Monads

\ MONADS ARE JUST MONIIIIIS IN
TIIE CATEGORY OF ENII(IHINGTIIBS

WHAT S THE I’IIIIBlEM=l

Outline

¢ What is a monad?

* Box metaphor

* Do notation, relationships, laws
e Label metaphor
 Computation metaphor

* The |O monad

¢ Alternative and MonadPlus

Monad myths

Monads ...

® are impure

* depend on laziness
* provide a “back-door” to perform side-effects
* are an imperative language inside Haskell

* require knowing abstract mathematics

* are about effects

* are about state }
* are about 1O

monads are used for all of these,
but it's not what theyre about

So what is a monad?

Just another abstraction over types ...

Specifically:

* a parameterized data type

* with two operations (that satisfy three laws)

2. injection

|. tybe constructor

[

.

class Applicative m => Monad m where

return :: a ->m a
P 4

(>>=) :::ma->(a->mb) ->mb

~N

Vi

R‘

3.“bind”

Structuring effects

One of the main motivations for the monad “pattern”

What is an effect?

failure
exceptions
nondeterminism
context

tracing

state
input/output

Effects in FP — lots of boilerplate
* check failure in each function
* pass context to each function
* thread state through functions

The monad pattern provides a way
to write the boilerplate only once
(in the Monad instance)

Monad metaphors These are just metaphors ...
be wary of over applying them!

{ h,
\M@

box metaphor label metaphor effectful computation
metaphor

Outline

* What is a monad!?

e Box metaphor

* Do notation, relationships, laws
e Label metaphor
 Computation metaphor

* The |O monad

¢ Alternative and MonadPlus

Box metaphor

the type of box

, — \
put one thing | class Applicative m => Monad m where
inabox ~t» return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

“repackaging”™ e \ r /4 /

things in a box

Repackaging: b >>= f
|. Open box b to access content x
2. Generate new box(es) from content using f,i.e. f x
3. Combine boxes into one result box

Maybe monad: a “possibly empty” box

Useful for managing failure

/

.

class Applicative m => Monad m where

return :: a =>m a

(>>=) ::ma->(a->mb) ->mb

\

)

/

instance Monad Maybe where
return = Just

Just x >>= f
Nothing >>= _ = Nothing

\

(we have nothing to generate new boxes)

X f

empty box stays empty

creates only one box

£« 4« (nostep 3 needed)

(Failure.hs)
-9

List monad: a “collection” box

Useful for managing variation/nondeterminism

y

.

class Applicative m => Monad m where

return :: a ->m a

(>>=)

c:ma->(a->mb) ->mb

~

)

-

instance Monad [] where
return x = [Xx]
xs >>= f = concat (map f xs)

W

1

create a nhew box
for each element

(step 2)

combine boxes into one result box (step 3)

Outline

* What is a monad?

* Box metaphor

e Do notation, relationships, laws
e Label metaphor

 Computation metaphor

* The |O monad

¢ Alternative and MonadPlus

Syntactic sugar: do notation

-

.

class Applicative m => Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

~

)

/

“then” =Y

-

(>>) :: Monad m =>ma ->mb ->mb
m>nz=m>= _ ->n

~

m >> n m >>= (\X -> .. X ..
<==> <==>
do { m; n } do { x <- m; .. X ..
With layout: ~ do m do x <- m

n e X .

Relationship to Applicative

inject

class Applicative m => Monad m where
return :: a -> m a

///(’ (>>=) :ma->(a->mb) ->mb

\\\\:;ass Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a ->b) ->fa->fb

.

ap :: Monad m =>m (a -> b) ->ma ->m b}

ap mf ma = do f <- mf p
a <- ma return <=> pure J
return (f a) - r

Every monad is an applicative functor!

ap <=> (<*>) J

Relationship to Functor

class Applicative m => Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

class Functor t where
fmap :: (a ->b) ->t a ->tb

1iftM :: Monad m => (a -> b) ->ma ->mb
1iftM f m = m >>= return . f

.

~

{ fmap <=> 1liftM J Every monad is a functor!

Monad laws

class Applicative m => Monad m where
return :: a -> m a
(>>=) :ma->(a->mb) ->mb

left identity [return a >>= f <=> f a j

right identity [m >>= return <=> m j

(m >>= f) >>= ¢
associativity <=>
m >>= (\x -> f x >>= g)

\ Y,

Outline

* What is a monad!?

* Box metaphor

* Do notation, relationships, laws
e Label metaphor
 Computation metaphor

* The |O monad

¢ Alternative and MonadPlus

Label metaphor \Q

assign a default

label to a thing =t» return :: a -> m a

“relabeling™ g \ f /4 y

the sort of labels

-

Ny \

class Applicative m => Monad m where

(>>=) ::ma->(a->mb) ->mb

labeled things

Relabeling: 1 >>= f
|. Take label off of 1 to reveal item x
2. Generate new labeled item(s) using f,i.e. f x
3. Combine old label and new labeled items
into one labeled item

(Logging.hs) -

Logging monad

add default

Iabel \return X = L "" g /

isolate thing
from label

y

.

class Applicative m => Monad m where
return :: a -> m a
(>>=) :ma->(a->mb) ->mb

~

)

|

data Log a = L String a]

/

in L (s ++ t) vy
— %)

\

instance Monad Log where

Lsx>=°f =1et (Lty)=*°Ffx

s

\

log :: String -> Log ()
log s =L s ()

combine labels

new labeled

thing

Writer monad Generalizes Logging

-

.

~

class Applicative m => Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

)

[data Writer w a = W w a]

/

-

instance Monoid w => Monad (Writer w) where
return X = W mempty X

Ws x>=f =let ((Wty)="°FXx
in W (mappend s t) vy

\

-

.

tell :: w -> Writer w ()\
tell s = W s ()

Outline

* What is a monad!?

* Box metaphor

* Do notation, relationships, laws
e Label metaphor

e Computation metaphor
* The |O monad

¢ Alternative and MonadPlus

20

Effectful computation metaphor

&y
Nl
2va
kinds of effects that can occur
trivial computation | class Applicative m => Monad m where
just return result =t=» return :: a -> m a
6 . 99 (>>=) - ma -> (a == m b) ->mb
threading -)

AN r—#

computations that return

Threading: ¢ >>= f things of type a and b

Build a computation that:
|. Runs computation ¢ to produce intermediate result x
2. Generates new computation d using f,i.e. f x
3. Runs computation d

(State.hs) I N

Reader monad

4)
class Applicative m => Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb
- S

[data Reader r a = R (r -> a)]

4)

instance Monad (Reader r) where
return x = R (\r -> x) run original
Rc>=Ff=R$ \r -> “//A,COHUHnaﬁon
let x =cr
‘ask :: Reader r r Rd=f x «_| buildnew
ask = R id in d r computation

~ ,

run new computation

22

State monad

y

class Applicative m => Monad m where
return :: a -> m a
(>>=) :::ma->(a->mb) ->mb

~

)

[data State s a

=S (s -> (a,s))]

return x =

fput ;. s -> State s ()
put s =S (_ -> ((),s))

get :: State s s
get =S (\s -> (s,s))

in d

instance Monad (State s) where
S (\s -> (x,s))

Sc>=f =S % \s -> o
\ let (x,t) = c s

run original
computation

Sd=f x \build new

t

computation

r

!\>

run new computation

23

Writer vs. State

[data Writer w a = W w a]

[data State s a =S (s -> (a,s))]

eval :: Expr -> Writer w Int
eval (Add 1 r) = 1iftM2 (+) (eval 1) (eval r)

\

eval | and eval r independently,
return result and accumulated w’s

eval :: Expr -> State s Int
eval (Add 1 r) = 1iftM2 (+) (eval 1) (eval r)

N

eval | with so, then eval r with s,
return result and s;

24

Outline

* What is a monad!?

* Box metaphor

* Do notation, relationships, laws
e Label metaphor
 Computation metaphor

¢ The 10 monad

¢ Alternative and MonadPlus

25

Interacting with the “real world”

Remember, functions in Haskell are pure:

e always return same output for same inputs —'n—i

* don't do anything else (no “side effects”)

So how do we do we implement this in Haskell?

int confirm() {

char c;
prlntf("Are you sure? [y/n]");
= getchar();
1f (c == 'y'")
re:ﬁmrg; L What we need (not pure):
} getChar :: () -> Char

putStrLn :: String -> ()

26

10 monad, conceptually

|ldea: make the “real world” explicit

getChar :: RealWorld -> (Char, RealwWorld)
putStrbLn :: String -> RealWorld -> ((), RealWorld)

[data I0 a = I0 (Realworld -> (a, RealWorld))]

\

But this representation is hidden!

4)

return Yalue without (jhstance Monad IO where
changing real world =% return a

“thread” real world 4@ 1© >>= T = ...)
through computations

27

Using the 10 monad

getChar :: IO Char
putStrLn :: String -> I0 ()

-

int confirm() {

char ¢ = getchar();

if (c == 'y')
return 1,;

return 0;

}

.

printf("Are you sure? [y/n]");

/

confirm :: I0 Bool
confirm = do

c <- getChar
return (c == 'y')

putStrLn "Are you sure? [y/n]"

28

10 best practices

Once you're in 10 you're stuck!

Basic principles:
* maximize |O-free code
* keep IO small and focused

Creating an executable: main is an |O action
* can still follow the principles above
* read inputs, pass to pure code, write outputs

main :: IO ()
main = ...

Final thoughts on the 10 monad

Metaphors for a value of type 10 a:

* an effectful computation where the “real world”
is threaded behind the scenes

* a value representing a sequence of O actions
to be executed by the Haskell runtime system

What have we gained?

* clear separation of code that depends on the
outside world (impossible to get out of IO monad)

30

Outline

* What is a monad!?

* Box metaphor

* Do notation, relationships, laws
e Label metaphor
 Computation metaphor

* The |O monad

e Alternative and MonadPlus

31

Alternative

class Applicative t => Alternative t where
T™ empty :: t a

e <|>) :: ta->ta->ta
Or,l/v(l)

identity

empty <|> x <==> X
empty and <[>

form a monoid
for any type t a

X <|> empty <==> X

(x <|>vy) <|> z
<==> X <|> (y <|> z)

4)

32

Alternative instances

class Applicative t => Alternative t where
empty :: t a
(<|>) :: ta->ta->ta

4)

. . instance Alternative Maybe where
’denuu'“~»>empty = Nothing

’ Just a <|> _ Just a
left-biased OR =T Nothing <|> mb = mb

of alternatives /

4)

instance Alternative [] where
™ empty = []

<|> = ++4
concatenate =" (<]>) = (++))
alternatives

identity

33

MonadPlus

class (Alternative m, Monad m)
=> MonadPlus m where

mzero :: m a

mplus :: ma ->ma ->m a

mzero = empty
mplus (<]>)

failure propagates {mzero >>= f <==> mzero]

34

Guards

Fail immediately if argument is False

-

.

guard :: Alternative m => Bool -> m ()

guard True = pure ()
guard False = empty

\

divAll :: [Int] -> [Int]
divAll xs ys = do

X <- XS

y <- ys

guard (y /= 0)
return (x div vy)

-> [Int]

>>> divAll [4,9,12] [2,0,3]
[21 1141 3! 614]

35

