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1 Introduction

Here I will explain how to use the Rayleigh principle to find the eigenvalues
of a matrix A. Recall that given a symmetric, positive definite matrix A we
define

R(x) =
xT Ax

xT x
.

Here, the numerator and denominator are 1 by 1 matrices, which we interpret
as numbers.

2 Scaling

The first principle for finding R(x) that I want to mention is scaling. Ba-
sically, what I mean is that as far as minimizing (or maximizing) R(x) is
concerned, we can restrict ourselves to x’s such that ||x|| = 1; for example,

min
x

R(x) = min
||x||=1

R(x).

Why is this so? Well, suppose that x is any vector which minimizes R(x),
say x = (x1, ..., xn), and let c2 = x2

1 + · · · + x2
n = ||x||2. Then, consider the

vector
y = (y1, ..., yn) = (x1/c, x2/c, ..., xn/c) = x/c.

Then,

||y||2 =
x2

1 + · · ·+ x2
n

c2
= 1.
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Also, note that

R(x) =
xT Ax

xT x
=

(1/c2)xT Ax

(1/c2)xT x
=

(x/c)T A(x/c)

(x/c)T (x/c)
=

yTAy

yTy
= R(y).

We may likewise restrict ourselves to vectors y which satisfy any con-
straint such as

a1y
2
1 + · · ·+ any2

n = c > 0.

By that I mean the following:

min
x

R(x) = min
y=(y1,...,yn)

a1y2
1+···+any2

n=c

R(y).

3 The values of R(x)

Since A is symmetric we know that it has all real eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.

What are the possible values that R(x) can take on in terms of these
eigenvalues? Well, we first observe that since A is symmetric we know that

A = QT ΛQ,

where Λ is diagonal and Q is orthogonal. So,

R(x) =
xT Ax

xT x
=

(Qx)T Λ(Qx)

(Qx)T (Qx)
.

The denominator is (Qx)T (Qx) = ||Qx||2 = ||x||2 = xT x.
So,

R(QT x) =
(QQT x)T Λ(QQT x)

(QQT x)T (QQT x)
=

xT Λx

xT x
=

λ1x
2
1 + · · · + λnx

2
n

x2
1 + · · ·+ x2

n

.

Now, if we call the vector y = QT x, then we have

R(y) =
λ1x

2
1 + · · ·+ λnx2

n

x2
1 + · · · + x2

n

.
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Now we use scaling: We can suppose that x2
1 + · · · + x2

n = 1; and so, the
values attained by R(y) are the values

λ1x
2
1 + · · ·+ λnx2

n, where x2
1 + · · · + x2

n = 1.

Obviously, these values R(y) lie in [λ1, λn] (as can be seen by setting x =
(1, 0, 0, ..., 0) and x = (0, ..., 0, 1), respectively). The minimium is obviously
λ1, which is the smallest eigenvalue. Thus, we have proved the Rayleigh

Principle:
min

x
R(x) = λ1.

4 Ellipsoids

Here we think about the eigenvalues λi in terms of axes of a certain ellipsoid,
which is a generalization of an ellipse. For us and ellipsoid centered at the
origin will by the set of vectors x = (x1, ..., xn) satisfying

a1x
2
1 + · · ·+ anx2

n = 1,

where
0 < a1 ≤ a2 ≤ · · · ≤ an.

The points on this ellipsoid furthest from the origin form the major axis
(connect these points to form a line segment – that segment is the major
axis), and the points on the ellipsoid closest to the origin form the minor
axis (here, we are implicitly assuming that we have strict inequality a1 < a2

and an−1 < an). So, the points on the ellipsoid that are also on the major
axis are

(±1/
√

a1, 0, 0, ..., 0),

and the points on the ellipsoid that are on the minor axis are

(0, ..., 0,±1/
√

an).

Let us now see what this means in terms of the Rayleigh quotient: From
the previous section we have that

R(y) =
λ1x

2
1 + · · ·+ λnx2

n

x2
1 + · · · + x2

n

.
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If we assume A is positive definite (as well as symmetric), then these λi > 0.
By scaling, we may restrict our attention to vectors x satisfying

λ1x
2
1 + · · ·+ λnx2

n = 1.

If we do this, then if we let let x be any of the two vectors on the major axis
of this ellipsoid, that is

x = (±1/
√

λ1, 0, ..., 0),

we will have
R(y) = λ1,

the smallest eigenvalue. Likewise, if we let x be any of the two vectors on
the minor axis, that is

x = (0, ..., 0,±1/
√

λn),

we will have
R(y) = λn,

the largest eigenvalue.
The ellipsoid

λ1x
2
1 + · · ·+ λnx2

n = 1

has other axes besides the minor and major ones, and these correspond to
the other eigenvalues of A.

5 Planar Slices

Suppose we take a planar slice through this ellipsoid, where the plane passes
through the origin. How does the Rayleigh quotient vary over this bit of the
ellipsoid?

Well, a planar slice where the plane passes through the origin can be
described as the set of all vectors x such that

xT z = 0,

where z is a vector perpendicular to this plane. In particular, we would like
to know the value of

min
xT z=0

R(x). (1)

4



This minimum must be at least as large as

min
x

R(x) = λ1.

Can we get an upper bound on (1) as well? The answer is ‘YES’, and perhaps
the best way to see this is to work with R(y): If, as before, we have y = QT x,
then

min
yT z=0

R(y) = min
xT (Qz)=0

R(y) = min
xT (Qz)=0

λ1x
2
1 + · · · + λnx

2
n

x2
1 + · · ·+ x2

n

.

So, if we let z′ be the vector Qz, then we seek

min
xT (z′)=0

λ1x
2
1 + · · ·+ λnx2

n

x2
1 + · · · + x2

n

.

By scaling we can assume that

x2
1 + · · ·+ x2

n = 1.

If we do this, then we seek

min
xT (z′)=0

λ1x
2
1 + · · · + λnx2

n, subject to x2
1 + · · ·+ x2

n = 1.

There is at least one vector of the form

x = (x1, x2, 0, 0, ..., 0), such that xT (z′) = 0 and x2
1 + x2

2 = 1.

To see this, if z′ = (a1, ..., an), then these conditions translate into

x1a1 + x2a2 = 0, and x2
1 + x2

2 = 1. (2)

The first condition gives all points (x1, x2) on a line passing through the
origin, unless (a1, a2) = (0, 0), in which case it consists of all vectors (x1, x2).
The second condition gives all points (x1, x2) on a circle. There clearly are
exactly two points (x1, x2) that satisfy both of these if (a1, a2) 6= (0, 0) (a
line crosses the circle in two places). Let (w1, w2) be one of these points of
intersection. Then, for any vector z

min
xT z=0

R(x) ≤ λ1w
2
1 + λ2w

2
2 ≤ λ2. (3)
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6 The Minimax Principle for the Second Largest

Eigenvalue

Here we begin with the following basic question: Is there a vector z for which
the upper bound of λ2 in (3) is attained? The answer is yes, as we will see.

If we could force (w1, w2) = (0, 1), then we would get this upper bound λ2.
How can we do this? Basically, if we had that z′ = (a1, ..., an) = (1, 0, 0, ..., 0)
then the only solutions (x1, x2) to (2) would be

(x1, x2) = (0,±1).

Both these solutions give us an x = (0,±1, 0, ..., 0) such that R(y) = λ2. But
is

min
xT (z′)=0

R(y) = λ2 ?

Indeed it is, because

xT (z′) = 0 implies x = (0, x2, x3, ..., xn),

and then if we use scaling we get

min
xT (z′)=0

R(x) = min
x=(0,x2,...,xn)

x2
1+x2

2+···+x2
n=1

λ1x
2
1 + λ2x

2
2 + · · · + λnx2

n

= min
x2
2+···+x2

n=1
λ2x

2
2 + · · ·+ λnx2

n.

This last minimum is clearly λ2, and is attained when x2 = 1 and x3 = · · · =
xn = 0.

So, we must have that

max
z

min
xT z=0

R(x) = λ2. (4)

To say that xT z = 0 means that x lies in the orthogonal complement of
z, which is an (n − 1)-dimensional subspace. Thus, we may rewrite (4) as

max
dim(S)=n−1

min
x∈S

R(x) = λ2.

This is saying “λ2 is the maximum over all n− 1 dimensional subspaces S of
the minimum of all x in that subspace S.”

If we generalize the arguments of this section and the previous section
further, then we can prove that for all j = 0, 1, ..., n − 1,

max
dim(S)=n−j

min
x∈S

R(x) = λj+1.
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7 A Dual Version of the Inequality

Now we turn things around. We wish to determine

min
dim(S)=j

max
x∈S

R(x),

which equals

min
dim(S′)=j

max
x∈S′

R(y) = min
dim(S′)=j

max
x∈S′

λ1x
2
1 + · · · + λnx

2
n

x2
1 + · · ·+ x2

n

.

A vector x belongs to S ′ means that x is orthogonal to some subspace of
dimension n − j; this subspace T is the orthogonal complement of S ′, and
has a basis b1, ..., bn−j.

We claim that S ′ contains a vector x of the form x = (0, 0, ..., 0, a1, ..., an−j+1);
that is, S ′ contains a vector x orthogonal to the j − 1 basis vectors

e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., ej−1 = (0, 0, ..., 1, 0, ..., 0);

that is, there exists a vector x ∈ R
n which is orthogonal to T and or-

thogonal to e1, ..., ej−1; that is, there exists a vector x ∈ R
n orthogonal

to e1, ..., ej−1, b1, ..., bn−j. Such a vector x must exist since to say that x is
orthogonal to these vectors is equivalent to saying that there exists a vector
x such that

Cx = 0,

where the rows of C are the vectors e1, ..., bn−j. Since C has n − 1 rows and
n columns, a non-zero solution x must exist.

Now, if S ′ contains such an x, it contains all multiples of x, and in par-
ticular, it must contain a muliple of the form x′ = (0, 0, ..., 0, a′

1, ..., a
′
n−j+1)

satisfying
(a′

1)
2 + · · ·+ (a′

n−j+1)
2 = 1.

But then we will have

R(y′) = λj(a
′
1)

2 + · · ·+ λn(a′
n−j+1)

2 ≥ λj,

where y′ = QT x′. So,
max
x∈S

R(x) ≥ λj. (5)
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We now see that there exists a subspace S ′ for which equality is attained;
that is,

max
x∈S′

R(y) = λj.

Basically, we take S ′ to be the subspace generated by e1, ..., ej. Then, all
x ∈ S ′ have the form (a1, a2, ..., aj, 0, ..., 0). Consider all such vectors where
a2

1 + · · ·+ a2
j = 1. For any such x we have

R(y) = λ1a
2
1 + · · ·+ λja

2
j ≤ λj.

In fact, this holds for all x ∈ S ′, not just those having norm 1. So,

max
x∈S′

R(y) ≤ λj,

which combined with (5) gives

max
x∈S′

R(y) = λj.

It follows that
min
Sj

max
x∈Sj

R(x) = λj.

8 Examples

Example 1. Suppose that

A =

[

1 2
2 1

]

.

Note that this matrix is symmetric and positive definite.
The matrix has eigenvalues λ1 = −1 and λ2 = 3. We also know that

min
x∈R2

R(x) = λ1 = −1.

Find a vector x for which R(x) = −1.

Solution. In Section 3 we determined that by taking x = (1, 0, 0, ..., 0)
we minimize R(y). Well, basically, what this is saying is that if x is the
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eigenvector associated to λ = 1, then we minimize R(x), and get the value
R(x) = λ1 = 1. So, we just need to find that eigenvector: We seek x so that

0 = (A + I)x =

[

2 2
2 2

]

x.

Clearly, x = [1 − 1]T is our eigenvector.
Let us check that this indeed gives R(x) = −1: We have

R(x) =
xT (Ax)

xT x
=

xT (−x)

xT x
= −1.

Example 2. Suppose that

A =

[

1 3
3 1

]

.

This matrix is symmetric, positive definite, and has eigenvalues λ1 = −2 and
λ2 = 4.

We know that
max

z
min

xT z=0
R(x) = λ2

Find a vector z such that

min
xT z=0

R(x) = λ2.

What is the vector x which achieves this minimum?

Easy Solution. First, we give a solution which does not rely on what we
have said in the previous sections (actually, it does rely on what we did
previously, although here I will not change from x coordinates to y = QT x
coordinates): We observe that since A is diagonalizable, all of R

2 can be
described as a1v1 + a2v2, where v1 and v2 are the eigenvectors of A. Now
suppose we take z = v1. Then, the set of vectors x satisfying xT z = 0 are
those in the orthogonal complement of v1. Since A is symmetric, we know
that the eigenvectors are all orthogonal to each other; and so, the orthogonal
complement of subspace spanned by v1 is the subspace spanned by v2. So,
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say xT z = 0 is the same as saying x = a2v2, for some scalar a2. For any such
vector x 6= 0 we will have

R(x) =
xT (Ax)

xT x
=

xT (4x)

xT x
= 4 = λ2.

A Solution Using Previous Sections. From the ideas in section 6 we
know that if we set z′ = (1, 0), then R(y) ≥ λ2 for all x satisfying xT z′ = 0;
moreover, if we take x = (0, 1) then R(y) = λ2. Recall that y = QT x.

As y = QT x (so, x = Qy), we have that xT z′ = 0 is equivalent to saying
yT (QT z′) = 0. Recall that QT is the matrix of eigenvectors of A. So, we have
that QT z′ = QT [1 0]T = v1, the eigenvector associated to λ1 = −2.

What we have then is that if we pick z = QT z′ = v1, then R(y) ≥ λ2 for
all yTz = 0.

Furthermore, we know that equality here is achieved when x = (0, 1); in
other words, y = QT x = v2, the eigenvector associated to λ2 = 4.

Example 3. Suppose that A is the same matrix as in example 1. We know
that R(x) assumes all values between λ1 = −2 and λ2 = 4. So, in particular,
there must be a non-zero vector x such that R(x) = 0. Find that vector x.

Easy Solution. We know that a vector x ∈ R
2 can be written as x = a1v1 +

a2v2. Since v1 and v2 are orthogonal, we know that xT x = a2
1||v1||2+a2

2||v2||2.
Now,

R(x) =
xT (Ax)

xT x
=

xT (−2a1v1 + 4a2v2)

a2
1||v1||2 + a2

2||v2||2
=

−2a2
1||v1||2 + 4a2

2||v2||2
a2

1||v1||2 + a2
2||v2||2

.

To say that R(x) = 0 is equivalent to having the numerator vanish; so, we
seek a1 and a2 so that

4a2
2||v2||2 = 2a2

1||v1||2.

That is,
a2

a1
= ± ||v1||√

2||v2||
.

We just need to know the eigenvectors v1 and v2: We know that (A +
2I)v1 = 0; so,

[

3 3
3 3

]

v1 = 0.
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It follows that v1 = [1 − 1]T . We also have (A − 4I)v2 = 0; so,

[

−3 3
3 −3

]

v2 = 0,

which means that v2 = [1 1]T . So, ||v1|| = ||v2|| =
√

2, and therefore

a2

a1

= ± 1√
2
.

If we take a1 =
√

2 and a2 = 1, then we have

x =
√

2v1 + v2 = [(1 +
√

2) (1 −
√

2)]T .

Let us check: We have that

xT Ax = xT

[

4 − 2
√

2

4 + 2
√

2

]T

= (1 +
√

2)(4 − 2
√

2) + (1 −
√

2)(4 + 2
√

2)

= 0.
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