
Monads

 1

Outline

 2

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Monads …
• are impure
• depend on laziness
• provide a “back-door” to perform side-effects

• are an imperative language inside Haskell
• require knowing abstract mathematics
• are about effects
• are about state
• are about IO

Monad myths

 3http://dev.stephendiehl.com/hask/#monadic-myths

monads are used for all of these,
but it's not what they’re about}

So what is a monad?

 4

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

1. type constructor

2. injection

3. “bind”

Specifically:
• a parameterized data type
• with two operations

In fact, you know a couple monads already! [a] and Maybe a

Just another abstraction over types … like Functor, Foldable, …

(that satisfy three laws)

that has lots of useful applications

Structuring effects

 5

One of the main motivations for the monad “pattern”

What is an effect?
• failure
• exceptions
• nondeterminism
• context
• tracing
• state
• input/output
• …

The monad pattern provides a way
to write the boilerplate only once 
(in the Monad instance)

Effects in FP – lots of boilerplate
• check failure in each function
• pass context to each function
• thread state through functions
• …

Maybe
Error

List
Reader
Writer
State

IO
…

Monad metaphors

 6

box metaphor

⟶
effectful computation

metaphor

These are just metaphors …  
be wary of over applying them!

label metaphor

Outline

 7

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Box metaphor

 8

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

the type of box

put one thing 
in a box

“repackaging”

things in a box

Repackaging: b >>= f  
 1. Open box b to access content x  
 2. Generate new box(es) from content using f, i.e. f x  
 3. Combine boxes into one result box

Maybe monad: a “possibly empty” box

 9

instance Monad Maybe where
 return = Just
 Just x >>= f = f x
 Nothing >>= _ = Nothing

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

Useful for managing failure

empty box stays empty  
(we have nothing to generate new boxes)

creates only one box  
(no step 3 needed)

(Failure.hs)

List monad: a “collection” box

 10

instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

Useful for managing variation/nondeterminism

combine boxes into one result box (step 3)

create a new box  
for each element 

(step 2)

Outline

 11

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Syntactic sugar: do notation

 12

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

(>>) :: Monad m => m a -> m b -> m b
m >> n = m >>= _ -> n

m >>= (\x -> … x …)
<==>

do { x <- m; … x … }

m >> n
<==>

do { m; n }

do m
 n

do x <- m
 … x …

“then”

With layout:

Relationship to Applicative

 13

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

ap :: Monad m => m (a -> b) -> m a -> m b
ap mf ma = do f <- mf
 a <- ma
 return (f a)

return <=> pure

Every monad is an applicative functor!

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

ap <=> (<*>)

inject

Relationship to Functor

 14

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

liftM :: Monad m => (a -> b) -> m a -> m b
liftM f m = m >>= return . f

class Functor t where
 fmap :: (a -> b) -> t a -> t b

fmap <=> liftM Every monad is a functor!

Monad laws

 15

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

left identity

right identity

associativity

return a >>= f <=> f a

m >>= return <=> m

(m >>= f) >>= g
<=>

m >>= (\x -> f x >>= g)

Outline

 16

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Label metaphor

 17

Relabeling: l >>= f  
 1. Take label off of l to reveal item x  
 2. Generate new labeled item(s) using f, i.e. f x  
 3. Combine old label and new labeled items  
 into one labeled item

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

the sort of labels

assign a default 
label to a thing

“relabeling”

(Logging.hs)

labeled things

Logging monad

 18

instance Monad Log where
 return x = L "" x
 L s x >>= f = let (L t y) = f x
 in L (s ++ t) y

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

data Log a = L String a

isolate thing
from label

new labeled
thing

add default
label

combine labels
log :: String -> Log ()
log s = L s ()

Writer monad

 19

instance Monoid w => Monad (Writer w) where
 return x = W mempty x
 W s x >>= f = let (W t y) = f x
 in W (mappend s t) y

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

data Writer w a = W w a

tell :: w -> Writer w ()
tell s = W s ()

Generalizes Logging

Outline

 20

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Effectful computation metaphor

 21

⟶

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

kinds of effects that can occur

trivial computation
just return result

“threading”

Threading: c >>= f
Build a computation that:
 1. Runs computation c to produce intermediate result x
 2. Generates new computation d using f, i.e. f x
 3. Runs computation d

(State.hs)

computations that return  
things of type a and b

Reader monad

 22

instance Monad (Reader r) where
 return x = R (\r -> x)
 R c >>= f = R $ \r ->
 let x = c r
 R d = f x
 in d r

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

data Reader r a = R (r -> a)

ask :: Reader r r
ask = R id
...

run original
computation

build new
computation

run new computation

State monad

 23

instance Monad (State s) where
 return x = S (\s -> (x,s))
 S c >>= f = S $ \s ->
 let (x,t) = c s
 S d = f x
 in d t

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

data State s a = S (s -> (a,s))

put :: s -> State s ()
put s = S (_ -> ((),s))
get :: State s s
get = S (\s -> (s,s))

run original
computation

build new
computation

run new computation

Writer vs. State

 24

data Writer w a = W w a

data State s a = S (s -> (a,s))

eval :: Expr -> Writer w Int
eval (Add l r) = liftM2 (+) (eval l) (eval r)

eval l and eval r independently,  
return result and accumulated w’s

eval :: Expr -> State s Int
eval (Add l r) = liftM2 (+) (eval l) (eval r)

eval l with s0, then eval r with s1,
return result and s2

Outline

 25

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Interacting with the “real world”

 26

f
Remember, functions in Haskell are pure:
• always return same output for same inputs
• don't do anything else (no “side effects”)

So how do we do we implement this in Haskell?
int confirm() {
 char c;
 printf("Are you sure? [y/n]");
 c = getchar();
 if (c == 'y')
 return 1;
 return 0;
} getChar :: () -> Char

putStrLn :: String -> ()

What we need (not pure):

IO monad, conceptually

 27

putStrLn :: String -> RealWorld -> ((), RealWorld)
getChar :: RealWorld -> (Char, RealWorld)

data IO a = IO (RealWorld -> (a, RealWorld))

instance Monad IO where
 return a = ...
 io >>= f = ...

Idea: make the “real world” explicit

return value without  
changing real world

“thread” real world
through computations

Can never get a value of type RealWorld …
can only interact with it through the IO monad

But this representation is hidden!

⟶

Using the IO monad

 28

int confirm() {
 printf("Are you sure? [y/n]");
 char c = getchar();
 if (c == 'y')
 return 1;
 return 0;
}

confirm :: IO Bool
confirm = do
 putStrLn "Are you sure? [y/n]"
 c <- getChar
 return (c == 'y')

getChar :: IO Char
putStrLn :: String -> IO ()

System.IO has many
more functions!

Creating an executable: main is an IO action
• can still follow the principles above
• read inputs, pass to pure code, write outputs

IO best practices

 29

main :: IO ()
main = ...

Once you’re in IO you’re stuck!

interacts w/ real world

can call pure code,  
but can’t return pure values

Basic principles:
• maximize IO-free code
• keep IO small and focused

simpler, more compositional
… advantages of FP

Final thoughts on the IO monad

 30

Metaphors for a value of type IO a:

• an effectful computation where the “real world”
is threaded behind the scenes

• a value representing a sequence of IO actions
to be executed by the Haskell runtime system

What have we gained?

• clear separation of code that depends on the
outside world (impossible to get out of IO monad)

Outline

 31

• What is a monad?

• Box metaphor

• Do notation, relationships, laws

• Label metaphor

• Computation metaphor

• The IO monad

• Alternative and MonadPlus

Alternative

 32

class Applicative t => Alternative t where
 empty :: t a
 (<|>) :: t a -> t a -> t a

applicative functors that produce monoids

identity

“or”

empty <|> x <==> x
x <|> empty <==> x
(x <|> y) <|> z  
 <==> x <|> (y <|> z)

empty and <|>
form a monoid

for any type t a

Alternative instances

 33

instance Alternative Maybe where
 empty = Nothing
 Just a <|> _ = Just a
 Nothing <|> mb = mb

 
identity

left-biased OR 
of alternatives

instance Alternative [] where
 empty = []
 (<|>) = (++)

 
identity

concatenate  
alternatives

class Applicative t => Alternative t where
 empty :: t a
 (<|>) :: t a -> t a -> t a

MonadPlus

 34

class (Alternative m, Monad m)
 => MonadPlus m where
 mzero :: m a
 mplus :: m a -> m a -> m a  
 mzero = empty
 mplus = (<|>)

monads that produce monoids –or– 
monads that support failure and choice

mzero >>= f <==> mzerofailure propagates

Guards

 35

guard :: Alternative m => Bool -> m ()
guard True = pure ()
guard False = empty

Fail immediately if argument is False

divAll :: [Int] -> [Int] -> [Int]
divAll xs ys = do
 x <- xs
 y <- ys
 guard (y /= 0)
 return (x `div` y)

>>> divAll [4,9,12] [2,0,3]
[2,1,4,3,6,4]

