9,.L2-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x1

lg %r9,.L3-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .quad x1@tlsldm R 390 TLS LDM64 x1

.L2: .quad x1@dtpoff R 390 TLS LDO64 x1

.L3: .quad x2@dtpoff R 390 TLS LDO64 x2

Outstanding Relocations
GOT[n] R 390 TLS DTPMOD x1

4.3 Initial Exec TLS Model
A more restrictive optimization is usable if the variables accessed are known to be in
one of the modules available and program start and if the programmer selects to use the
static access model. The last condition means that the generated code will not use the
tls get addr function which means that deferred allocation of memory for the TLS

Version 0.21, August 22, 2013 35

4.3 Initial Exec TLS Model 4 TLS ACCESS MODELS

blocks accessed this way is not possible. It would still be possible to defer allocation
for dynamically loaded modules.

The idea behind the optimization is that after the dynamic linker loaded all modules
referenced directly and indirectly by the executable (and some more like those named
by LD PRELOAD) each variable in the TLS block of any of those modules has a fixed
offset from the TCB since all the memory for the initially loaded modules is required
to be allocated consecutively. The offsets are computed using the architecture-specific
formulas for tlsoffsetm described in section 3.4 (where m is the module ID of the
module the variable is found in) to which the offset of the variable in the TLS block is
added.

The consequence of this optimization is that for each variable there would be a
run-time relocation for a GOT entry which instructs the dynamic linker to compute the
offset from the TCB. There is no need to compute the module ID. Therefore, coming
from the general dynamic model, the number of run-time relocations is cut by half.

The code sequences in the following discussion implement a simple access to a
variable x:

extern __thread int x;

&x;

4.3.1 IA-64 Initial Exec TLS Model

The initial exec model requires the code sequence to get the offset relative to the TCB
from the GOT location the dynamic linker put it in and add this value to the thread
pointer. Very short and simple.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 addl t1=@ltoff(@tprel(x)),gp R IA 64 LTOFF TPREL22 x

;;
0x10 ld8 t2=[t1]

;;
0x20 add loc0=t2,tp

Outstanding Relocations
GOT[n] R IA 64 TPREL64LSB x

The @ltoff(@tprel(x)) expression instructs the linker to create a R IA 64 LTOFF TPREL22

relocation which in turn requests the linker to create a GOT entry with a R IA 64 TPREL64LSB

relocation associated. This relocation is processed at program startup time by the dy-
namic linker to produce an offset relative to the TCB block (pointed to by the tp

register) of the desired variable. The offset value only has to be loaded with the ld8

instruction at address 0x10 and then added to the value of the tp register to get the
final address in the loc0 register.

36 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.3 Initial Exec TLS Model

The instructions can be freely mixed with other to enhance policy. Especially the
handling of the tp register handling can be optimized.

4.3.2 IA-32 Initial Exec TLS Model

The IA-32 code for the initial exec model is very simple and fast. The only problem
is locating the TCB block. The mechanism for this used by the platforms supported so
far is to use the %gs segment register. Accessing memory at offset 0 with this segment
register enables loading the TCB address. As always we handle Sun’s version first.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 movl x@tpoff(%ebx),%edx R 386 TLS IE 32 x
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations
GOT[n] R 386 TLS TPOFF32 x

The assembler generates for the x@tpoff(%ebx) expressions a R 386 TLS IE 32

relocation for the symbol x which requests the linker to generate a GOT entry with
a R 386 TLS TPOFF32 relocation. The offset of the GOT entry is then used in the
instruction. The R 386 TLS TPOFF32 relocation is processed at program startup time
by the dynamic linker by looking up the symbol x in the modules loaded at that point.
The offset is written in the GOT entry and later loaded by the instruction at address
0x00 in the %edx register.

The movl instruction at address 0x06 loads the thread pointer for the current thread
in the %eax register. This step eventually has to be adjusted to the method the platform
is using to access the thread pointer.

Finally, the subl instruction computes the final address. Note that it is necessary
to subtract the offset from the thread pointer. In variant II of the thread-local storage
data structure which IA-32 uses the TLS blocks are located before the TCB.

This code sequence requires only three instructions and occupies 14 bytes just like
the general dynamic model code sequence. It can be done better as the GNU variants
shows. There are two different GNU variants, one for position independent code which
uses GOT pointer and one for code without GOT pointer. The position independent
variant:

Initial Exec Model Code Sequence, II Initial RelocationSymbol
0x00 movl %gs:0,%eax
0x06 addl x@gotntpoff(%ebx),%eax R 386 TLS GOTIE x

Outstanding Relocations
GOT[n] R 386 TLS TPOFF x

Version 0.21, August 22, 2013 37

4.3 Initial Exec TLS Model 4 TLS ACCESS MODELS

This code sequence does basically the same except that the GOT value is added, not
subtracted, it combines the loading from the GOT and the arithmetic in one instruction.
The variant without GOT pointer is:

Initial Exec Model Code Sequence, III Initial RelocationSymbol
0x00 movl %gs:0,%eax
0x06 addl x@indntpoff,%eax R 386 TLS IE x

Outstanding Relocations
GOT[n] R 386 TLS TPOFF x

This code sequence results in the same dynamic relocation, but in the instruction it
resolves to the absolute address of the GOT slot, not its relative address from the start
of GOT.

The GNU variants uses a relocation that computes the negative offset of the variable
in the TLS block, rather than the positive offset. This is a significant advantage in that
the offset may be embedded directly in a memory address (see below).

Thus to load the contents of x (rather than its address) with Sun’s model the fol-
lowing code sequence is used.:

Initial Exec Model Code Sequence, IV Initial Relocation Symbol
0x00 movl x@tpoff(%ebx),%edx R 386 TLS IE 32 x
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax
0x0e movl (%eax),%eax

Outstanding Relocations
GOT[n] R 386 TLS TPOFF32 x

This is the same sequence as before with an additional load at the end. In constrast,
the GNU sequences don’t get longer. The position independent version looks like this:

Initial Exec Model Code Sequence, V Initial RelocationSymbol
0x00 movl x@gotntpoff(%ebx),%eax R 386 TLS GOTIE x
0x06 movl %gs:(%eax),%eax

Outstanding Relocations
GOT[n] R 386 TLS TPOFF x

38 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.3 Initial Exec TLS Model

The TLS variant II has the static TLS immediately before the TCB and therefore
negative offsets from the memory location pointed to by the %gs register directly access
it. For the position dependent code the code looks like this:

Initial Exec Model Code Sequence, VI Initial RelocationSymbol
0x00 movl x@indntpoff,%ecx R 386 TLS IE x
0x06 movl %gs:(%ecx),%eax

Outstanding Relocations
GOT[n] R 386 TLS TPOFF x

In the last sequence, if %eax register is used instead of the %ecx above, the first
instruction may be either 5 or 6 bytes long.

4.3.3 SPARC Initial Exec TLS Model

The SPARC initial exec code sequence given here relies on the GOT pointer in register
%l7 and the thread pointer in register %g7. With these registers available the code
sequence is simple. We have two different versions, for 32- and 64-bit platforms, since
we are loading a GOT entry from memory and this entry differs in size between the 32-
and 64-bit machines.

Initial Exec Model Code Sequence, 32-bit Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%o0 R SPARC TLS IE HI22 x
0x04 or %o0,%lo(@tpoff(x)),%o0 R SPARC TLS IE LO10 x
0x08 ld [%l7+%o0],%o0 R SPARC TLS IE LD x
0x0c add %g7,%o0,%o0 R SPARC TLS IE ADD x

Outstanding Relocations, 32-bit
GOT[n] R SPARC TLS TPOFF32 x

The code loads the constant offset of the GOT entry in the %o0 register. The
@tpoff(x) operator creates the R SPARC TLS IE HI22 and R SPARC TLS IE LO10

relocations which instruct the linker to allocate the GOT entry and to attach a reloca-
tion of type R SPARC TLS TPOFF32 to it. The ld instruction then loads the GOT entry.
To allow the linker to recognize the instruction a R SPARC TLS IE LD relocation is
added. Finally the add instruction computes the address of x. The instruction is tagged
with a R SPARC TLS IE ADD relocation. Note that the offset generate by the dynamic
linker is expected to be negative so that it can be added to the thread pointer.

Version 0.21, August 22, 2013 39

4.3 Initial Exec TLS Model 4 TLS ACCESS MODELS

Initial Exec Model Code Sequence, 64-bit Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%o0 R SPARC TLS IE HI22 x
0x04 or %o0,%lo(@tpoff(x)),%o0 R SPARC TLS IE LO10 x
0x08 ldx [%l7+%o0],%o0 R SPARC TLS IE LDX x
0x0c add %g7,%o0,%o0 R SPARC TLS IE ADD x

Outstanding Relocations, 64-bit
GOT[n] R SPARC TLS TPOFF64 x

The 64-bit version is basically identical except that the GOT entry is computed
and loaded as a 64-bit value. The relocation used to tag the ld instruction also differs
accordingly.

4.3.4 SH Initial Exec TLS Model

The initial exec code sequence provides no surprises. It is as simple as one can get it
for a RISC machine with the limitations of the small offsets and a not directly usable
thread register.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 mov.l 1f,r0
0x02 stc gbr,r1
0x04 mov.l @(r0,r12),r0
0x06 bra 2f
0x08 add r1,r0

.align 2
1: .long x@gottpoff R SH TLS IE 32 x
2: ...

Outstanding Relocations
GOT[n] R SH TLS TPOFF32 x

The offset of x relative to the thread pointer is loaded first. This as usual has
to happen indirectly. The word with the label 1: had the only relocation of the code
sequence associate. The linker will fill in the offset of the GOT entry which will contain
the offset of the TLS variable in the static TLS block. The GOT entry will be filled by
the dynamic linker. The instruction at offset 0x04 loads the value of the GOT entry into
register r0 and then adds the value of the thread register to it. The thread register value
is not directly available for an addition so it has to be moved into a regular register first.

For the initial exec code sequence it is once again important that it appears in the
output as presented here. The linker has to find the instructions using the relocation
generated by x@gottpoff.

4.3.5 Alpha Initial Exec TLS Model

The initial exec model requires that the thread pointer be loaded from the PCB into a
general purpose register. It is expected that this should be done once at the beginning

40 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.3 Initial Exec TLS Model

of the function and the value re-used after that. But for completeness, the PALcall is
included in the example sequence.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 call pal PAL rduniq
0x04 mov $0,$tp

...
0x10 ldq $1,x($gp) !gottprel R ALPHA GOTTPREL x
0x14 addq $tp,$1,$1

Outstanding Relocations
GOT[n] R ALPHA TPREL64 x

The !gottprel relocation specifier directs the linker to create a GOT entry that
contains an associated R ALPHA TPREL64 relocation. This relocation is processed at
program startup by the dynamic linker to produce an offset relative to the TCB block
for the desired variable. The offset only has to be loaded and added to the value of the
thread pointer to obtain the absolute address.

4.3.6 x86-64 Initial Exec TLS Model

The x86-64 initial exec model code uses the %fs segment register to locate the TCB.
Accessing memory at offset 0 with this segment register enables loading the TCB ad-
dress.

Initial Exec Model Code Sequence Initial Relocation Symbol
0x00 movq %fs:0,%rax
0x09 addq x@gottpoff(%rip),%rax R X86 64 GOTTPOFF x

Outstanding Relocations
GOT[n] R X86 64 TPOFF64 x

The assembler generates for the x@gottpoff(%rip) expressions a R X86 64 GOTTPOFF

relocation for the symbol x which requests the linker to generate a GOT entry with a
R X86 64 TPOFF64 relocation. The offset of the GOT entry relative to the end of the
instruction is then used in the instruction. The R X86 64 TPOFF64 relocation is pro-
cessed at program startup time by the dynamic linker by looking up the symbol x in the
modules loaded at that point. The offset is written in the GOT entry and later loaded
by the addq instruction.

To load the contents of x (rather than its address) an equally long sequence is avail-
able:

Version 0.21, August 22, 2013 41

4.3 Initial Exec TLS Model 4 TLS ACCESS MODELS

Initial Exec Model Code Sequence, II Initial Relocation Symbol
0x00 movq x@gottpoff(%rip),%rax R X86 64 GOTTPOFF x
0x07 movq %fs:(%rax),%rax

Outstanding Relocations
GOT[n] R X86 64 TPOFF64 x

4.3.7 s390 Initial Exec TLS Model

The code for the initial exec model is small and fast. The code has to get the offset
relative to the thread pointer from the GOT and add it to the thread pointer. There are
three different variants. The position independent variant with a small GOT (-fpic)
is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

l %r9,x@gotntpoff(%r12) R 390 TLS GOTIE12 x

la %r10,0(%r9,%r7) # %r10 = &x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF32 x

The R 390 TLS GOTIE12 relocation created for the expression x@gotntpoff causes
the linker to generate a GOT entry with a R 390 TLS TPOFF relocation. x@gotntpoff
is replaced by the linker with the 12 bit offset from the start of the GOT to the generated
GOT entry. The R 390 TLS TPOFF relocation is processed at program startup time by
the dynamic linker.

The position independent variant with a large GOT (-fPIC) is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

l %r8,.L1-.L0(%r13)

l %r9,0(%r8,%r12) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@gotntpoff R 390 TLS GOTIE32 x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF32 x

42 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.3 Initial Exec TLS Model

The R 390 TLS GOTIE32 relocation does the same as R 390 TLS GOTIE12, the
difference is that the linker replaces the x@gotntpoff expression with a 32 bit GOT
offset instead of 12 bit.

The variant without GOT pointer is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

l %r8,.L1-.L0(%r13)

l %r9,0(%r8) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@indntpoff R 390 TLS IE32 x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF32 x

The R 390 TLS IE32 relocation instructs the linker to create the same GOT entry
as for R 390 TLS GOTIE{12,32} but the linker replaces the x@indntpoff expression
with the absolute address of the created GOT entry. This makes the variant without
GOT pointer inadequate for position independent code.

4.3.8 s390x Initial Exec TLS Model

The initial exec model for s390x works like the initial exec model for s390. The posi-
tion independent variant with a small GOT (-fpic) is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r9,x@gotntpoff(%r12) R 390 TLS GOTIE12 x

la %r10,0(%r9,%r7) # %r10 = &x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF32 x

The position independent variant with a large GOT (-fPIC) is:

Initial Exec Model Code Sequence Initial Relocation Symbol

Version 0.21, August 22, 2013 43

4.4 Local Exec TLS Model 4 TLS ACCESS MODELS

ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

lg %r9,0(%r8,%r12) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@gotntpoff R 390 TLS GOTIE64 x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF64 x

The linker will replace x@gotntpoff for R 390 TLS GOTIE64 with a 64 bit GOT
offset. The variant without GOT pointer is:

Initial Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

larl %r8,x@indntpoff R 390 TLS IEENT x

lg %r9,0(%r8) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF64 x

The R 390 TLS IEENT relocations causes x@indntpoff to be replaced with the
relative offset from the larl instruction to the GOT entry. Because the instruction is
pc relative the variant without GOT pointer can be used in position independent code
as well.

4.4 Local Exec TLS Model
Optimizations for the local dynamic model, similar to those the local dynamic model
adds to the generic dynamic model, lead to the local exec model. Its use is even more
restricted than that of the local dynamic model. It can only be used for code in the
executable itself and to access variables in the executable itself.

Restricting the use to the executable means that just as for the local exec model that
the TLS block can be addressed relative to the thread pointer. Restricting the variables
to only those defined in the executable means that always the first TLS block, the one

44 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.4 Local Exec TLS Model

for the executable, is used and therefore the size of all the other TLS blocks is irrelevant
for the address computation. It also means that the linker knows when creating the final
executable what the offset from the TCB is. The formula for the actual offset depends
on the architecture but it consists of a sum or difference of the thread pointer, the offset
of the first TLS block tlsoffset1 and the offset of the variable in this TLS block offsetx.
The result is known at link-time and is made available in the code as an immediate
value.

The code in the architecture descriptions in the next sections implements something
along the line of the following where the code must be in the executable itself:

static __thread int x;

&x;

4.4.1 IA-64 Local Exec TLS Model

The code sequence for this model is very simple. If the thread register value is main-
tained appropriately in a register suitable for the add instruction the code sequence
consists of only one instructions for every new variable.

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 ld8 r2=tp

;;
0x10 addl loc0=@tprel(x),r2 R IA 64 TPREL22 x

Outstanding Relocations

Beside preparing the add instruction by moving the thread pointer value in the
r2 register all the code does is adding the constant offset to the thread pointer (the
add instruction cannot directly use the tp register). The R IA 64 TPREL22 relocation
names the variable and the linker is performing determining tlsoffset1 + offsetx. I.e.,
beside the offset of the variable in the TLS block only the alignment of the TLS block
has an influence on the result.

As with the initial exec model the code sequence given here is one of three possible
one. It allows handling of thread-local data up to 221 bytes (2 MiBi). Optimization are
possible for dealing with less than 213 bytes (8 KiBi) or more then 221 bytes in which
case the relocations used are R IA 64 TPREL14 and R IA 64 TPREL64I respectively
and the instruction is either a short add or a long move.

4.4.2 IA-32 Local Exec TLS Model

The IA-32 code sequence basically is only an addition of the offset which is available
as an immediate value to the thread pointer. The way the thread pointer is determined
might vary; in Sun’s model it can be determined by loading at offset 0 from the %gs

segment.

Version 0.21, August 22, 2013 45

4.4 Local Exec TLS Model 4 TLS ACCESS MODELS

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 movl $x@tpoff,%edx R 386 TLS LE 32 x1
0x05 movl %gs:0,%eax
0x0b subl %edx,%eax

Outstanding Relocations

The x@tpoff expression is used here not as an offset relative to the GOT but in-
stead as an immediate value. For this the linker generates a R 386 TLS LE 32 reloca-
tion which can be resolved by the linker. The value so determined is the positive offset
of the variable in the TLS block. It is subtracted from the thread pointer value to lead
to the final address of x in the %eax register. The GNU variant has again the advantage
of being shorter.

Local Exec Model Code Sequence, II Initial Relocation Symbol
0x00 movl %gs:0,%eax
0x06 leal x@ntpoff(%eax),%eax R 386 TLS LE x

Outstanding Relocations

Here the GNU variant uses a relocation that computes the negative offset of the
variable in the TLS block, rather than the positive offset. This is a significant advantage
in that the offset may be embedded directly in a memory address (see below).

Thus to load the contents of x (rather than its address) with Sun’s model the fol-
lowing code sequence is used:

Local Exec Model Code Sequence III Initial Relocation Symbol
0x00 movl $x@tpoff,%edx R 386 TLS LE 32 x1
0x05 movl %gs:0,%eax
0x0b subl %edx,%eax
0x0d movl (%eax),%eax

Outstanding Relocations

This is the same sequence as before with an additional load at the end. In contrast,
the GNU sequence does not get longer:

Local Exec Model Code Sequence, IV Initial Relocation Symbol

46 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.4 Local Exec TLS Model

0x00 movl %gs:0,%eax
0x06 movl x@ntpoff(%eax),%eax R 386 TLS LE x

Outstanding Relocations

If instead of computing the address of the variable we want to load from it or store
in it the following “sequence” can be used. Note that in this case we use the x@ntpoff
expression not as an immediate value but instead as an absolute address.

Local Exec Model Code Sequence, V Initial Relocation Symbol
0x00 movl %gs:x@ntpoff,%eax R 386 TLS LE x

Outstanding Relocations

The fact that the load and store operation is even simpler than the computation
of the address is certainly astonishing at first. But the segment register handling is
weird. One can think of the segment register %gs as a mean to move the zero address
of the virtual address space to a different location. The new location once computed
is directly accessible only to the CPU internals. This is why computing its address at
user-level requires the additional requirement that the first word of the shifted address
space contain the shift value or address.

4.4.3 SPARC Local Exec TLS Model

The SPARC local exec model code sequence is as easy as can get. It is just a matter of
adding the offset, which is available as an immediate value, to the thread register value.

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 sethi %hix(@tpoff(x)),%o0 R SPARC TLS LE HIX22 x
0x04 xor %o0,%lox(@tpoff(x)),%o0 R SPARC TLS LE LOX10 x
0x08 add %g7,%o0,%o0

Outstanding Relocations

The %hix(tpoff(x)) and %lox(tpoff(x)) expressions cause the assembler
to emit the R SPARC TLS LE HIX22 and R SPARC TLS LE LOX10 relocations which
request the linker to fill the offset value in the instructions as immediate values. This
loads the offset into the %o0 register. The following add instruction requires that the
offset here is negative. To compute the final address the offset is added to the value

Version 0.21, August 22, 2013 47

4.4 Local Exec TLS Model 4 TLS ACCESS MODELS

of the thread register %g7. The add instruction is not tagged with a relocation. The
reason is that the linker will never have to recognize this instruction for relaxation since
it does not get any simpler.

4.4.4 SH Local Exec TLS Model

As for the other architectures the local exec model code sequence is really simple. The
main difference is that as for all SH code a data relocation is needed.

Local Exec Model Code Sequence Initial RelocationSymbol
0x00 mov.l .Ln,r0
0x02 stc gbr,r1
0x04 add r1,r0

...
.Ln: .long x@tpoff R SH TLS LE 32 x

Outstanding Relocations

This code loads the two components of the address, the thread-pointer relative off-
set (known at linktime) and the thread pointer, in the registers r0 and r1 respectively
and adds them. Since no more optimzation is possible from this code sequence the
exact location of the word with the label .Ln is unimportant.

4.4.5 Alpha Local Exec TLS Model

The Alpha local exec model sequences are nice and tidy. There are three sequences
to choose from, depending on the size of the TLS that the application expects. In the
sequences below, it is expected that PAL rduniq has been invoked, and the thread
pointer copied to $tp.

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 lda $1,x1($tp) !tprel R ALPHA TPREL16 x1

...
0x10 ldah $1,x2($tp) !tprelhi R ALPHA TPRELHI x2
0x14 lda $1,x2($1) !tprello R ALPHA TPRELLO x2

...
0x20 ldq $1,x3($gp) !gottprel R ALPHA GOTTPREL x3
0x24 add1 $1,$tp,$1

Outstanding Relocations

The first sequence is good for 32 KiB, the second sequence for 2 GiB, and the third
for a full 64 bit displacement.

48 Version 0.21, August 22, 2013

4 TLS ACCESS MODELS 4.4 Local Exec TLS Model

4.4.6 x86-64 Local Exec TLS Model

The x86-64 code sequence is similar to IA-32 GNU variant. It is only an addition of
the offset which is available as an immediate value to the thread pointer. The thread
pointer is loaded from offset 0 of the %fs segment.

Local Exec Model Code Sequence Initial Relocation Symbol
0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R X86 64 TPOFF32 x

Outstanding Relocations

To load a TLS variable instead of computing its address, the following sequence
can be used:

Local Exec Model Code Sequence, II Initial Relocation Symbol
0x00 movq %fs:0,%rax
0x09 movq x@tpoff(%rax),%rax R X86 64 TPOFF32 x

Outstanding Relocations

or shorter:

Local Exec Model Code Sequence, III Initial Relocation Symbol
0x00 movq %fs:x@tpoff,%rax R X86 64 TPOFF32 x

Outstanding Relocations

4.4.7 s390 Local Exec TLS Model

The local exec model for s390 is only an addition of the offset which is available as
an immediate value to the thread pointer. In general the offset can have 32 bit which
requires a literal pool entry.

Local Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

l %r8,.L1-.L0(%r13)

Version 0.21, August 22, 2013 49

4.4 Local Exec TLS Model 4 TLS ACCESS MODELS

la %r9,0(%r8,%r7) # %r9 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@ntpoff R 390 TLS LE32 x

Outstanding Relocations

The linker resolves the R 390 TLS LE32 relocation to a negative offset to the thread
pointer.

4.4.8 s390x Local Exec TLS Model

The local exec model for s390x differs to the s390 model only in the thread pointer
extraction and the size of the offset.

Local Exec Model Code Sequence Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

la %r9,0(%r8,%r7) # %r9 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@ntpoff R 390 TLS LE64 x

Outstanding Relocations

50 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS

5 Linker Optimizations
The thread-local storage access model are hierarchical in the way they can be used. The
most generic model is the general dynamic model which can be used everywhere. The
initial exec model can be used unconditionally when generating the executable itself.
It can also be used if a shared object is not meant to be dynamically loaded. These two
models already define a hierarchy. The other two models are special optimizations for
either one of the more generic models if the definition is in the same module as the
reference. Graphically the hierarchy and transitions between the access models can be
represented like this:4

Initial
Exec

Local
Dynamic

Initial
Exec

Local
Exec

General
Dynamic

Local
Dynamic

Initial
Exec

Local
Exec

General
Dynamic

Local
Dynamic

Initial
Exec

Local
Exec

General
Dynamic

General
Dynamic

Compiler
Commandline

Backend−known
local optimization

exec optimization
Linker−known

local optimization
Linker−known

__thread int j;
Optimization
DefaultLegend:

The diagram shows how a code sequence to access a thread-local variable can be
optimized (or not) by compiler and linker. The solid lines indicate the default path
taken from any position. The default is to always leave the code as it is. Optimization
are indicated by the dashed lines.

Optimizations can have five different reasons:

• The programmer tells the compiler that the generated code is for an executable
and not used in a shared object.

• The programmer tells the compiler that the generated code does not have to ac-
cess variables in dynamically loaded code directly (using dlsym is OK).

• The compiler realizes that a thread-local variable is protected. I.e., the reference
is in the same module as the definition.

• The linker knows whether an executable is created or an shared object. Exe-
cutables (type ET EXEC) fall into the first category as do Position Independent
Executables (PIEs).

4This nice illustration was originally developed by Mike Walker.

Version 0.21, August 22, 2013 51

5.1 IA-32 Linker Optimizations 5 LINKER OPTIMIZATIONS

• The linker knows whether a reference to thread-local variable from code in the
executable is unconditionally satisfied by a definition in the executable itself. The
definition need not be protected since the executable is always the first object in
the symbol lookup path.

In the description of the access models for the architectures we already explained
the prerequisites for the use of the model. In the following section we explain in detail
how the code relaxations have to happen. This is not exactly trivial since there is not
a 1:1 relationship between the instructions used in the code sequences and we have to
handle differences in the sizes.

Of the architectures defined in this document so far only IA-32, SPARC, x86-64,
Alpha, and SH have defined linker optimizations. Doing this for IA-64 would be very
difficult to say the least. Code generation for IA-64 ideally has to move the bundles
given in the code sequences as far away from each other as possible to increase par-
allelism. But this means that locating the instructions which belong together is every-
thing but trivial. Not even tagging the instructions with relocations would work since
multiple code sequences could be merged together to load from or store in multiple
thread-local variables at once. Only very complicated flow analysis could reveal the
individual code sequences and nothing like this is current planned.

The architectures which define optimizations require that the compiler emits code
sequences as described. This, together with the relocations tagging the instructions,
will allow the linker to recognize the code sequences. Minor variations like using
different registers can easily be masked out. The details of how the code sequences are
recognized will not be discussed here. We assume that the linker has the capabilities
and concentrate on the actual work which has to be done now.

5.1 IA-32 Linker Optimizations
The linker is able to perform four different optimizations which save execution time by
reducing run-time relocations and loads from memory. The diagram only shows three
transitions but the initial exec to local exec transformation can be performed in addition
to others. Since the code sequences for the Sun and GNU variants are different we need
to discuss them here separately as well.

One word on the side effect of some of the optimizations. If the original code
uses the general dynamic or local dynamic access model the tls get addr func-
tion is used to access the variables. If none but these two models is used this means
that the allocation of the TLS blocks can be deferred as explained in the previous sec-
tions. If the linker performs its optimizations access to the TLS block happens without
tls get addr getting the chance to eventually allocate the memory the static model

is automatically enabled and the DF STATIC TLS flag must be set. This is normally not
a deterrent since the access to the static TLS block is frequent and deferred allocation
is really most useful for dynamically loaded code.

General Dynamic To Initial Exec

Probably the most important of the relaxations the linker can perform is the change
from the general dynamic to the initial exec model. The general dynamic model is the

52 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.1 IA-32 Linker Optimizations

most expensive at run-time and therefore should be avoided if possible. First we handle
the Sun variant.

GD → IE Code Transition Initial Relocation Symbol
0x00 leal x@dtlndx(%ebx),%edx R 386 TLS GD 32 x
0x06 pushl %edx R 386 TLS GD PUSH x
0x07 call x@TLSPLT R 386 TLS GD CALL x
0x0c popl %edx R 386 TLS GD POP x
0x0d nop

⇓ ⇓ ⇓
0x00 movl x@tpoff(%ebx),%edx R 386 TLS IE 32 x
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations
GOT[n] R 386 TLS TPOFF32 x

This optimization can be performed whenever an executable is created. The opti-
mization for the GNU variant is similar:

GD → IE Code Transition Initial Relocation Symbol
0x00 leal x@tlsgd(,%ebx,1),%eax R 386 TLS GD x
0x07 call tls get addr@plt R 386 PLT32 tls get addr

⇓ ⇓ ⇓
0x00 movl %gs:0,%eax
0x06 addl x@gotntpoff(%ebx),%eax R 386 TLS GOTIE x

Outstanding Relocations
GOT[n] R 386 TLS TPOFF x

It should now be clear why the general dynamic model code sequences for both
variants are longer than necessary. The nop in Sun’s case and the use of the SIB-form
in the GNU variant are needed to have room for the IE code sequence.

General Dynamic To Local Exec

The symbol lookup rules for ELF define that if a symbol needed in the executable is
defined in the executable it is always picked. The reason is that the executable is always
at the head of the search scope list. Therefore the general dynamic to local exec is quite
frequent as well and can save even more than the transition to the initial exec model.

Version 0.21, August 22, 2013 53

5.1 IA-32 Linker Optimizations 5 LINKER OPTIMIZATIONS

GD → LE Code Transition Initial Relocation Symbol
0x00 leal x@dtlndx(%ebx),%edx R 386 TLS GD 32 x
0x06 pushl %edx R 386 TLS GD PUSH x
0x07 call x@TLSPLT R 386 TLS GD CALL x
0x0c popl %edx R 386 TLS GD POP x
0x0d nop

⇓ ⇓ ⇓
0x00 movl $x@tpoff,%edx R 386 TLS LE 32 x
0x05 nop
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations

This optimization for the Sun variant reduces the number of instructions by one and
replaces the function call with a memory load and an arithmetic operation. The GNU
variant is equally effective:

GD → LE Code Transition Initial Relocation Symbol
0x00 leal x@tlsgd(,%ebx,1),%eax R 386 TLS GD x
0x07 call tls get addr@plt R 386 PLT32 tls get addr

⇓ ⇓ ⇓
0x00 movl %gs:0,%eax
0x06 addl $x@ntpoff,%eax R 386 TLS LE x

Outstanding Relocations

Please note the length of the movl instruction in the replacement code. It assumes
that a modR/M byte is used.

Local Dynamic to Local Exec

If the user did not tell the compiler that the code is intended for an executable it is still
possible for the linker to optimize the code but as can be seen below, the result is not
optimal.

LD → LE Code Transition Initial Relocation Symbol
0x00 leal x1@tmdnx(%ebx),%edx R 386 TLS LDM 32 x1
0x06 pushl %edx R 386 TLS LDM PUSH x1
0x07 call x1@TLSPLT R 386 TLS LDM CALL x1
0x0c popl %edx R 386 TLS LDM POP x1

...
0x10 movl $x1@dtpoff,%edx R 386 TLS LDO 32 x1

54 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.1 IA-32 Linker Optimizations

0x15 addl %eax,%edx
⇓ ⇓ ⇓

0x00 movl %gs:0,%eax
0x06 nop
0x07 nop
0x08 nop
0x09 nop
0x0a nop
0x0b nop
0x0c nop

...
0x10 movl $x1@tpoff,%eax R 386 TLS LE 32 x1
0x15 addl %eax,%edx

Outstanding Relocations

The long sequence of nops is the result of the large code size for the code sequence
generated for the local dynamic model. It is unavoidable at this point. Only the pro-
grammer telling the compiler that the code is for an executable could have avoided it.
What is described here is what Sun documents. The GNU variant has to same problem
but solves it with a bit less negative impact on run-time performance.

LD → LE Code Transition Initial Relocation Symbol
0x00 leal x1@tlsldm(%ebx),%eax R 386 TLS LDM x1
0x06 call tls get addr@plt R 386 PLT32 tls get addr

...
0x10 leal x1@dtpoff(%eax),%edx R 386 TLS LDO 32 x1

⇓ ⇓ ⇓
0x00 movl %gs:0,%eax
0x06 nop
0x07 leal 0x0(%esi,1),%esi

...
0x10 leal x1@ntpoff(%eax),%edx R 386 TLS LE x1

Outstanding Relocations

The instruction at address 0x07 requires some explanation. It might look some
pretty expensive instruction which does a lot but in fact it is a no-op. The value of the
%esi register is stored in the same register after multiplying it with one and adding
zero. The reason this instruction is chosen is that it is long, 4 bytes to be exact. This
means to fill the 5 byte hole we only need one extra nop instruction. This is much
cheaper than using seven nop instructions (similar to what Sun does).

In case the local dynamic model code is not computing the address and instead
loads from or stores in the variable directly the transformed code is also simply loading
or storing. The transformation is simple and just as documented in the example code

Version 0.21, August 22, 2013 55

5.2 SPARC Linker Optimizations 5 LINKER OPTIMIZATIONS

above: replace the x1@dtpoff(%eax) expression with -x1@tpoff(%eax) which is
accomplished by changing the R 386 TLS LDO 32 relocation into a R 386 TLS LE 32

relocation.

Initial Exec To Local Exec

The last optimization helps to squeeze out the last bit of performance if the code was
already compiled for exclusive use in an executable and a variable was found to be
available in the executable itself. This transition is much less wasteful than the local
dynamic to local exec transition.

IE → LE Code Transition Initial Relocation Symbol
0x00 movl x@tpoff(%ebx),%edx R 386 TLS IE 32 x
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

⇓ ⇓ ⇓
0x00 movl $x@tpoff,%edx R 386 TLS LE 32 x
0x05 nop
0x06 movl %gs:0,%eax
0x0c subl %edx,%eax

Outstanding Relocations

This optimization saves one run-time relocation, transforms one memory load into
a load of an immediate value but also adds a new instruction. This instruction is a nop
and which does not disrupt the execution much. The GNU variant does not need such
ugliness:

IE → LE Code Transition Initial Relocation Symbol
0x00 movl %gs:0,%eax
0x06 addl x@gotntpoff(%ebx),%eax R 386 TLS GOTIE x

⇓ ⇓ ⇓
0x00 movl %gs:0,%eax
0x06 leal x@ntpoff(%eax),%eax R 386 TLS LE x

Outstanding Relocations

5.2 SPARC Linker Optimizations

Since the model used for SPARC is mostly identical to that of IA-32 it is not surprising
that the same four optimizations are available here as well. In general the optimization

56 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.2 SPARC Linker Optimizations

are a bit cleaner due to the RISC instruction set of the SPARC processor which unlike
the CISC of IA-32 has a uniform length for the instructions.

General Dynamic To Initial Exec

This optimization manages to get rid of one run-time relocation and the call to the
tls get addr function. But the memory allocation for the static TLS block cannot

be deferred anymore and the DF STATIC TLS flag must be set.

GD → IE Code Transition, 32-bit Initial Relocation Symbol
0x00 sethi %hi(@dtlndx(x)),%o0 R SPARC TLS GD HI22 x
0x04 add %o0,%lo(@dtlndx(x)),%o0 R SPARC TLS GD LO10 x
0x08 add %l7,%o0,%o0 R SPARC TLS GD ADD x
0x0c call tls get addr R SPARC TLS GD CALL x

⇓ ⇓ ⇓
0x00 sethi %hi(@tpoff(x)),%o0 R SPARC TLS IE HI22 x
0x04 or %o0,%lo(@tpoff(x)),%o0 R SPARC TLS IE LO10 x
0x08 ld [%l7+%o0],%o0
0x0c add %g7,%o0,%o0

Outstanding Relocations
GOT[n] R SPARC TLS TPOFF32 x

We do not list the 64-bit version here as well. The differences are the same as
described in section 4.3.3. The actual register used for the GOT pointer (%l7 in the
code above) can vary. The linker will figure the actual register used out from the
instruction tagged with R SPARC TLS GD ADD.

General Dynamic To Local Exec

This optimization is also straight-forward, the instructions of the general dynamic
model are simply replaced by those of the local exec model. The only thing to keep in
mind is filling the short local exec code sequence with a nop.

GD → LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@dtlndx(x)),%o0 R SPARC TLS GD HI22 x
0x04 add %o0,%lo(@dtlndx(x)),%o0 R SPARC TLS GD LO10 x
0x08 add %l7,%o0,%o0 R SPARC TLS GD ADD x
0x0c call tls get addr R SPARC TLS GD CALL x

⇓ ⇓ ⇓
0x00 sethi %hix(@tpoff(x)),%o0 R SPARC TLS LE HIX22 x
0x04 xor %o0,%lox(@tpoff(x)),%o0 R SPARC TLS LE LOX10 x
0x08 add %g7,%o0,%o0
0x0c nop

Outstanding Relocations

Version 0.21, August 22, 2013 57

5.2 SPARC Linker Optimizations 5 LINKER OPTIMIZATIONS

This optimization removes both run-time relocations and the call to the tls get addr

function. The executable must be marked with the DF STATIC TLS flag, though.

Local Dynamic To Local Exec

The transition from the local dynamic to the local exec model is also on SPARC the
least optimal. It is best to enable the compiler to generate the optimal code right away.
But the optimization is nevertheless effective since it eliminates one run-time relocation
and the call to the tls get addr function.

LD → LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@tmdnx(x1)),%o0 R SPARC TLS LDM HI22 x1
0x04 add %o0,%lo(@tmndx(x1)),%o0 R SPARC TLS LDM LO10 x1
0x08 add %l7,%o0,%o0 R SPARC TLS LDM ADD x1
0x0c call tls get addr R SPARC TLS LDM CALL x1

...
0x10 sethi %hix(@dtpoff(x1)),%l1 R SPARC TLS LDO HIX22 x1
0x14 xor %l1,%lox(@dtpoff(x1)),%l1 R SPARC TLS LDO LOX22 x1
0x18 add %o0,%l1,%l1 R SPARC TLS LDO ADD x1

⇓ ⇓ ⇓
0x00 nop
0x04 nop
0x08 nop
0x0c mov %g0, %o0

...
0x10 sethi %hix(@tpoff(x1)),%o0 R SPARC TLS LE HIX22 x1
0x14 xor %o0,%lox(@tpoff(x1)),%o0 R SPARC TLS LE LOX10 x1
0x18 add %g7,%o0,%o0

Outstanding Relocations

This optimization also requires that the executable is marked with the DF STATIC TLS

flag.

Initial Exec To Local Exec

If the programmer told the compiler the code is meant for the executable but only the
linker knows that a variable is defined in the executable itself the following optimiza-
tion helps to eliminate the remaining run-time relocation.

IE → LE Code Transition Initial Relocation Symbol
0x00 sethi %hi(@tpoff(x)),%o0 R SPARC TLS IE HI22 x
0x04 or %o0,%lo(@tpoff(x)),%o0 R SPARC TLS IE LO10 x
0x08 ld [%l7+%o0],%o0 R SPARC TLS IE LD x
0x0c add %g7,%o0,%o0 R SPARC TLS IE ADD x

⇓ ⇓ ⇓
0x00 sethi %hix(@tpoff(x)),%o0 R SPARC TLS LE HIX22 x
0x04 xor %o0,%lox(@tpoff(x)),%o0 R SPARC TLS LE LOX10 x
0x08 mov %o0,%o0

58 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.3 SH Linker Optimizations

0x0c add %g7,%o0,%o0

Outstanding Relocations

Since the local exec model code sequence has only three instructions the instruction
at address 0x08 is added as a no-op.

5.3 SH Linker Optimizations
As for IA-32 and SPARC the linker can perform a number of optimizations. But the
repertoire is limited due to the structure of the SH code and the code sequences used.

General Dynamic to Initial Exec

If the initial exec model can be used code compiled using the general dynamic model
can save two instructions and potentially one GOT entry by performing the following
transformation:

GD → IE Code Transition Initial Relocation Symbol
0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add r0,r1
0x08 jsr @r1
0x0a add r12,r4
0x0c bra 3f
0x0e nop

.align 2
1: .long x@tlsgd R SH TLS GD 32 x
2: .long tls get addr@plt
3:

⇓ ⇓ ⇓
0x00 mov.l 1f,r0
0x02 stc gbr,r4
0x04 mov.l @(r0,r12),r0
0x06 bra 3f
0x08 add r4,r0
0x0a nop
0x0c nop
0x0e nop

.align 2
1: .long x@gottpoff R SH TLS IE 32 x
2: .long 0
3:

Outstanding Relocations
GOT[n] R SH TLS TPOFF32 x

The call to tls get addr has been optimized out and the instructions and the
data definition associated with the jump are complete gone. Note that we can move the

Version 0.21, August 22, 2013 59

5.3 SH Linker Optimizations 5 LINKER OPTIMIZATIONS

bra instruction for so that the now unnecessary memory locations filled with nop are
never executed.

General Dynamic to Local Exec

The transformation from general dynamic to the local exec model is almost identical
to the last transformation. Only we save one more instruction and there is no dynamic
relocation left.

GD → IE Code Transition Initial Relocation Symbol
0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add r0,r1
0x08 jsr @r1
0x0a add r12,r4
0x0c bra 3f
0x0e nop

.align 2
1: .long x@tlsgd R SH TLS GD 32 x
2: .long tls get addr@plt
3:

⇓ ⇓ ⇓
0x00 mov.l 1f,r0
0x02 stc gbr,r4
0x04 bra 3f
0x06 add r4,r0
0x08 nop
0x0a nop
0x0c nop
0x0e nop

.align 2
1: .long x@tpoff R SH TLS LE 32 x
2: .long 0
3:

Outstanding Relocations

Again it is possible to place the bra instruction tactically well to avoid having the
execute all the nop instructions which have to be filled in.

Local Dynamic to Local Exec

The final optimization allows converting local dynamic code sequences to locale exec
code sequences. The code generation this way is potentially even more efficient than
the local exec code sequence described above since the thread register is read only
once.

Local Dynamic Model Code Sequence Initial RelocationSymbol

60 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.4 Alpha Linker Optimizations

0x00 mov.l 1f,r4
0x02 mova 2f,r0
0x04 mov.l 2f,r1
0x06 add r0,r1
0x08 jsr @r1
0x0a add r12,r4
0x0c bra 3f
0x0e nop

.align 2
1: .long x1@tlsgd R SH TLS LD 32 x1
2: .long tls get addr@plt
3: ...

mov.l .Lp,r1
mov.l r0,r1
...
mov.l .Lq,r1
mov.l r0,r1
...

.Lp: .long x1@dtpoff R SH TLS LDO 32 x1

.Lp: .long x2@dtpoff R SH TLS LDO 32 x2

⇓ ⇓ ⇓
0x00 bra 3f
0x02 stc gbr,r0
0x04 nop
0x06 nop
0x08 nop
0x0a nop
0x0c nop
0x0e nop

.align 2
1: .long 0
2: .long 0
3: ...

mov.l .Lp,r1
mov.l r0,r1
...
mov.l .Lq,r1
mov.l r0,r1
...

.Lp: .long x1@tpoff R SH TLS LE 32 x1

.Lp: .long x2@tpoff R SH TLS LE 32 x2

Outstanding Relocations

Since computing the base address for the relocation used is now very simple (just
loading the thead register) the prologue is almost empty. The one instruction can be
executed in the branch delay slot of the jump over the first data.

5.4 Alpha Linker Optimizations

The Alpha linker optimizations are cleaner than either the IA-32 or SPARC, because
there are no restrictions on the ordering of instructions.

Version 0.21, August 22, 2013 61

5.4 Alpha Linker Optimizations 5 LINKER OPTIMIZATIONS

The TLSGD/TLSLDM, LITERAL, and LITUSE relocations are related by sequence
number in the assembly file. This causes them to be emitted adjacent into the object
file.

Relaxation of the tls get addr patterns cannot occur unless relocations TLSGD,
LITERAL, and LITUSE TLSGD appear in that exact sequence (and similar for TLSLDM).
This is to distinguish the case where the TLSGD relocation is not associated with any one
call sequence. The assembler will enforce the constraint that if LITUSE TLSGD exists,
the TLSGD and LITERAL relocations will be present, and no other LITUSE relocations
will be associated with the LITERAL.

Relaxation of the tls get addr patterns require that there be a GPDISP reloca-
tion at the offset immediately following the jsr.

General Dynamic To Initial Exec

GD → IE Code Transition Initial Relocation Symbol
0x00 lda $16,x($gp) R ALPHA TLSGD x
0x04 ldq $27, tls get addr($gp) R ALPHA LITERAL tls get addr
0x08 jsr $26,($27),0 R ALPHA LITUSE 4
0x0c ldah $29,0($26) R ALPHA GPDISP 4
0x10 lda $29,0($29)

⇓ ⇓ ⇓
0x00 ldq $16,x($gp) R ALPHA GOTTPREL x
0x04 unop
0x08 call pal PAL rduniq
0x0c addq $16,$0,$0
0x10 unop

Outstanding Relocations
GOT[n] R ALPHA TPOFF64 x

General Dynamic To Local Exec

GD → LE Code Transition Initial Relocation Symbol
0x00 lda $16,x($gp) R ALPHA TLSGD x
0x04 ldq $27, tls get addr($gp) R ALPHA LITERAL tls get addr
0x08 jsr $26,($27),0 R ALPHA LITUSE 4
0x0c ldah $29,0($26) R ALPHA GPDISP 4
0x10 lda $29,0($29)

⇓ ⇓ ⇓
0x00 ldah $16,x($31) R ALPHA TPRELHI x
0x04 lda $16,x($16) R ALPHA TPRELLO x
0x08 call pal PAL rduniq
0x0c addq $16,$0,$0
0x10 unop

Outstanding Relocations

62 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.5 x86-64 Linker Optimizations

This transition is used if the offset of x in the TLS block is within 2GiB. If the
offset is larger, then the GD → IE transition is used, except that there is no dynamic
relocation.

If the offset of x in the TLS block is within 32KiB, then the first instruction is an
lda and the second instruction is a unop.

Local Dynamic To Local Exec

The LD → LE transitions are identical to the GD → LE transitions, except that we
reference the base of the module’s TLS section rather than a specific variable.

Initial Exec To Local Exec

IE → LE Code Transition Initial Relocation Symbol
0x00 ldq $1,x($gp) R ALPHA GOTTPREL x
0x04 addq $tp,$1,$0

⇓ ⇓ ⇓
0x00 lda $16,x($31) R ALPHA TPREL x
0x04 addq $tp,$1,$0

Outstanding Relocations

This transition is only used if the offset of x in the TLS block is within 32KiB. If
the offset is larger, then the code sequence is unchanged, but the dynamic relocation in
the GOT is removed.

5.5 x86-64 Linker Optimizations
x86-64 linker optimizations closely match IA-32 optimizations of GNU variants.

General Dynamic To Initial Exec

This code transition should explain the 4 byte padding in the general dynamic code
sequence on x86-64. The IE sequence is 4 bytes longer:

GD → IE Code Transition Initial Relocation Symbol
0x00 .byte 0x66
0x01 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x08 .word 0x6666
0x0a rex64
0x0b call tls get addr@plt R X86 64 PLT32 tls get addr

⇓ ⇓ ⇓
0x00 movq %fs:0,%rax
0x09 addq x@gottpoff(%rip),%rax R X86 64 GOTTPOFF x

Outstanding Relocations
GOT[n] R X86 64 TPOFF64 x

Version 0.21, August 22, 2013 63

5.5 x86-64 Linker Optimizations 5 LINKER OPTIMIZATIONS

The large code model Global Dynamic sequence is 6 bytes longer but aside from
the no-op instruction the resulting code is the same.

Large GD → IE Code Transition Initial Relocation Symbol
0x00 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x00 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x07 movabsq $ tls get addr@pltoff, %rax R X86 64 PLTOFF64 tls get addr
0x11 addq %rbx, %rax
0x14 call *%rax

⇓ ⇓ ⇓
0x00 movq %fs:0,%rax
0x09 addq x@gottpoff(%rip),%rax R X86 64 GOTTPOFF x
0x10 nopw 0x0(%rax,%rax,1)

Outstanding Relocations
GOT[n] R X86 64 TPOFF64 x

General Dynamic To Local Exec

For the small code model this transition is similar to the General Dynamic to Initial
Exec optimization, just the offset can be stored directly into the instruction and no
runtime relocation is required.

GD → LE Code Transition Initial Relocation Symbol
0x00 .byte 0x66
0x01 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x08 .word 0x6666
0x0a rex64
0x0b call tls get addr@plt R X86 64 PLT32 tls get addr

⇓ ⇓ ⇓
0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R X86 64 TPOFF32 x

Outstanding Relocations

The resulting sequence is identical to the code for the Local Exec model when the
address is computed. Generating the code in the compiler is nevertheless more efficient
if the addressed variable can be used directly instead of first computing the address.

The large code model Global Dynamic sequence is 6 bytes longer but aside from
the additional no-op instruction the code is identical to that for the small code model.

64 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.5 x86-64 Linker Optimizations

Large GD → LE Code Transition Initial Relocation Symbol
0x00 leaq x@tlsgd(%rip),%rdi R X86 64 TLSGD x
0x07 movabsq $ tls get addr@pltoff, %rax R X86 64 PLTOFF64 tls get addr
0x11 addq %rbx, %rax
0x14 call *%rax

⇓ ⇓ ⇓
0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R X86 64 TPOFF32 x
0x10 nopw 0x0(%rax,%rax,1)

Outstanding Relocations

Local Dynamic to Local Exec

The following code transition requires padding in the resulting instruction:

LD → LE Code Transition Initial Relocation Symbol
0x00 leaq x1@tlsld(%rip),%rdi R X86 64 TLSLD x1
0x07 call tls get addr@plt R X86 64 PLT32 tls get addr

...
0x10 leaq x1@dtpoff(%rax),%rcx R X86 64 DTPOFF32 x1

⇓ ⇓ ⇓
0x00 .word 0x6666
0x02 .byte 0x66
0x03 movq %fs:0,%rax

...
0x10 leaq x1@tpoff(%rax),%rdx R X86 64 TPOFF32 x1

Outstanding Relocations

The large code model Local Dynamic sequence is 10 bytes longer:

Large LD → LE Code Transition Initial Relocation Symbol
0x00 leaq x1@tlsld(%rip),%rdi R X86 64 TLSLD x1
0x07 movabsq $ tls get addr@pltoff, %rax R X86 64 PLTOFF64 tls get addr
0x11 addq %rbx, %rax
0x14 call *%rax

...
0x20 leaq x1@dtpoff(%rax),%rcx R X86 64 DTPOFF32 x1

⇓ ⇓ ⇓
0x00 .word 0x6666
0x02 .byte 0x66
0x03 nopw %cs:0x0(%rax,%rax,1)
0x0d movq %fs:0,%rax

...

Version 0.21, August 22, 2013 65

5.6 s390 Linker Optimizations 5 LINKER OPTIMIZATIONS

0x20 leaq x1@tpoff(%rax),%rdx R X86 64 TPOFF32 x1

Outstanding Relocations

Initial Exec To Local Exec

The last of the x86-64 code transitions:

IE → LE Code Transition Initial Relocation Symbol
0x00 movq %fs:0,%rax
0x09 addq x@gottpoff(%rip),%rax R X86 64 GOTTPOFF x

⇓ ⇓ ⇓
0x00 movq %fs:0,%rax
0x09 leaq x@tpoff(%rax),%rax R X86 64 TPOFF32 x

Outstanding Relocations

5.6 s390 Linker Optimizations
The s390 ABI defines the same four linker optimizations as IA-32. The optimizations
explain the tls get offset function. All code sequences for s390 consist of basi-
cally three things:

1. extract the thread pointer,

2. get the offset of the requested variable to the thread pointer, and

3. an operation on the variable with an index/base operand that combines the thread
pointer and the offset (e.g. la %rx,0(%ry,%rz)).

All the optimizations have to do is to change the method how the offset is acquired.

General Dynamic To Initial Exec

The general dynamic access model is the most expensive one which makes this tran-
sition the most important one. For the general dynamic access model the code has to
load a GOT offset from the literal pool and then call tls get offset to get back
the offset of the variable from the thread pointer. For the initial exec access model the
code has to load a GOT entry that contains the offset of the variable from the thread
pointer. One of the initial exec code variants uses a literal pool entry for the GOT off-
set. This makes the transition simple, the function call instruction is replaced by a load
instruction and the literal pool constant x@tlsgd is replaced with x@gotntpoff:

66 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.6 s390 Linker Optimizations

GD → IE Code Transition Initial Relocation Symbol
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bas %r14,0(%r6,%r13) R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x@tlsgd R 390 TLS GD32 x

⇓ ⇓ ⇓
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

l %r2,0(%r2,%r12) R 390 TLS LOAD x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x@gotntpoff R 390 TLS GOTIE32 x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF32 x

General Dynamic To Local Exec

The optimization that turns the general dynamic code sequence into the local exec code
sequence is as simple as the general dynamic to initial exec transition. The local exec
code sequence loads the offset of the variable to the thread pointer directly from the
literal pool. The function call instruction of the general dynamic code sequence is
turned into a nop and the literal pool constant x@tlsgd is replaced with x@ntpoff:

GD → LE Code Transition Initial Relocation Symbol
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bas %r14,0(%r6,%r13) R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x@tlsgd R 390 TLS GD32 x

⇓ ⇓ ⇓

Version 0.21, August 22, 2013 67

5.6 s390 Linker Optimizations 5 LINKER OPTIMIZATIONS

l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bc 0,0 # nop

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x@ntpoff R 390 TLS LE32 x

Outstanding Relocations

Local Dynamic To Local Exec

The local dynamic to local exec code transition is a bit more complicated. To get the
address of a thread local variable in the local dynamic model three things need to be
added: the thread pointer, the (negative) offset to the TLS block of the module the code
is in and the offset to the variable in the TLS block. The local exec code just has to add
the thread pointer to the (negative) offset to the variable from the thread pointer. The
transition is done be replacing the function call with a nop, the literal pool constant
x1@tlsldm with 0 and the @dtpoff constants with @ntpoff:

LD → LE Code Transition Initial Relocation Symbol
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bas %r14,0(%r6,%r13) R 390 TLS LDCALL x1

la %r8,0(%r2,%r7)

l %r9,.L3-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x1

l %r9,.L4-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long x1@tlsldm R 390 TLS LDM32 x1

.L3: .long x1@dtpoff R 390 TLS LDO32 x1

.L4: .long x2@dtpoff R 390 TLS LDO32 x2

⇓ ⇓ ⇓
l %r6,.L1-.L0(%r13)

ear %r7,%a0

l %r2,.L2-.L0(%r13)

bc 0,0 # nop

la %r8,0(%r2,%r7)

68 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.6 s390 Linker Optimizations

l %r9,.L3-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x1

l %r9,.L4-.L0(%r13)

la %r10,0(%r10,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .long tls get offset@plt-.L0

.L2: .long 0

.L3: .long x1@ntpoff R 390 TLS LE32 x1

.L4: .long x2@ntpoff R 390 TLS LE32 x2

Outstanding Relocations
GOT[n] R 390 TLS DTPMOD x1

Initial Exec To Local Exec

The code transition from initial exec to local exec doesn’t improve the execution speed
but for two of the three initial exec variants a GOT entry less is needed.

IE → LE Code Transition Initial Relocation Symbol
ear %r7,%a0

l %r8,.L1-.L0(%r13)

l %r9,0(%r8,%r12) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@gotntpoff R 390 TLS GOTIE32 x

⇓ ⇓ ⇓
ear %r7,%a0

l %r8,.L1-.L0(%r13)

lr %r9,%r8 ; bcr 0,%r0

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@ntpoff R 390 TLS LE32 x

Outstanding Relocations

IE → LE Code Transition Initial Relocation Symbol

Version 0.21, August 22, 2013 69

5.7 s390x Linker Optimizations 5 LINKER OPTIMIZATIONS

ear %r7,%a0

l %r8,.L1-.L0(%r13)

l %r9,0(%r8) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@indntpoff R 390 TLS GOTIE32 x

⇓ ⇓ ⇓
ear %r7,%a0

l %r8,.L1-.L0(%r13)

lr %r9,%r8 ; bcr 0,%r0

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .long x@ntpoff R 390 TLS LE32 x

Outstanding Relocations

There is no IE → LE code transition for the small GOT case because no literal
pool entry exists where the modified constant x@ntpoff could be stored. For this case
a slot in the GOT is used for the constant.

5.7 s390x Linker Optimizations
The same four optimizations as for s390 are available for s390x. The optimizations
follow the same principles but with 64 bit instructions instead of 32 bit instructions.
The 6 byte brasl instruction is replaced with either the 6 byte lg load instruction or
the 6 byte brcl 0,. nop. The 6 byte lg instruction is replaced with the 6 byte triadic
shift by 0 bit sllg that is used instead of the more appropriate lgr which unfortunatly
has only 4 byte.

General Dynamic to Initial Exec

GD → IE Code Transition Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brasl %r14, tls get offset@plt R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@tlsgd R 390 TLS GD64 x

70 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.7 s390x Linker Optimizations

⇓ ⇓ ⇓
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

lg %r2,0(%r2,%r12) R 390 TLS LOAD x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@gotntpoff R 390 TLS GOTIE64 x

Outstanding Relocations
GOT[n] R 390 TLS TPOFF64 x

General Dynamic to Local Exec

GD → LE Code Transition Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brasl %r14, tls get offset@plt R 390 TLS GDCALL x

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@tlsgd R 390 TLS GD64 x

⇓ ⇓ ⇓
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brcl 0,.

la %r8,0(%r2,%r7) # %r8 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@ntpoff R 390 TLS LE64 x

Outstanding Relocations

Local Dynamic to Local Exec

LD → LE Code Transition Initial Relocation Symbol

Version 0.21, August 22, 2013 71

5.7 s390x Linker Optimizations 5 LINKER OPTIMIZATIONS

ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brasl %r14, tls get offset@plt R 390 TLS LDCALL x1

la %r8,0(%r2,%r7)

lg %r9,.L2-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x1

lg %r9,.L3-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .quad x1@tlsldm R 390 TLS LDM64 x1

.L2: .quad x1@dtpoff R 390 TLS LDO64 x1

.L3: .quad x2@dtpoff R 390 TLS LDO64 x2

⇓ ⇓ ⇓
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r2,.L1-.L0(%r13)

brcl 0,.

la %r8,0(%r2,%r7)

lg %r9,.L2-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x1

lg %r9,.L3-.L0(%r13)

la %r10,0(%r9,%r8) # %r10 = &x2

...

.L0: # literal pool, address in %r13

.L1: .quad 0

.L2: .quad x1@ntpoff R 390 TLS LE64 x1

.L3: .quad x2@ntpoff R 390 TLS LE64 x2

Outstanding Relocations

Initial Exec to Local Exec

IE → LE Code Transition Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

lg %r9,0(%r8,%r12) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

72 Version 0.21, August 22, 2013

5 LINKER OPTIMIZATIONS 5.7 s390x Linker Optimizations

...

.L0: # literal pool, address in %r13

.L1: .quad x@gotntpoff R 390 TLS GOTIE64 x

⇓ ⇓ ⇓
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

sllg %r9,%r8,0

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@ntpoff R 390 TLS LE64 x

Outstanding Relocations

IE→ LE Code Transition Initial Relocation Symbol
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

lg %r9,0(%r8) R 390 TLS LOAD x

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@indntpoff R 390 TLS GOTIE64 x

⇓ ⇓ ⇓
ear %r7,%a0

sllg %r7,%r7,32

ear %r7,%a1

lg %r8,.L1-.L0(%r13)

sllg %r9,%r8,0

la %r10,0(%r9,%r7) # %r10 = &x

...

.L0: # literal pool, address in %r13

.L1: .quad x@ntpoff R 390 TLS LE64 x

Outstanding Relocations

Version 0.21, August 22, 2013 73

6 NEW ELF DEFINITIONS

6 New ELF Definitions
This section shows the actual definitions for the newly introduced constants necessary
to describe the extended ELF format. The generic extensions are:

#define SHF_TLS (1 << 10)

#define STT_TLS 6

#define PT_TLS 7

6.1 New IA-64 ELF Definitions
#define R_IA64_TPREL14 0x91 /* @tprel(sym+add),imm14 */
#define R_IA64_TPREL22 0x92 /* @tprel(sym+add),imm22 */
#define R_IA64_TPREL64I 0x93 /* @tprel(sym+add),imm64 */
#define R_IA64_TPREL64MSB 0x96 /* @tprel(sym+add),data8 MSB */
#define R_IA64_TPREL64LSB 0x97 /* @tprel(sym+add),data8 LSB */
#define R_IA64_LTOFF_TPREL22 0x9a /* @ltoff(@tprel(s+a)),imm2 */
#define R_IA64_DTPMOD64MSB 0xa6 /* @dtpmod(sym+add),data8 MSB */
#define R_IA64_DTPMOD64LSB 0xa7 /* @dtpmod(sym+add),data8 LSB */
#define R_IA64_LTOFF_DTPMOD22 0xaa /* @ltoff(@dtpmod(sym+add)),imm22 */
#define R_IA64_DTPREL14 0xb1 /* @dtprel(sym+add),imm14 */
#define R_IA64_DTPREL22 0xb2 /* @dtprel(sym+add),imm22 */
#define R_IA64_DTPREL64I 0xb3 /* @dtprel(sym+add),imm64 */
#define R_IA64_DTPREL32MSB 0xb4 /* @dtprel(sym+add),data4 MSB */
#define R_IA64_DTPREL32LSB 0xb5 /* @dtprel(sym+add),data4 LSB */
#define R_IA64_DTPREL64MSB 0xb6 /* @dtprel(sym+add),data8 MSB */
#define R_IA64_DTPREL64LSB 0xb7 /* @dtprel(sym+add),data8 LSB */
#define R_IA64_LTOFF_DTPREL22 0xba /* @ltoff(@dtprel(s+a)), imm22 */

The operators used in the code sequences are defined as follows:

@ltoff(expr) Requests the creation of a GOT entry that will hold the full value of
expr and computes the gp-relative displacement to that GOT entry.

@tprel(expr) Computes a tp-relative displacement – the difference between the ef-
fective address and the value of the thread pointer. The expression must evaluate
to an effective address within a thread-specific data segment.

@dtpmod(expr) Computes the load module index corresponding to the load module
that contains the definition of the symbol referenced by the relocation. When
used in conjunction with the @ltoff() operator, it evaluates to the gp-relative
offset of a linkage table entry that holds the computed load module index.

@dtprel(expr) Computes a dtv-relative displacement – the difference between the
effective address and the base address of the thread-local storage block that con-
tains the definition of the symbol referenced by the relocation. When used in
conjunction with the @ltoff() operator, it evaluates to the gp-relative offset of
a linkage table entry that holds the computed displacement.

74 Version 0.21, August 22, 2013

6 NEW ELF DEFINITIONS 6.2 New IA-32 ELF Definitions

6.2 New IA-32 ELF Definitions
#define R_386_TLS_TPOFF 14 /* Negative offset in static TLS

block (GNU version) */
#define R_386_TLS_IE 15 /* Absolute address of GOT entry

for negative static TLS block
offset */

#define R_386_TLS_GOTIE 16 /* GOT entry for negative static
TLS block offset */

#define R_386_TLS_LE 17 /* Negative offset relative to
static TLS (GNU version) */

#define R_386_TLS_GD 18 /* Direct 32 bit for GNU version
of GD TLS */

#define R_386_TLS_LDM 19 /* Direct 32 bit for GNU version
of LD TLS in LE code */

#define R_386_TLS_GD_32 24 /* Direct 32 bit for GD TLS */
#define R_386_TLS_GD_PUSH 25 /* Tag for pushl in GD TLS
code */

#define R_386_TLS_GD_CALL 26 /* Relocation for call to
#define R_386_TLS_GD_POP 27 /* Tag for popl in GD TLS
code */

#define R_386_TLS_LDM_32 28 /* Direct 32 bit for local
dynamic code */

#define R_386_TLS_LDM_PUSH 29 /* Tag for pushl in LDM TLS
code */

#define R_386_TLS_LDM_CALL 30 /* Relocation for call to
#define R_386_TLS_LDM_POP 31 /* Tag for popl in LDM TLS
code */

#define R_386_TLS_LDO_32 32 /* Offset relative to TLS
block */

#define R_386_TLS_IE_32 33 /* GOT entry for static TLS
block */

#define R_386_TLS_LE_32 34 /* Offset relative to static
TLS block */

#define R_386_TLS_DTPMOD32 35 /* ID of module containing
symbol */

#define R_386_TLS_DTPOFF32 36 /* Offset in TLS block */
#define R_386_TLS_TPOFF32 37 /* Offset in static TLS
block */

The operators used in the code sequences are defined as follows:

@dtlndx(expr) Allocate two contiguous entries in the GOT to hold a tls index

structure (for passing to tls get addr). The instructions referencing this en-
try will be bound to the first of the two GOT entries.

@tlsgd(expr) This expression is the eqpuivalent of @dtlndx(expr) for the GNU
variant of the calling conventions. The linker is also allocating to two consecu-
tive entries in the GOT and the processing of the relocation produces the offset
of the first entry as the value of the expression. The only difference is that the
function called is tls get addr.

Version 0.21, August 22, 2013 75

6.2 New IA-32 ELF Definitions 6 NEW ELF DEFINITIONS

@tlsplt This expression is used in the call instructions to tls get addr in the
Sun variants. The call instruction is associated with the symbol the whole
code sequence this instruction is part of deals with. The R 386 TLS xxx CALL
relocations generated for the call instructions will reference the symbol. The
linker will insert a reference to tls get addr.

@tmndx(expr) Allocate two contiguous entries in the GOT to hold a tls index struc-
ture (for passing to tls get addr). The ti offset field of the object will be
set to 0 (zero) and the ti module field will be filled in at run-time. The call to
tls get addr will return the starting offset of the dynamic TLS block.

@tlsldm(expr) This expression is the GNU variant of @tmndx(expr). Just as for
@tlsgd(expr) the only difference is that the function called in the following
call instruction is tls get addr.

@dtpoff Calculate the offset of the variable it is added to relative to the TLS block it
is contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@tpoff Calculate the offset of the variable it is added to relative to the static TLS
block. The linker allocates one GOT entry for the result of the relocation.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

If used in the form @tpoff(expr) the offset of the variable in expr relative to the
static TLS block is calculated. The linker allocates one GOT entry for the result
of the relocation.

@ntpoff Calculate the negative offset of the variable it is added to relative to the static
TLS block.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

@gotntpoff This expression is the GNU variant of @tpoff(expr). The difference
is that the GOT slot allocated by it it must be added to a variable and that the
relocation is for both movl and addl assembler instruction which is relevant of
the code sequence is transformed to the Local Exec model by the linker.

The @gotntpoff is also not used for immediate instructions. Instead the GNU
variant of the Local Exec model will also use the @tpoff expression. Since the
Local Exec model is as simple as it gets the linker does not have to be aware of the
differences of the two variants. No conversion can be performed and therefore
the expression is used exclusively to get the linker fill in the correct offset.

@indntpoff This expression is similar to @gotntpoff, but for use in position de-
pendent code. While @gotntpoff resolves to GOT slot address relative to the
start of the GOT in the movl or addl instructions, @indntpoff resolves to the
absolute GOT slot address.

76 Version 0.21, August 22, 2013

6 NEW ELF DEFINITIONS 6.3 New SPARC ELF Definitions

6.3 New SPARC ELF Definitions
#define R_SPARC_TLS_GD_HI22 56
#define R_SPARC_TLS_GD_LO10 57
#define R_SPARC_TLS_GD_ADD 58
#define R_SPARC_TLS_GD_CALL 59
#define R_SPARC_TLS_LDM_HI22 60
#define R_SPARC_TLS_LDM_LO10 61
#define R_SPARC_TLS_LDM_ADD 62
#define R_SPARC_TLS_LDM_CALL 63
#define R_SPARC_TLS_LDO_HIX22 64
#define R_SPARC_TLS_LDO_LOX10 65
#define R_SPARC_TLS_LDO_ADD 66
#define R_SPARC_TLS_IE_HI22 67
#define R_SPARC_TLS_IE_LO10 68
#define R_SPARC_TLS_IE_LD 69
#define R_SPARC_TLS_IE_LDX 70
#define R_SPARC_TLS_IE_ADD 71
#define R_SPARC_TLS_LE_HIX22 72
#define R_SPARC_TLS_LE_LOX10 73
#define R_SPARC_TLS_DTPMOD32 74
#define R_SPARC_TLS_DTPMOD64 75
#define R_SPARC_TLS_DTPOFF32 76
#define R_SPARC_TLS_DTPOFF64 77
#define R_SPARC_TLS_TPOFF32 78
#define R_SPARC_TLS_TPOFF64 79

The operators used in the code sequences are defined as follows:

@dtlndx(expr) Allocate two contiguous entries in the GOT to hold a tls index

structure (for passing to tls get addr). The instructions referencing this en-
try will be bound to the first of the two GOT entries.

@tmndx(expr) Allocate two contiguous entries in the GOT to hold a tls index struc-
ture (for passing to tls get addr). The ti offset field of the object will be
set to 0 (zero) and the ti module field will be filled in at run-time. The call to
tls get addr will return the starting offset of the dynamic TLS block.

@dtpoff(expr) Calculate the offset of the variable in expr relative to the TLS block it
is contained in.

@tpoff(expr) Calculate the negative offset of the variable in expr relative to the static
TLS block.

6.4 New SH ELF Definitions
#define R_SH_TLS_GD_32 144
#define R_SH_TLS_LD_32 145
#define R_SH_TLS_LDO_32 146
#define R_SH_TLS_IE_32 147

Version 0.21, August 22, 2013 77

6.5 New x86-64 ELF Definitions 6 NEW ELF DEFINITIONS

#define R_SH_TLS_LE_32 148
#define R_SH_TLS_DTPMOD32 149
#define R_SH_TLS_DTPOFF32 150
#define R_SH_TLS_TPOFF32 151

The operators used in the code sequences are defined as follows:

@tlsgd(expr) This expression is the eqpuivalent of @dtlndx(expr) for the GNU
variant of the calling conventions. The linker is also allocating to two consecu-
tive entries in the GOT and the processing of the relocation produces the offset
of the first entry as the value of the expression. The only difference is that the
function called is tls get addr.

@tlsldm(expr) This expression is the GNU variant of @tmndx(expr). Just as for
@tlsgd(expr) the only difference is that the function called in the following
call instruction is tls get addr.

@dtpoff Calculate the offset of the variable it is added to relative to the TLS block it
is contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@tpoff Calculate the offset of the variable it is added to relative to the static TLS
block. The linker allocates one GOT entry for the result of the relocation.

The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.

If used in the form @tpoff(expr) the offset of the variable in expr relative to the
static TLS block is calculated. The linker allocates one GOT entry for the result
of the relocation.

@gottpoff Represents the offset in the GOT for the entry which contains the tls index

entries for the variable the relocation is attached to.

6.5 New x86-64 ELF Definitions
#define R_X86_64_DTPMOD64 16 /* ID of module containing

symbol */
#define R_X86_64_DTPOFF64 17 /* Offset in TLS block */
#define R_X86_64_TPOFF64 18 /* Offset in initial TLS
block */

#define R_X86_64_TLSGD 19 /* PC relative offset to GD GOT
block */

#define R_X86_64_TLSLD 20 /* PC relative offset to LD GOT
block */

#define R_X86_64_DTPOFF32 21 /* Offset in TLS block */
#define R_X86_64_GOTTPOFF 22 /* PC relative offset to IE GOT
entry */

#define R_X86_64_TPOFF32 23 /* Offset in initial TLS
block */

78 Version 0.21, August 22, 2013

6 NEW ELF DEFINITIONS 6.6 New s390/s390x ELF Definitions

The operators used in the code sequences are defined as follows:

@tlsgd(%rip) Allocate two contiguous entries in the GOT to hold a tls index

structure (for passing to tls get addr). It may be used only in the exact
x86-64 general dynamic code sequence shown above.

@tlsld(%rip) Allocate two contiguous entries in the GOT to hold a tls index

structure (for passing to tls get addr). The ti offset field of the object
will be set to 0 (zero) and the ti module field will be filled in at run-time. The
call to tls get addr will return the starting offset of the dynamic TLS block.
It may be only used in the exact code sequence as shown above.

@dtpoff Calculate the offset of the variable relative to the start of the TLS block it is
contained in. The value is used as an immediate value of an addend and is not
associated with a specific register.

@gottpoff(%rip) Allocate one GOT entry to hold a variable offset in initial TLS
block (relative to TLS block end, %fs:0). The operator must be used in movq or
addq instructions only.

@tpoff Calculate the offset of the variable relative to TLS block end, %fs:0. No
GOT entry is created.

6.6 New s390/s390x ELF Definitions
#define R_390_TLS_LOAD 37 /* Tag for load insn in TLS code */
#define R_390_TLS_GDCALL 38 /* Tag for call insn in TLS code */
#define R_390_TLS_LDCALL 39 /* Tag for call insn in TLS code */
#define R_390_TLS_GD32 40 /* Direct 32 bit for general dynamic
thread local data */
#define R_390_TLS_GD64 41 /* Direct 64 bit for general dynamic
thread local data */
#define R_390_TLS_GOTIE12 42 /* 12 bit GOT offset for static TLS
block offset */
#define R_390_TLS_GOTIE32 43 /* 32 bit GOT offset for static TLS
block offset */
#define R_390_TLS_GOTIE64 44 /* 64 bit GOT offset for static TLS
block offset*/
#define R_390_TLS_LDM32 45 /* Direct 32 bit for local dynamic
thread local data in LE code */
#define R_390_TLS_LDM64 46 /* Direct 64 bit for local dynamic
thread local data in LE code */
#define R_390_TLS_IE32 47 /* 32 bit address of GOT entry for
negated static TLS block offset */
#define R_390_TLS_IE64 48 /* 64 bit address of GOT entry for
negated static TLS block offset */
#define R_390_TLS_IEENT 49 /* 32 bit rel. offset to GOT entry for
negated static TLS block offset */

Version 0.21, August 22, 2013 79

6.6 New s390/s390x ELF Definitions 6 NEW ELF DEFINITIONS

#define R_390_TLS_LE32 50 /* 32 bit negated offset relative
to static TLS block */
#define R_390_TLS_LE64 51 /* 64 bit negated offset relative
to static TLS block */
#define R_390_TLS_LDO32 52 /* 32 bit offset relative to TLS
block */
#define R_390_TLS_LDO64 53 /* 64 bit offset relative to TLS
block */
#define R_390_TLS_DTPMOD 54 /* ID of module containing symbol */
#define R_390_TLS_DTPOFF 55 /* Offset in TLS block */
#define R_390_TLS_TPOFF 56 /* Negated offset in static TLS
block */

The operators used in the code sequences are defined as follows:

@tlsgd Allocate two contiguous entries in the GOT to hold a tls index structure.
The value of the expression x@tlsgd is the offset from the start of the GOT to
the tls index structure for the symbol x. The call to tls get offset with
the GOT offset to the tls index structure of x will return the offset of the thread
local variable x to the TCB pointer. The @tlsgd operator may be used only in
the general dynamic access model as shown above.

@tlsldm Allocate two contiguous entries in the GOT to hold a tls index structure.
The ti offset field of the object will be set to 0 (zero) and the ti module

field will be filled in a at run-time. The value of the expression x@tlsldm is the
offset from the start of the GOT to this special tls index structure. The call
to tls get offset with the GOT offset to this special tls index structure
will return the offset of the dynamic TLS block to the TCB pointer. The @tlsgd
operator may be used only in the local dynamic access model as shown above.

@dtpoff Calculate the offset of the variable relative to the start of the TLS block it
is contained in. The @dtpoff operator may be used only in the local dynamic
access model as shown above.

@ntpoff The value of the expression x@ntpoff is the offset of the thread local vari-
able x relative to the TCB pointer. No GOT entry is created in this case. The
@ntpoff operator may be used only in the local exec model as shown above.

@gotntpoff Allocate a GOT entry to hold the offset of a variable in the initial TLS
block relative to the TCB pointer. The value of of the expression x@gotntpoff

is offset in the GOT to the allocated entry. The @gotntpoff operator may be
used only in the initial exec model as shown above.

@indntpoff This expression is similar to @gotntpoff. The difference is that the
value of x@indntpoff is not a GOT offset but the address of the allocated GOT
entry itself. It is used in position dependent code and in combination with the
larl instruction. The @indntpoff operator may be used only in the initial exec
model as shown above.

80 Version 0.21, August 22, 2013

7 REVISION HISTORY

7 Revision History
2002-1-27 First version. The information and structure of the document is mainly

based on the IA-64 ABI document and the document from Sun Microsystems
(written by Mike Walker <Michael.Walker@sun.com>) describing their im-
plementation for SPARC and IA-32.

2002-1-31 More edits. Fix some embarrassing mistakes. Better wording.

2002-2-17 Update GNU-specific i386 definitions. Internal changes to use more stan-
dard macro packages.

2002-4-8 Integrated the SH ABI. Based on the notes from Kaz Kojima <kkojima@rr.iij4u.or.jp>.

2002-5-20 Update GNU x86 code sequences. Mostly removal of nops. Introduce
@ntpoff and its relocation.

2002-9-18 Update GNU x86 code sequences. Introduce @gotntpoff, @indntpoff
and its relocations.

2002-9-23 Some typos and erros fixed by Andreas Jaeger <aj@suse.de>.

2002-10-15 Complete SH ABI.

2002-10-21 x86-64 ABI description added by Jakub Jelı́nek <jakub@redhat.com>.

2002-10-23 Alpha ABI added by Richard Henderson <rth@redhat.com>.

2002-10-23 Publish x86 code to directly access memory from via %gs.

2002-11-9 Internal TEX code improvements.

2002-11-14 Correct contradicting description of IA-32 @ntpoff.

2003-1-28 Integrate s390 description. Contributed by Martin Schwidefsky <schwidefsky@de.ibm.com>.

2013-8-22 Integrate x86-64 large code model description. In large parts contributed
by Jakub Jelı́nek <jakub@redhat.com>.

Version 0.21, August 22, 2013 81

mailto:Michael.Walker@sun.com
mailto:kkojima@rr.iij4u.or.jp
mailto:aj@suse.de
mailto:jakub@redhat.com
mailto:rth@redhat.com
mailto:schwidefsky@de.ibm.com
mailto:jakub@redhat.com

	1 Motivation
	2 Data Definitions
	3 Run-Time Handling of TLS
	3.1 Startup and Later
	3.2 Dynamic Loading
	3.3 Statically Linked Applications
	3.4 Architecture Specific Definitions
	3.4.1 IA-64 specific
	3.4.2 IA-32 specific
	3.4.3 SPARC specific
	3.4.4 SH specific
	3.4.5 Alpha specific
	3.4.6 x86-64 specific
	3.4.7 s390 specific
	3.4.8 s390x specific

	4 TLS Access Models
	4.1 General Dynamic TLS Model
	4.1.1 IA-64 General Dynamic TLS Model
	4.1.2 IA-32 General Dynamic TLS Model
	4.1.3 SPARC General Dynamic TLS Model
	4.1.4 SH General Dynamic TLS Model
	4.1.5 Alpha General Dynamic TLS Model
	4.1.6 x86-64 General Dynamic TLS Model
	4.1.7 s390 General Dynamic TLS Model
	4.1.8 s390x General Dynamic TLS Model

	4.2 Local Dynamic TLS Model
	4.2.1 IA-64 Local Dynamic TLS Model
	4.2.2 IA-32 Local Dynamic TLS Model
	4.2.3 SPARC Local Dynamic TLS Model
	4.2.4 SH Local Dynamic TLS Model
	4.2.5 Alpha Local Dynamic TLS Model
	4.2.6 x86-64 Local Dynamic TLS Model
	4.2.7 s390 Local Dynamic TLS Model
	4.2.8 s390x Local Dynamic TLS Model

	4.3 Initial Exec TLS Model
	4.3.1 IA-64 Initial Exec TLS Model
	4.3.2 IA-32 Initial Exec TLS Model
	4.3.3 SPARC Initial Exec TLS Model
	4.3.4 SH Initial Exec TLS Model
	4.3.5 Alpha Initial Exec TLS Model
	4.3.6 x86-64 Initial Exec TLS Model
	4.3.7 s390 Initial Exec TLS Model
	4.3.8 s390x Initial Exec TLS Model

	4.4 Local Exec TLS Model
	4.4.1 IA-64 Local Exec TLS Model
	4.4.2 IA-32 Local Exec TLS Model
	4.4.3 SPARC Local Exec TLS Model
	4.4.4 SH Local Exec TLS Model
	4.4.5 Alpha Local Exec TLS Model
	4.4.6 x86-64 Local Exec TLS Model
	4.4.7 s390 Local Exec TLS Model
	4.4.8 s390x Local Exec TLS Model

	5 Linker Optimizations
	5.1 IA-32 Linker Optimizations
	5.2 SPARC Linker Optimizations
	5.3 SH Linker Optimizations
	5.4 Alpha Linker Optimizations
	5.5 x86-64 Linker Optimizations
	5.6 s390 Linker Optimizations
	5.7 s390x Linker Optimizations

	6 New ELF Definitions
	6.1 New IA-64 ELF Definitions
	6.2 New IA-32 ELF Definitions
	6.3 New SPARC ELF Definitions
	6.4 New SH ELF Definitions
	6.5 New x86-64 ELF Definitions
	6.6 New s390/s390x ELF Definitions

	7 Revision History

