Skip to main content

Confluent's Python client for Apache Kafka

Project description

[!WARNING] Due to an error in which we included dependency changes to a recent patch release, Confluent recommends users to refrain from upgrading to 2.6.2 of Confluent Kafka. Confluent will release a new minor version, 2.7.0, where the dependency changes will be appropriately included. Users who have already upgraded to 2.6.2 and made the required dependency changes are free to remain on that version and are recommended to upgrade to 2.7.0 when that version is available. Upon the release of 2.7.0, the 2.6.2 version will be marked deprecated. We apologize for the inconvenience and appreciate the feedback that we have gotten from the community.

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

Usage

For a step-by-step guide on using the client see Getting Started with Apache Kafka and Python.

Aditional examples can be found in the examples directory or the confluentinc/examples github repo, which include demonstration of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also refer to the API documentation.

Finally, the tests are useful as a reference for example usage.

Basic Producer Example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Basic Consumer Example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient Example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the instructions in the "Install from source" section below.

To use Schema Registry with the Avro serializer/deserializer:

$ pip install "confluent-kafka[avro,schemaregistry]"

To use Schema Registry with the JSON serializer/deserializer:

$ pip install "confluent-kafka[json,schemaregistry]"

To use Schema Registry with the Protobuf serializer/deserializer:

$ pip install "confluent-kafka[protobuf,schemaregistry]"

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

$ pip install "confluent-kafka[avro,schemaregistry,rules]"

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Confluent Cloud

For a step-by-step guide on using the Python client with Confluent Cloud see Getting Started with Apache Kafka and Python on Confluent Developer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent_kafka-2.10.1.tar.gz (224.9 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-2.10.1-cp313-cp313t-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp313-cp313-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.13 Windows x86-64

confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

confluent_kafka-2.10.1-cp312-cp312-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

confluent_kafka-2.10.1-cp312-cp312-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

confluent_kafka-2.10.1-cp311-cp311-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

confluent_kafka-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

confluent_kafka-2.10.1-cp310-cp310-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

confluent_kafka-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

confluent_kafka-2.10.1-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

confluent_kafka-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

confluent_kafka-2.10.1-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.1-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

confluent_kafka-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

confluent_kafka-2.10.1-cp37-cp37m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

confluent_kafka-2.10.1-cp37-cp37m-manylinux_2_28_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.10.1.tar.gz.

File metadata

  • Download URL: confluent_kafka-2.10.1.tar.gz
  • Upload date:
  • Size: 224.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for confluent_kafka-2.10.1.tar.gz
Algorithm Hash digest
SHA256 536c76f6c39a93c367a70016781cf7e73808300228b8e33b444c846fdef801e4
MD5 7ad024b3db97dd573d6e913b980b944d
BLAKE2b-256 970e8a2e69d0d7fd4f00488856fc6ffa2b525233fba559885daf9c808514ba11

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a7724d6fb4526240980fcae7900c62ffb93ce5c5926a4e19133ec79e26558b61
MD5 8d7d31a79f7be56cf9c8438e5b2e461b
BLAKE2b-256 8e7e37b254dbf4aa5e1690d9a189527b17d09844fd51634ae14eebf31f9cad60

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b8040e89e89d462331fc5c46d6f6b79d22f1b9482afc8005776029965b86b41c
MD5 392cb8cc47965e5919b243a6e72e2696
BLAKE2b-256 7c6bc8ae73571b788798b32afe1973bb9050fd3392a46fb0601d0eb58c39b75e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 deb4d95114ada2020abc24b48c3861dd96f164955652e7bd9f9b8e84b257c03a
MD5 758946a1c57f451074984b86d0030460
BLAKE2b-256 e380b87135850208e12c034a30a97a9085e6997ed31b29db46a3cd583b9d30d1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3a10d099efbdddd58d71172db50de784991c4f2d47a55c09e5023e943aef88bf
MD5 62b7590423b3d965b31e07af01f9eef7
BLAKE2b-256 a3a995f90c0bef22b09e13c75654f7ecdbb6abdae2814398e2dee805c31d8181

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 d2190269874554e5b2dd8b8d08968d3f205107fbe58c7199bde7c89aabeabff2
MD5 abf908234737d82bc8cc6eb7121632ab
BLAKE2b-256 85f92948f3fe40a13364e81cf461f229bad0bda43a2509031cf130f08508ff09

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 325b774ebf37d5d5e7fdcda58bea2925c5bf536da365db0e80e4e3e1d1e4b748
MD5 ae82d45573ade17419650e0acc50b9c6
BLAKE2b-256 66cb1866efb2fdf8392d36f6441a20adbacece03bfc863dce7f49b7fe8e21f41

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 352152e0562a5feb2fa4ec4f91b801fed56695f5508946ff084aa23b4495b201
MD5 1094f758e1381bf35fc092c25d37a32c
BLAKE2b-256 4039c40d6a77b53e7b83af515d43af80838f9e2c13dbd2d99be039c31db26e44

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 08aef1602a5dd2fc448dac5009b345d93304d8ab53640c8a63f06714f4420294
MD5 de8225a66b866b22b8c804b4541ef101
BLAKE2b-256 6aa85a2499d81ed8495a62be68035ea953806735da9df4b62d2d81c157c347b2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9c4282213d9066ba37d5508d01c1e1e63963f4ea2273d918ebcf8990311347ad
MD5 bc848cead800d2ac1e2417305c8655f6
BLAKE2b-256 a3c3b427cafdb1b68d7faf187860c6a5296db1d16771f4b4dd735fbbc5004313

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a277eec260fd048cfcc32a95da9e14e0701d7c04b276dcc79de7f09fdfa74235
MD5 32f40b1dbf21a57b7b3ad3bcc372bd52
BLAKE2b-256 c9dc37f17717506411cf0b703be356a08e620461e558c8f5a42d3a1b3c1b233e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5303e42f94fc044e27e0224476173fe454d039f7cad5011bae5775086161c23
MD5 e417452272e47c225e430951e77efd09
BLAKE2b-256 b13de6d4c467b685c5172d9b07b4df2b0f5ef3fecae26f87ae6410c48a0df042

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fdd032a8c7637263defcf577b36d1d4dba6495877e49662e4af4cc15e6950c77
MD5 7deb1dafbaefafb9bd7beb829dd40de5
BLAKE2b-256 2930e5f527d7a53b5ef1d74b88c1d3fc4a98884e8448811c041b20d4d2039ad2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f17b45fcdecf0d58c584d5ae95257078759796aaed73ebbe1d32431228c50467
MD5 52c14823af48e4af5b8155548f05ffdc
BLAKE2b-256 6b70fe608d868c70a71c1b87cd59ec4413f992377f631b81560307470d90c258

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0addf6fe866ade4d13f94057a6908dff7ddec7d68002a3f6b596bc72d975ed8b
MD5 41f4df9ee53d4c79a4217cb831fe8269
BLAKE2b-256 01275bbccb8f07b343c0103fea9e7aaeea652dfa2d0801d9da0d7e656ce5aeeb

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33c2ca92920d0c7e5079f9814523ed709b16d369ab0cca1941abc72b703a8c59
MD5 e24e525819115b60bee31ab3f354c384
BLAKE2b-256 8a86d333b100bd825b6bb0b5b01a62c7ba106229d4c94e6df789fd4b430790ac

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 147c83ea89b0e93ecc7dac6d42eebc4fc541cfb1f0f7d8ab05fdda76b7d7adcc
MD5 72e107f947dc071f691415645b344708
BLAKE2b-256 9dd95b803ded7f5622bf2aa45aa05b4510b82c1f66f2c40fbff3d1bbc6197e7c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 95d72e1b9576bc4cd269dbba0dda65047d316ff2fab84c88aa3417f2a3aae0b6
MD5 41fb7ab57611770d63335c136017d126
BLAKE2b-256 33406fc998cf561578e7820905e8f19d0681bae059e8077381cdb84090af91a0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f3aec168ec1817d89102e0d517f8523fc7efbf0058859dcf5aa42cd9d99a12fa
MD5 34bb71fa442db7024ca777ea0877974b
BLAKE2b-256 01bc7a3e78c2ba60711b26c83627e8d411aafa3b00e31be851a1235959717d71

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2b7e85876c8b714e20a54cdc313509767885d00b9ced3cbff2285d881853151b
MD5 c9b351c8b98abfd5a9b273608c266eb0
BLAKE2b-256 30fa6f08b8eafbc94f4751363695646390d362a766e4d9eee19b2068b0797944

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 682b67ec638142fe090e71f76d698484d3199e70b67474e16938c196e635fa4b
MD5 e4f2661405df76fc6ee0a5b1bf8b5fad
BLAKE2b-256 64801cfaa8b593d50fd0bd4d4a952b2435cee0a9dc00f3b3de3f35d3613c3add

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad6a9ba5aba014b3a45d560edccd8864be5cc4a9402ba8520201b18c18b7c899
MD5 a86b2604bd05662f2e4855dc1b9aa6af
BLAKE2b-256 f743a96174dff248c9f3f485aed1e6e9502d72a04560943358181756c332e24a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8a6f3acfac7931558d76e5aea0552f2d4f833c04ac8214604f4e3d0cb2ee0b59
MD5 eedddb27af3c1edf769938bef3f6d151
BLAKE2b-256 6e6b97296d474cdfa83a966ebe3105727c0f9f1d1803dc7ac4d9a46a6880fc4f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 77e0c20b7d14c44c9623ea92b136255670d2d91903828e8cf93cacf11e90c166
MD5 54de86078d29eb2aae4d7ea3295c5ca5
BLAKE2b-256 ab4a052d5f8240e63bafcc00e56ce571e445a34e161dfee7bead9e0e7b206b90

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b03a534c11969b02b989a876dfef483dba2cd6edd8014dda904158e678ddb4f4
MD5 8142a0e959e1fd7acbb45874b8043148
BLAKE2b-256 84652a51e1281186f7ecd56c53aa66f15848d975bba3366a607aa02015f1406c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a2db485bdd6186334587833b5aea8489109c388cd9f8c44eeb146013086a3c3
MD5 e0bc83748e9129c888cb80dc1bfbf182
BLAKE2b-256 3e608920735d07264ca0faf174581f7d84aea2a22220220ef4a37b2767b4ae37

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a2dff853423789c1b0ec91e4c98d54ebaa87a72862ca5945d385036132b0929
MD5 25070ee98ccf23820d2b96469ba3e2c5
BLAKE2b-256 9d72f20b5d37a7d8abb09ba410083c36c5c21bccceb6fdf31aec1a087140326c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9fdf9efcbe290bb2d08ed8ac682987438d771600a036f6246f3be03244a09504
MD5 3a615608ef8b977a162d8251b3926949
BLAKE2b-256 596a2719efad5dc4c932b0e2833be6a7b29e49336c543a98663fcb06b1ad9068

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f56b51685c017b46a45f2f1f5ab283b594d433572aecf3463ecca600188bf3c9
MD5 683503c30ad15dbe98dd4d492fe1ff56
BLAKE2b-256 f80d8f4bea3fa96bed7af92d5c1263f85c4a9d01e1289083ffb2838856688d26

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 edfd39d73fc8d276c058a562b7815d25b7427c6be75bdb914920fba067673591
MD5 fa5b6c619e06457f54b8bc5ef89f8ef9
BLAKE2b-256 8d90d588c1d689eb6cd0b22c4c26d652cc6fae88a9714a6879221f09d62db0df

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07c3cf9f75b22924bca777a26640902c2675bc70a33172f1354a47ebe70d7f1e
MD5 e60a75a12ed6999c53552e954b03e8dc
BLAKE2b-256 c636460207564812f22a6e92e91a87eb038a7ca79f65ddef75dfd35733cbc865

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29569d5185fad1903b8dd34cbc3b16649425da4346749dd567b87298e733cad3
MD5 5f8c817e8a24d1d8b1b33d5a1fd555f5
BLAKE2b-256 0cdaa15c5c19b2efa32b656c8293afbc2a8fd8eb9b46e76ecc6bbab1e16f6823

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 707d07b56b31442633123504ba6542cf6a9683bdd256b89dec3687afdd7b1f4a
MD5 f5058d2bf578bc85d6050b9f2ef09781
BLAKE2b-256 82459fdc14e96bcab54cb6fc7ed6d77dddf085ab2e29246bbc8ef5330b712278

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 be21c9a4bf8da98440e7999701587d87f13e4a342c761711e6c12fb5d8ef0371
MD5 50536af32a7bc3cbac354ca4e8896894
BLAKE2b-256 bdd9cadf758b005f66d72eda5b51c22f1e5e45e9fe5d6e4bc72e60aeda4281c5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55c2c78d0d3ab37f325acac38322a2d50f409eadf7057619c1b58941f28ceff5
MD5 eeb19cd0849df29e05049eb07089e002
BLAKE2b-256 c822368ed5d047d2e44ba5745e36fd1d43bebd94d32289693b2143a85381a71b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page