Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate("a * b - 4.1 * a > 2.5 * b")   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Free-threading support

Starting on CPython 3.13 onwards there is a new distribution that disables the Global Interpreter Lock (GIL) altogether, thus increasing the performance yields under multi-threaded conditions on a single interpreter, as opposed to having to use multiprocessing.

Whilst numexpr has been demonstrated to work under free-threaded CPython, considerations need to be taken when using numexpr native parallel implementation vs using Python threads directly in order to prevent oversubscription, we recommend either using the main CPython interpreter thread to spawn multiple C threads using the parallel numexpr API, or spawning multiple CPython threads that do not use the parallel API.

For more information about free-threaded CPython, we recommend visiting the following community Wiki <https://py-free-threading.github.io/>

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.11.0.tar.gz (109.0 kB view details)

Uploaded Source

Built Distributions

numexpr-2.11.0-cp313-cp313t-win_amd64.whl (147.2 kB view details)

Uploaded CPython 3.13t Windows x86-64

numexpr-2.11.0-cp313-cp313t-win32.whl (154.0 kB view details)

Uploaded CPython 3.13t Windows x86

numexpr-2.11.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (416.0 kB view details)

Uploaded CPython 3.13t manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.11.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (426.7 kB view details)

Uploaded CPython 3.13t manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.11.0-cp313-cp313t-macosx_11_0_arm64.whl (137.6 kB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numexpr-2.11.0-cp313-cp313t-macosx_10_13_x86_64.whl (148.2 kB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numexpr-2.11.0-cp313-cp313-win_amd64.whl (146.3 kB view details)

Uploaded CPython 3.13 Windows x86-64

numexpr-2.11.0-cp313-cp313-win32.whl (153.3 kB view details)

Uploaded CPython 3.13 Windows x86

numexpr-2.11.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (406.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.11.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (416.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.11.0-cp313-cp313-macosx_11_0_arm64.whl (136.8 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numexpr-2.11.0-cp313-cp313-macosx_10_13_x86_64.whl (147.5 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numexpr-2.11.0-cp312-cp312-win_amd64.whl (146.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

numexpr-2.11.0-cp312-cp312-win32.whl (153.3 kB view details)

Uploaded CPython 3.12 Windows x86

numexpr-2.11.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (403.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (412.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.11.0-cp312-cp312-macosx_11_0_arm64.whl (136.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numexpr-2.11.0-cp312-cp312-macosx_10_13_x86_64.whl (147.5 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numexpr-2.11.0-cp311-cp311-win_amd64.whl (146.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.11.0-cp311-cp311-win32.whl (153.2 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.11.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (401.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (411.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.11.0-cp311-cp311-macosx_11_0_arm64.whl (136.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl (147.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.11.0-cp310-cp310-win_amd64.whl (146.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.11.0-cp310-cp310-win32.whl (153.2 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.11.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (399.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

numexpr-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (409.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

numexpr-2.11.0-cp310-cp310-macosx_11_0_arm64.whl (136.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl (147.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numexpr-2.11.0.tar.gz.

File metadata

  • Download URL: numexpr-2.11.0.tar.gz
  • Upload date:
  • Size: 109.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0.tar.gz
Algorithm Hash digest
SHA256 75b2c01a4eda2e7c357bc67a3f5c3dd76506c15b5fd4dc42845ef2e182181bad
MD5 9f5bc08a100b61fe43d361378cad3d80
BLAKE2b-256 d28f2cc977e91adbfbcdb6b49fdb9147e1d1c7566eb2c0c1e737e9a47020b5ca

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 147.2 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 a69b5c02014448a412012752dc46091902d28932c3be0c6e02e73cecceffb700
MD5 9fa507836c09998b841353a8baabec79
BLAKE2b-256 75d741287384e413e8d20457d35e264d9c9754e65eb13a988af51ceb7057f61b

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 154.0 kB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 0db4c2dcad09f9594b45fce794f4b903345195a8c216e252de2aa92884fd81a8
MD5 f062022e4d37f119349de9ea5270f0fc
BLAKE2b-256 317cbbccad2734dd4b251cc6bdff8cf5ded18b5383f5a05aa8de7bf02acbb65b

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 238d19465a272ada3967600fada55e4c6900485aefb42122a78dfcaf2efca65f
MD5 d98adf021985f5aafc987bb3064a2755
BLAKE2b-256 8e6d7ccbc72b950653df62d29e2531c811ed80cfff93c927a5bfd86a71edb4da

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b5cc434eb4a4df2fe442bcc50df114e82ff7aa234657baf873b2c9cf3f851e8e
MD5 70aaec4754178e9f699cbfdcdfb0c360
BLAKE2b-256 fb1e50074e472e9e6bea4fe430869708d9ede333a187d8d0740e70d5a9560aad

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 321736cb98f090ce864b58cc5c37661cb5548e394e0fe24d5f2c7892a89070c3
MD5 0943d92c3776b620a5a0bc716f3d40ed
BLAKE2b-256 de4922fd38ac990ba333f25b771305a5ffcd98c771f4d278868661ffb26deac1

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b9854fa70edbe93242b8bb4840e58d1128c45766d9a70710f05b4f67eb0feb6e
MD5 428ba99781fa385769fe6f1e3db830fd
BLAKE2b-256 0b20c0e3aaf3cc4497e5253df2523a55c83b9d316cb5c9d5caaa4a1156cef6e3

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 146.3 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5ff337b36db141a1a0b49f01282783744f49f0d401cc83a512fc5596eb7db5c6
MD5 e5cf449a0212bb0a4d61a9f1b80fa2e8
BLAKE2b-256 52a293346789e6d73a76fdb68171904ade25c112f25df363a8f602c6b21bc220

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 153.3 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 6b5fdfc86cbf5373ea67d554cc6f08863825ea8e928416bed8d5285e387420c6
MD5 ab0b3ceceb489bfc10c5e6c10e47224a
BLAKE2b-256 6fbcd00e717e77691c410c6c461d7880b4c498896874316acc0e044d7eafacbf

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a1719788a787808c15c9bb98b6ff0c97d64a0e59c1a6ebe36d4ae4d7c5c09b95
MD5 5617ad647d899ebec77022a55ecd1ff8
BLAKE2b-256 b97d4911f40d3610fc5557029f0d1f20ef9f571488319567ac4d8ee6d0978ee6

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 096ec768bee2ef14ac757b4178e3c5f05e5f1cb6cae83b2eea9b4ba3ec1a86dd
MD5 ec8c7be5017edcd9372476e5f79eb246
BLAKE2b-256 a83faa36415919c90f712a11127eaa7c0c8d045768d62a484a29364e4801c383

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2036be213a6a1b5ce49acf60de99b911a0f9d174aab7679dde1fae315134f826
MD5 61713d39da1378ab2bc514d206f85248
BLAKE2b-256 3ae42fbbf5b9121f54722dc4d4dfc75bc0b4e8ee2675f92ec86ee5697aecc53f

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 eb766218abad05c7c3ddad5367d0ec702d6152cb4a48d9fd56a6cef6abade70c
MD5 b284e8ffdd02c848516cd3999a0f96f1
BLAKE2b-256 7463dbf4fb6c48006d413a82db138d03c3c007d0ed0684f693c4b77196448660

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 146.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0a184e5930c77ab91dd9beee4df403b825cd9dfc4e9ba4670d31c9fcb4e2c08e
MD5 33e49d1539b9b1225cf647320b26b22b
BLAKE2b-256 1870abc585269424582b3cd6db261e33b2ec96b5d4971da3edb29fc9b62a8926

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 153.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f326218262c8d8537887cc4bbd613c8409d62f2cac799835c0360e0d9cefaa5c
MD5 207fac0fb58e6db0a84575fb7ffeeb9c
BLAKE2b-256 1014f22afb3a7ae41d03ba87f62d00fbcfb76389f9cc91b7a82593c39c509318

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d7a19435ca3d7dd502b8d8dce643555eb1b6013989e3f7577857289f6db6be16
MD5 879b8e3fc243f52a4f54be6aa6c4d09b
BLAKE2b-256 70e815e0e077a004db0edd530da96c60c948689c888c464ee5d14b82405ebd86

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7f082321c244ff5d0e252071fb2c4fe02063a45934144a1456a5370ca139bec2
MD5 a543550450b5849be2db9bfc9caf13e7
BLAKE2b-256 7505e3076ff25d4a108b47640c169c0a64811748c43b63d9cc052ea56de1631e

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 097aa8835d32d6ac52f2be543384019b4b134d1fb67998cbfc4271155edfe54a
MD5 05f7a28df82d6fd1461f7117ff4f1de0
BLAKE2b-256 74463a26b84e44f4739ec98de0ede4b95b4b8096f721e22d0e97517eeb02017e

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4229060be866813122385c608bbd3ea48fe0b33e91f2756810d28c1cdbfc98f1
MD5 14a3657508ac11d7442c33fdcbb18ded
BLAKE2b-256 38457a0e5a0b800d92e73825494ac695fa05a52c7fc7088d69a336880136b437

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 146.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7163b488bfdcd13c300a8407c309e4cee195ef95d07facf5ac2678d66c988805
MD5 6c4055c9c1a2fdc8dcadbd3dead0ebf4
BLAKE2b-256 0c978d00ca9b36f3ac68a8fd85e930ab0c9448d8c9ca7ce195ee75c188dabd45

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 153.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7d9e76a77c9644fbd60da3984e516ead5b84817748c2da92515cd36f1941a04d
MD5 9e7e64cd03f124f933c99ee2f2a939db
BLAKE2b-256 831c414670eb41a82b78bd09769a4f5fb49a934f9b3990957f02c833637a511e

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f677668ab2bb2452fee955af3702fbb3b71919e61e4520762b1e5f54af59c0d8
MD5 b077c2062b829955a3183ae0aa150046
BLAKE2b-256 e48d4d78dad430b41d836146f9e6f545f5c4f7d1972a6aa427d8570ab232bf16

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a194e3684b3553ea199c3f4837f422a521c7e2f0cce13527adc3a6b4049f9e7c
MD5 82e1b62dcf4e8a659aa4afa248ccd23b
BLAKE2b-256 1b9fc88fc34d82d23c66ea0b78b00a1fb3b64048e0f7ac7791b2cd0d2a4ce14d

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0eb88dbac8a7e61ee433006d0ddfd6eb921f5c6c224d1b50855bc98fb304c44
MD5 e74bdbf512928730df53095eafa0f969
BLAKE2b-256 b65ebac7649d043f47c7c14c797efe60dbd19476468a149399cd706fe2e47f8c

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 450eba3c93c3e3e8070566ad8d70590949d6e574b1c960bf68edd789811e7da8
MD5 c46e70cf1021694ec1c4cc18febf470f
BLAKE2b-256 d8d11cf8137990b3f3d445556ed63b9bc347aec39bde8c41146b02d3b35c1adc

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 146.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7f75797bc75a2e7edf52a1c9e68a1295fa84250161c8f4e41df9e72723332c65
MD5 c867c614ab5f6e065309fef22f201d6a
BLAKE2b-256 8dc8abd6371906c2690852dbbd4cb8faa3d26c51bc8ce849cb4b16dc24e799c1

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.11.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 153.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.0rc3

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4aba2f640d9d45b986a613ce94fcf008c42cc72eeba2990fefdb575228b1d3d1
MD5 ba9d23ecef548973531079a218fb7046
BLAKE2b-256 817d8225d6fcafaa937606543bee6e985966c91d8741d25a8eb6d0143f64ce77

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8c9e6b07c136d06495c792f603099039bb1e7c6c29854cc5eb3d7640268df016
MD5 8710723b57f59bfc50b92f47d14ff602
BLAKE2b-256 83030718f1ac2d7cc0422096ab0ac16cc04597539a2c69a22616d781a2be4359

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ad5cf0ebc3cdb12edb5aa50472108807ffd0a0ce95f87c0366a479fa83a7c346
MD5 16a7dae0f1fde3c2d00642810651ef88
BLAKE2b-256 5c89177fae13baaa9380a9f714bdf8b88ae941ed2c2f89bd228f2f089a651afa

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e68a9800a3fa37c438b73a669f507c4973801a456a864ac56b62c3bd63d08af
MD5 93569700015a2eee27f8d17d467f2dd2
BLAKE2b-256 f432914b8bb3d9a40e27ee56bfa915dcdfd60a460a6a9006bab80aa25df91c91

See more details on using hashes here.

File details

Details for the file numexpr-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f471fd055a9e13cf5f4337ee12379b30b4dcda1ae0d85018d4649e841578c02
MD5 57bc3e43c4815d233bba9eb93a75ed45
BLAKE2b-256 aa3a99d5c9fb7f1cbb465798b79b9fd6d5df5ab10fee0d499c2b72a76634c80e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page