
Webware for Python

� Developers:
� Chuck Esterbrook
� Jay Love
� Tom Schwaller
� Geoff Talvola
� And many others have contributed patches

� http://webware.sourceforge.net/
� Mailing lists: webware-discuss and webware-devel
� Very helpful Wiki
� Birds of a Feather session 8:00 PM – 9:30 PM

tonight!

What is Webware?

� Python-oriented
� Object-oriented
� Cover common needs of web developers
� Modular architecture: components can easily be used

together or independently
� Excellent documentation and examples
� Open source development and community
� Python-style license
� Cross-platform; works equally well on:

� Unix in its many flavors
� Windows NT/2000/XP

What is in Webware?

� The heart of Webware is WebKit
� We will also cover:

� Python Server Pages (PSP)
� TaskKit
� MiddleKit
� UserKit

WebKit

� A fast, easy-to-use application server
� Multi-threading, not forking

� Makes persistent data easier
� Works well on Windows

� Stable and mature
� Used in several real-world, commercial projects
� Supports multiple styles of development:

� Servlets
� Python Server Pages

Architecture

Browser

Apache

WebKit

Servlets PSPs

Filesystem

mod_webkit

XML-RPC client

80 80

8086

WebKit.cgi

8086

Installing Webware

� Download
� Latest official release can be downloaded from

http://webware.sourceforge.net/
� Or use CVS to pull in newer sources

� Install
� Unpack the tarball, creating a Webware directory
� Run python install.py in the Webware directory

Working Directory

� You can run WebKit directly from the installation
directory.

� But it’s easy to create a separate working directory.
� Advantages:

� Keeps configuration, logs, caches, servlets, etc. separate
from the Webware directory

� Lets you run multiple instances of WebKit without having to
make multiple copies of Webware

� Makes it easier to keep Webware up-to-date, since you don’t
have to modify it

Working Directory continued

� How to do it:
� python bin/MakeAppWorkDir.py /path/to/workdir

� This creates this directory structure:
workdir/ Cache/ used by Webware

Cans/ ???
Configs/ Application.config edit these to alter your configuration

AppServer.config
ErrorMsgs/ Webware stores error messages here
Logs/ Webware stores logs here
MyContext/ Sample context is placed here; you can

modify it to create your application
Sessions/ Session data is stored here
AppServer Starts the AppServer on Unix
AppServer.bat Starts the AppServer on Windows
Launch.py Used by AppServer[.bat]
NTService.py Win NT/2000 Service version of AppServer
WebKit.cgi Install in your cgi-bin dir
OneShot.cgi Install in your cgi-bin dir to use One-Shot mode

WebKit.cgi

� Easy to install
� Should work with any web server that supports CGI
� To install:

� Copy WebKit.cgi from your working directory (not from the
Webware installation directory) to your web server’s cgi-bin
directory

� On Windows, you will probably have to change the first line
of WebKit.cgi from

#! /usr/bin/env python
to

#! C:\Python22\python.exe
(or wherever Python is installed…)

mod_webkit

� Custom Apache module for Webware written in C
� Much faster than WebKit.cgi:

� Does not have to start the Python interpreter on every
request

� Located in
Webware/WebKit/Native/mod_webkit

� On Unix:
� use make and make install

� On Windows:
� Download precompiled mod_webkit.dll from

http://webware.sourceforge.net/MiscDownloads/
� Place mod_webkit.dll into the Apache/modules directory

mod_webkit continued

� Edit your Apache httpd.conf file:

Load the mod_webkit module
On windows you'd use mod_webkit.dll instead of mod_webkit.so
LoadModule webkit_module modules/mod_webkit.so
AddModule mod_webkit.c

Include this if you want to send all .psp files to WebKit,
even those that aren't found in a configured WebKit context.
AddType text/psp .psp
AddHandler psp-handler .psp

This sends requests for /webkit/... to the appserver on port 8086.
<Location /webkit>
WKServer localhost 8086
SetHandler webkit-handler
</Location>

Starting the app server

� In your working directory, run:
� Unix: ./AppServer
� Windows: AppServer.bat

Using the Example servlets and PSP’s

� To use the CGI adapter, surf to:
� http://localhost/cgi-bin/WebKit.cgi

� To use the mod_webkit adapter, surf to:
� http://localhost/webkit

� Experiment and enjoy!

Servlets
� A Python class located in a module of the same name
� Must inherit from WebKit.Servlet or one of its

subclasses:
� WebKit.HTTPServlet
� WebKit.Page

� A common technique is to make your own subclass of
WebKit.Page called SitePage which will contain:
� Utility methods
� Overrides of default behavior in WebKit.Page

� Simplest servlet:
from WebKit.Page import Page

class HelloWorld(Page):
def writeContent(self):

self.writeln(‘Hello, World!’)

Contexts

� Servlets are located in Contexts
� A context is a Python package

� Like a Python package, it contains an __init__.py module
which:

� Is imported before any servlets are executed
� Is a good place to put global initialization code
� If it contains a contextInitialize function, then

contextInitialize(application, path_of_context) is called

� Application.config contains settings that map
URL’s to contexts

� Best to put non-servlet helper modules into a
separate package, instead of putting them into the
context package.

The Request-Response Cycle
� User initiates a request:

� http://localhost/webkit/MyContext/MyServlet
� This activates the MyContext context, and the MyServlet servlet,

based on settings in Application.config
� Note: no extension was specified, even though the file is called

MyServlet.py
� There are several settings in Application.config that control the way

extensions are processed
� An instance of the MyServlet class is pulled out of a pool of

MyServlet instances, OR if the pool is empty then a new
MyServlet instance is created.

� A Transaction object is created.
� These methods are called on the MyServlet instance:

� Servlet.awake(transaction)
� Servlet.respond(transaction)
� Servlet.sleep(transaction)

� The MyServlet instance is returned to its pool of instances.

The Transaction Object

� Groups together several objects involved in
processing a request:
� Request: contains data received from the user
� Response: contains the response headers and text
� Servlet: processes the Request and returns the result in the

Response
� Session: contains server-side data indexed by a cookie

� Can also use a variable embedded in the URL
� Application: the global controller object

� You rarely use the transaction object directly

HTTPRequest
� Derived from generic Request base class
� Contains data sent by the browser:

� GET and POST variables:
� .field(name, [default])
� .hasField(name)
� .fields()

� Cookies:
� .cookie(name, [default])
� .hasCookie(name)
� .cookies()

� If you don’t care whether it’s a field or cookie:
� .value(name, [default])
� .hasValue(name)
� .values()

� CGI environment variables
� Various forms of the URL
� Server-side paths
� etc.

HTTPResponse

� Derived from generic Response base class
� Contains data returned to the browser

� .write(text) – send text response to the browser
� Normally all text is accumulated in a buffer, then sent all

at once at the end of servlet processing
� .setHeader(name, value) – set an HTTP header
� .flush() – flush all headers and accumulated text; used for:

� Streaming large files
� Displaying partial results for slow servlets

� .sendRedirect(url) – sets HTTP headers for a redirect

Page: Convenience Methods
� Access to the transaction and its objects:

� .transaction(), .reponse(), .request(), .session(),
.application()

� Writing response data:
� .write() – equivalent to .response().write()
� .writeln() – adds a newline at the end

� Utility methods:
� .htmlEncode()
� .urlEncode()

� Passing control to another servlet:
� .forward()
� .includeURL()
� .callMethodOfServlet()

� Whatever else YOU decide to add to your SitePage

Page: Methods Called During A Request

� .respond() usually calls .writeHTML()
� Override .writeHTML() in your servlet if you want

your servlet to provide the full output
� But, by default .writeHTML() invokes a convenient

sequence of method calls:
� .writeDocType() – override this if you don’t want to use

HTML 4.01 Transitional
� .writeln(‘<html>’)
� .writeHead()
� .writeBody()
� .writeln(‘</html>’)

Page: .writeHead()

� .writeHead() calls:
� .write(‘<head>’)
� .writeHeadParts() which itself calls:

� .writeTitle()
� Provide a .title() in your servlet that returns the title you

want
� Otherwise, the title will be the name of your servlet class

� .writeStyleSheet() – override if you use stylesheets
� .write(‘</head>’)

Page: .writeBody()

� .writeBody() calls:
� .write('<body %s>' % self.htBodyArgs())

� override .htBodyArgs() if you need to provide
arguments to the <body> tag

� .writeBodyParts() which itself calls:
� .writeContent()

� usually this is what you'll override in your servlets or
SitePage

� .write(‘</body>’)

Actions

� Actions are used to associate different form submit
buttons with different servlet methods

� To use actions:
� Add submit buttons like this to a form:

<input name=_action_add type=submit value=”Add
Widget”>

� Provide a .actions() method which returns list of method
names:

def actions(self):
return [‘add’, ‘delete’]

� .respond() checks for a field _action_ACTIONNAME
where ACTIONNAME is in the list returned by .actions()

� If such a field is found, then .handleAction() is called
instead of .writeHTML()

Actions continued
� .handleAction() calls:

� .preAction(ACTIONNAME) which itself calls:
� .writeDocType()
� .writeln(‘<html>’)
� .writeHead()

� .ACTIONNAME()
� .postAction(ACTIONNAME) which itself calls:

� .writeln(‘</html>’)
� In other words, your action method is called instead of

.writeContent()
� Of course, you don't have to use actions at all; you can

simply write code in your writeContent that examines the
HTTPResponse object and acts accordingly.

Forwarding

� self.forward(‘AnotherServlet’)
� Analogous to a redirect that happens entirely within WebKit
� Bundles up the current Request into a new Transaction
� Passes that transaction through the normal Request-

Response cycle with the indicated servlet
� When that servlet is done, control returns to the calling

servlet, but all response text and headers from the calling
servlet are discarded

� Useful for implementing a “controller” servlet that examines
the request and passes it on to another servlet for
processing

� Until recently, you had to write:

self.application().forward(self.transaction(), ‘AnotherServlet’)

Including

� self.includeURL(‘AnotherServlet’)
� Similar to .forward(), except that the output from the

called servlet is included in the response, instead of
replacing the response.

� Until recently, you had to write:

self.application().includeURL(self.transaction(), ‘AnotherServlet’)

Calling Servlet Methods

� self.callMethodOfServlet(‘AnotherServlet’,
‘method’, arg1, arg2, …)
� Instantiates the indicated servlet
� Calls servlet.awake()
� Calls the indicated method with the indicated args
� Calls servlet.sleep()
� Returns the return value of the method call back to the

calling servlet
� Example: suppose you have a table-of-contents servlet that

needs to fetch the title of other servlets by calling the
.title() method on those servlets:

� title = self.callMethodOfServlet(servletName,
‘title’)

Sessions

� Store user-specific data that must persist from one
request to the next

� Sessions expire after some number of minutes of
inactivity
� Controlled using SessionTimeout config variable

� The usual interface:
� .value(name, [default])
� .hasValue(name)
� .values()
� .setValue(name, value)

Session Stores

� Three options for the SessionStore config variable:
� Memory – all sessions are kept in memory
� Dynamic – recently used sessions are kept in memory, but

sessions that haven’t been used in a while are pickled to disk
and removed from memory

� This is the default, and it is recommended.
� File – sessions are pickled to disk and unpickled from disk on

every request and are not stored in memory at all.
� Not recommended.

� All sessions are pickled to disk when the appserver is
stopped, and unpickled when the appserver starts.
� You can restart the appserver without losing sessions.

Session Options

� Sessions are keyed by a random session ID
� By default, the session ID is stored in a cookie
� Alternative: set UseAutomaticPathSessions to 1

� The session ID is automatically embedded as a component
of the URL

� Cookies not required
� But: URLs become much longer and uglier

� No way (yet) to have WebKit choose the appropriate
strategy based on whether the browser supports
cookies

PSP: Python Server Pages

� Mingle Python and HTML in the style of JSP or ASP
� Include code using <% … %>
� Include evaluated expressions using <%= … %>
� Begin a block by ending code with a colon:

<%for I in range(10):%>

� End a block using the special tag:
<%end%>

� When the user requests a PSP:
� It is automatically compiled into a servlet class derived from

WebKit.Page
� The body of your PSP is translated into a writeHTML()

method

PSP Example
<%
def isprime(number):

if number == 2:
return 1

if number <= 1:
return 0

for i in range(2, number/2):
for j in range(2, i+1):

if i*j == number:
return 0

return 1
%>

<p>Here are some numbers, and whether or not they are prime:
<p>

<%for i in range(1, 101):%>
<%if isprime(i):%>

<%=i%> is prime!
<%end%><%else:%>

<%=i%> is not prime.
<%end%>

<%end%>

PSP Directives

� <%@ page imports=“module,
package.module, package:module” %>
� equivalent to at module level:

� import module
� import package.module
� from package import module

� <%@ page extends=“MyPSPBaseClass” %>
� makes the generated servlet derive from the specified class

� <%@ page method=“writeContent” %>
� makes the body of your PSP be placed into a writeContent

method instead of the writeHTML method.

� <%@ page indentType=“braces” %>
� Ignores indentation; uses braces for grouping

PSP: Braces Example
<%@page indentType="braces"%>
<%
def isprime(number): {

if number == 2: {
return 1

} if number <= 1: {
return 0

} for i in range(2, number/2+1): {
for j in range(2, i+1): {

if i*j == number: {
return 0

}
}

}
return 1

}
%>
<p>Here are some numbers, and whether or not they are prime:
<p>
<%
for i in range(1, 101): {

if isprime(i): { %>
<%=i%> is prime!

<%} else: {%>
<%=i%> is not prime.

<%}%>

<%}%>

PSP: Four Ways To Include
� <%@ include file=“myinclude.psp”%>

� Includes the specified file at compile time and parses it for PSP
content, like #include in C

� If included file's contents changes, you must restart the app server
to pick up the change

� <psp:include path=“myinclude”>
� Equivalent to self.includeURL('myinclude')
� Changes to the included file's contents are reflected immediately

� <psp:insert file=“myinclude.html”>
� File is included verbatim in the output. No PSP parsing.
� File is read from disk for every request, so changes to the included

file's contents are reflected immediately
� <psp:insert file=“myinclude.html” static=”1”>

� Includes the specified file at compile time verbatim, without
parsing for PSP content.

� If included file's contents changes, you must restart the app server
to pick up the change

PSP: Methods
� Adding methods to a PSP servlet with the psp:method directive:

<psp:method name=”add” params=”a,b”>
return a + b
</psp:method>

100 + 200 = <%=self.add(100, 200)%>

� Here's a slightly less contrived example:

<%@ page method=”writeContent” %>

<psp:method name=”title”>
return 'Prime Numbers'
</psp:method>

Web Services: XML-RPC

� Turn your Webware site into a “web service”
� Write a servlet derived from XMLRPCServlet

� Define exposedMethods() method that lists the methods
you want to expose through XML-RPC

� Write your methods

Web Services: XML-RPC Servlet Example

from WebKit.XMLRPCServlet import XMLRPCServlet

class XMLRPCExample(XMLRPCServlet):
def exposedMethods(self):

return [‘multiply’, ‘add’]
def multiply(self, x, y):

return x*y
def add(self, x, y):

return x+y

Web Services: XML-RPC Client Example
import xmlrpclib

servlet = xmlrpclib.Server(
‘http://localhost/webkit/Examples/XMLRPCExample’)

print servlet.add(‘foo’, ‘bar’)
print servlet.multiply(‘foo’, 3)
Print servlet.add(‘foo’, 3) # This raises an exception

Web Services: XML-RPC continued

� Exceptions are propagated as XML-RPC Faults
� Configuration setting IncludeTracebackInXMLRPCFault

controls whether or not the full traceback is included in the
Fault

� Easy to customize XML-RPC Servlet behavior
� Just override call() in a subclass
� Examples:

� Suppose you want an authentication token or session ID
to be the first parameter of every method

� Rather than add that parameter to every method, just
write a custom call() method

PickleRPC

� Brand-new in Webware CVS
� Uses Python’s pickle format instead of xmlrpc format
� Advantages:

� Works correctly with all Python types that can be pickled,
including longs, None, mx.DateTime, recursive objects, etc.

� Faster (?)

� Disadvantages:
� Python-specific
� Security holes (may be addressed soon)

ShutDown handlers

� As we learned before, the
contextInitialize(application, path) function in
an __init__.py in a context is a good place to put
global initialization code

� Where do you put global finalization code?
� Answer:

� Register a shutdown handler function with
application.addShutDownHandler(func)

� On shutdown, all functions that have been registered using
addShutDownHandler get called in the order they were
added.

� New in CVS

Tracebacks

� If an unhandled exception occurs in a servlet:
� Application.config settings:

� If ShowDebugInfoOnErrors = 1, an HTML version of
the traceback will be shown to the user; otherwise, a
short generic error message is shown.

� You can configure WebKit so that it sends the traceback
by email: EmailErrors, ErrorEmailServer,
ErrorEmailHeaders

� Include “fancy” traceback using
IncludeFancyTraceback and
FancyTracebackContext

� Your users will NOT report tracebacks, so set up
emailing of fancy tracebacks!

Admin pages
� Password-protected
� Detailed activity log
� Detailed error log
� View configuration settings

� Application.config
� AppServer.config

� View plug-ins
� View servlet cache
� Application Control

� Shut down the app server
� Clear the servlet cache
� Reload selected modules

� My opinion: probably NOT a good idea to enable the admin
pages in a production site due to security concerns

One-Shot
� Webware automatically reloads servlets whose source code has

changed on disk
� Webware does NOT reload dependencies when they change
� Solution: OneShot.cgi

� CGI script that fires up the app server, handles one request, and
shuts down

� Very useful for debugging if you have a fast machine and are not
using any libraries that take a long time to load

� Otherwise, can be unbearably slow

� Alternatives:
� Custom WebKit.cgi that restarts the app server only if files have

changed; see the Wiki

� Put a restart icon on your desktop. Windows example:
net stop WebKit
net start WebKit

Deployment issues: Unix

� WebKit/webkit
� Unix shell script launching WebKit at boot time using the

standard “init” mechanisms
� See the WebKit Install Guide and Wiki for hints

� Monitor.py
� This starts up WebKit and monitors its health, restarting it if

necessary.
� I’ve never used this one

Deployment issues: Windows NT/2000
� Installing as a Service

� Run python NTService.py install in your working dir
� This creates a service called WebKit App Server with a short

name of WebKit
� Use the Services Control Panel to configure a user account and a

startup policy (manual or automatic)
� Controlling the service

� Use the Services Control Panel
� From the command-line:

� net start WebKit
� net stop WebKit

� Removing the service
� Stop the service
� Run python NTService.py remove

� “Secret” AppServer.config setting: NTServiceLogFilename
(will change in the future)

IIS: wkcgi.exe

� CGI adapter written in C for greater speed
� If you have to use IIS, this is your best option
� Not as fast as Apache with mod_webkit
� Download compiled version from

http://webware.sourceforge.net/MiscDownloads/
� Connects to localhost:8086 by default

� If you need to connect elsewhere, place a webkit.cfg file in
the same directory

� See Webware/WebKit/Native/wkcgi/webkit.cfg for a sample

IIS: wkISAPI

� Experimental ISAPI module for IIS that could result
in speed equal to Apache with mod_webkit

� Needs testing
� Rumored to have memory leaks

MiddleKit
� Object-Relational mapper
� Supports MySQL and MS SQL Server.

� PostgreSQL support soon?

� Can be used anywhere, not just WebKit applications.
� Write an object model in a Comma-Separated Values (CSV) file

using a spreadsheet
� Inheritance is supported
� Numbers, strings, enums, dates/times, object references, lists of

objects (actually sets of objects)

� Compile the object model
� This generates Python classes for each of your objects that contain

accessor methods for all fields
� Also, an empty derived class is provided where you can add your

own methods
� And, a SQL script is generated that you can run to create the tables

MiddleKit continued

� In your application code:
� Create a singleton instance of SQLObjectStore pointing it to

your SQL Database and your object model CSV file
� Use store.fetchObjectsOfClass() to fetch objects from the

store as needed
� Create objects using their constructor
� Modify the objects using the accessor methods that were

generated for you
� Add objects to the store using store.addObject()
� Save changes to the database using store.saveChanges()
� Delete objects using store.deleteObject()
� See the MiddleKit documentation for all the details

UserKit

� Basic framework for user and role management
� Pre-alpha status; needs much more work

TaskKit

� Useful framework for scheduling periodic tasks
� Can be used outside of WebKit
� Example:

from TaskKit.Task import Task
from TaskKit.Scheduler import Scheduler

class MyTask(Task):
def run(self):

Do something useful…

scheduler = Scheduler()
scheduler.start()
scheduler.addPeriodicAction(time() + 60*5, 60*5, MyTask(),

‘MyTask’)

Cheetah

� http://www.cheetahtemplate.org/
� A Python-powered template engine and code

generator
� Integrates tightly with Webware
� Can also be used as a standalone utility or combined

with other tools
� Compared with PSP:

� Much more designer-friendly
� Perhaps less programmer-friendly?

� Paper on Cheetah being presented from 3:30-5:00
PM today

FunFormKit

� http://colorstudy.net/software/funformkit/
� A package for Webware that does:

� Form validation
� Value conversion
� HTML generation
� Re-querying on invalid input
� Compound HTML widgets (for example a Date widget)

� LGPL license

Who’s using Webware?

� Public sites:
� http://foreclosures.lycos.com/ - searchable database of

foreclosure property
� http://www.electronicappraiser.com/ - online home

valuations
� http://www.vorbis.com/ - home page for ogg vorbis audio

encoding technology

� Private sites – intranets and extranets
� Parlance Corporation: reporting and administrative

capabilities for their customers
� HFD: The Monkey, a content management system
� Juhe: a membership management system for the Austrian

Youth Hostel Association
� Several others listed in the Wiki

Future Plans

� Releases:
� New release every 2 months
� Next release 0.7 in 2nd half of February

� Planned features (partial list):
� Comprehensive test suite
� Improve documentation

� Some features are undocumented
� Install guide needs to be updated

� PostgreSQL support in MiddleKit
� Built-in HTTP server
� Multi-application support
� Distutils support

I Want To Contribute!

� See the Wiki for ideas on areas where we could use
help

� Contribute patches on SourceForge
� Write a module for use with Webware

� Could be useable independent of Webware (like Cheetah)
� Could be Webware-specific (like FunFormKit)

� Give it a “Kit” suffix
� If it needs to hook into WebKit, make it a “Plug-In”

� See WebKit/PlugIn.py for details
� PSP is an example of a plug-in that happens to be

included with Webware

� Please follow the Webware Style Guidelines
� See the documentation

That’s All!

� Any questions?

