i Webware for Python

= Developers:

Chuck Esterbrook

Jay Love

Tom Schwaller

Geoff Talvola

And many others have contributed patches

» http://webware.sourceforge.net/
= Mailing lists: webware-discuss and webware-devel
= Very helpful Wiki

= Birds of a Feather session 8:00 PM — 9:30 PM
tonight!

i What is Webware?

= Python-oriented
= Object-oriented
= Cover common needs of web developers

= Modular architecture: components can easily be used
together or independently

= Excellent documentation and examples
= Open source development and community
= Python-style license

= Cross-platform; works equally well on:

= Unix in its many flavors
= Windows NT/2000/XP

What is in Webware?

= The heart of Webware is WebKit

= We will also cover:
= Python Server Pages (PSP)
= TaskKit
= MiddleKit
= UserKit

i WebKit

= A fast, easy-to-use application server

= Multi-threading, not forking
= Makes persistent data easier
= Works well on Windows

= Stable and mature
= Used in several real-world, commercial projects

= Supports multiple styles of development:
= Servlets
= Python Server Pages

* Architecture

8086 8086

Filesystem

Installing Webware

= Download

= Latest official release can be downloaded from
http://webware.sourceforge.net/

= Or use CVS to pull in newer sources
= Install

= Unpack the tarball, creating a Webware directory
= Run python install.py in the Webware directory

i Working Directory

= You can run WebKit directly from the installation
directory.

= But it's easy to create a separate working directory.
= Advantages:

= Keeps configuration, logs, caches, servlets, etc. separate
from the Webware directory

= Lets you run multiple instances of WebKit without having to
make multiple copies of Webware

= Makes it easier to keep Webware up-to-date, since you don't
have to modify it

* Working Directory continued

= How to do it:
= python bin/MakeAppWorkDir.py /path/to/workdir

= This creates this directory structure:

workdir/

Cache/

Cans/

Configs/ Application.config
AppServer.config

ErrorMsgs/

Logs/

MyContext/

Sessions/
AppServer
AppServer.bat
Launch.py
NTService.py
WebKit.cgi
OneShot.cgi

used by Webware
redd

edit these to alter your configuration

Webware stores error messages here
Webware stores logs here

Sample context is placed here; you can
modify it to create your application
Session data is stored here

Starts the AppServer on Unix

Starts the AppServer on Windows

Used by AppServer{.bat]

Win NT/2000 Service version of AppServer
Install in your cgi-bin dir

Install in your cgi-bin dir to use One-Shot mode

i WebKit.cqi

= Easy to install
= Should work with any web server that supports CGI

= 10 install:

= Copy WebKit.cgi from your working directory (not from the
Webware installation directory) to your web server’s cgi-bin
directory

= On Windows, you will probably have to change the first line
of WebKit.cgi from

#! [usr/bin/env python
to
#! C:\Python22\python.exe

(or wherever Python is installed...)

mod_webkit

= Custom Apache module for Webware written in C

= Much faster than WebKit.cgi:

= Does not have to start the Python interpreter on every
request

= Located in
Webware/WebKit/Native/mod_webkit

= On Unix:
= use make and make install

= On Windows:

= Download precompiled mod_webkit.dll from
http://webware.sourceforge.net/MiscDownloads/

= Place mod_webkit.dll into the Apache/modules directory

mod_webkit continued

= Edit your Apache httpd.conf file:

Load the mod_webkit module

On windows you'd use mod_webkit.dll instead of mod_webkit.so
LoadModule webkit_module modules/mod_webkit.so

AddModule mod_webkit.c

Include this if you want to send all .psp files to WebKit,

even those that aren't found in a configured WebKit context.
AddType text/psp .psp

AddHandler psp-handler .psp

This sends requests for /webkit/... to the appserver on port 8086.
<Location /webkit>

WKServer localhost 8086

SetHandler webkit-handler

< /Location>

i Starting the app server

= In your working directory, run:
=« Unix: ./AppServer
= Windows: AppServer.bat

i Using the Example servlets and PSP’s

= To use the CGI adapter, surf to:
» http://localhost/cgi-bin/WebKit.cgi

= To use the mod_webkit adapter, surf to:
= http://localhost/webkit

= Experiment and enjoy!

Servlets

= A Python class located in a module of the same name

= Must inherit from WebKit.Servlet or one of its
subclasses:
= WebKit.HTTPServiet
« WebKit.Page

= A common technique is to make your own subclass of
WebKit.Page called SitePage which will contain:
= Utility methods
= Overrides of default behavior in WebKit.Page

= Simplest servlet:
from WebKit.Page import Page

class HelloWorld(Page):
def writeContent(self):
self.writeln(*Hello, World!")

Contexts

s Servlets are located in Contexts

= A context is a Python package

= Like a Python package, it contains an __init___.py module
which:

= Is imported before any servlets are executed
= Is a good place to put global initialization code
« If it contains a contextInitialize function, then
contextInitialize(application, path_of_context) is called
= Application.config contains settings that map
URL's to contexts

= Best to put non-servlet helper modules into a
separate package, instead of putting them into the
context package.

The Request-Response Cycle

User initiates a request:

= http://localhost/webkit/MyContext/MyServlet
This activates the MyContext context, and the MyServlet servlet,
based on settings in Application.config

= Note: no extension was specified, even though the file is called
MyServlet.py

= There are several settings in Application.config that control the way
extensions are processed

An instance of the MyServlet class is pulled out of a pool of
MyServlet instances, OR if the pool is empty then a new
MyServlet instance is created.

A Transaction object is created.

These methods are called on the MyServlet instance:
= Servlet.awake(transaction)
= Servlet.respond(transaction)
= Servlet.sleep(transaction)

The MyServlet instance is returned to its pool of instances.

The Transaction Object

= Groups together several objects involved in
processing a request:
= Request: contains data received from the user
= Response: contains the response headers and text

= Servlet: processes the Request and returns the result in the
Response
= Session: contains server-side data indexed by a cookie

=« Can also use a variable embedded in the URL
= Application: the global controller object

= You rarely use the transaction object directly

HT TPRequest

= Derived from generic Request base class

= Contains data sent by the browser:
« GET and POST variables:
« .field(name, [default])
« .hasField(name)
« Jfields()
= Cookies:
« .cookie(name, [default])
« .hasCookie(name)
« .cookies()
=« If you don't care whether it's a field or cookie:
« .value(name, [default])
« .hasValue(name)
=« .values()
= CGI environment variables
= Various forms of the URL
= Server-side paths
n etc.

HTTPResponse

= Derived from generic Response base class

= Contains data returned to the browser
= .write(text) — send text response to the browser

= Normally all text is accumulated in a buffer, then sent all
at once at the end of servlet processing

« .setHeader(name, value) — set an HTTP header

« .flush() — flush all headers and accumulated text; used for:
= Streaming large files
= Displaying partial results for slow servlets

=« .sendRedirect(url) — sets HTTP headers for a redirect

i Page: Convenience Methods

= Access to the transaction and its objects:

« .transaction(), .reponse(), .request(), .session(),
.application()

= Writing response data:
= .write() — equivalent to .response().write()
= .writeln() — adds a newline at the end

= Utility methods:
« .htmlEncode()
=« .urlEncode()

= Passing control to another serviet:
« .forward()
= .includeURL()
= .CcallMethodOfServiet()

= Whatever else YOU decide to add to your SitePage

* Page: Methods Called During A Request

= .respond() usually calls .writeHTML()

= Override .writeHTML() in your servlet if you want
your servlet to provide the full output

= But, by default .writeHTML() invokes a convenient
sequence of method calls:

= .writeDocType() — override this if you don’t want to use
HTML 4.01 Transitional

« .writein((<htmi>")
« .writeHead()

« .writeBody()

« writeln('</html>")

Page: .writeHead()

= .writeHead() calls:
« .write(*<head>")
= .writeHeadParts() which itself calls:

« .writeTitle()

Provide a .title() in your servlet that returns the title you
want

Otherwise, the title will be the name of your servlet class
= .writeStyleSheet() — override if you use stylesheets

» write(*</head>’)

Page: .writeBody()

= .writeBody/() calls:
« write('<body %s>"' % self.htBodyArgs())

= override .htBodyArgs() if you need to provide
arguments to the <body> tag

= .writeBodyParts() which itself calls:

« .writeContent()

usually this is what you'll override in your servlets or
SitePage

« .write('</body>")

Actions

s Actions are used to associate different form submit
buttons with different servlet methods

= [0 use actions:
= Add submit buttons like this to a form:
<input name=_action_add type=submit value="Add
Widget”>
= Provide a .actions() method which returns list of method
names:

def actions(self):
return [‘add’, ‘delete’]

= .respond() checks for a field _action_
where is in the list returned by .actions()

= If such a field is found, then .handleAction() is called
instead of .writeHTML()

Actions continued

»« .handleAction() calls:

« .preAction() which itself calls:
-writeDocType()
-writeln(*<html>’)
.writeHead()

.. O

« .postAction() which itself calls:

-writeln('</html>’)
= In other words, your action method is called instead of
.writeContent()

= Of course, you don't have to use actions at all; you can
simply write code in your writeContent that examines the

HTTPResponse object and acts accordingly.

Forwarding

= self.forward('AnotherServiet’)

Analogous to a redirect that happens entirely within WebKit
Bundles up the current Request into a new Transaction

Passes that transaction through the normal Request-
Response cycle with the indicated servlet

When that servlet is done, control returns to the calling
servlet, but all response text and headers from the calling
servlet are discarded

Useful for implementing a “controller” servlet that examines
the request and passes it on to another servlet for
processing

Until recently, you had to write:

self.application().forward(self.transaction(), ‘AnotherServiet’)

Including

= self.includeURL('AnotherServiet’)

= Similar to .forward(), except that the output from the
called servlet is included in the response, instead of
replacing the response.

= Until recently, you had to write:

self.application().includeURL(self.transaction(), ‘AnotherServiet’)

Calling Servlet Methods

= self.callMethodOfServiet('AnotherServiet’,
‘method’, argl, arg2, ...)
= Instantiates the indicated servlet
= Calls serviet.awake()
= Calls the indicated method with the indicated args
= Calls servlet.sleep()

= Returns the return value of the method call back to the
calling servlet

= Example: suppose you have a table-of-contents servlet that
needs to fetch the title of other servlets by calling the
title() method on those servlets:

« title = self.caliIMethodOfServiet(servietName,
‘title’)

Sessions

= Store user-specific data that must persist from one
request to the next

= Sessions expire after some number of minutes of
Inactivity
= Controlled using SessionTimeout config variable
= The usual interface:
= .value(name, [default])
= .hasValue(name)
= .values()
= .setValue(name, value)

Session Stores

= Three options for the SessionStore config variable:
= Memory — all sessions are kept in memory

= Dynamic — recently used sessions are kept in memory, but
sessions that haven't been used in a while are pickled to disk
and removed from memory

= This is the default, and it is recommended.

= File — sessions are pickled to disk and unpickled from disk on
every request and are not stored in memory at all.

=« Not recommended.

= All sessions are pickled to disk when the appserver is
stopped, and unpickled when the appserver starts.
= You can restart the appserver without losing sessions.

i Session Options

= Sessions are keyed by a random session ID
= By default, the session ID is stored in a cookie

= Alternative: set UseAutomaticPathSessions to 1

= The session ID is automatically embedded as a component
of the URL

= Cookies not required
=« But: URLs become much longer and uglier

= No way (yet) to have WebKit choose the appropriate
strategy based on whether the browser supports
cookies

PSP: Python Server Pages

= Mingle Python and HTML in the style of JSP or ASP
= Include code using <% ... %>
= Include evaluated expressions using <%= ... %>
= Begin a block by ending code with a colon:

<Y%for I in range(10):%>
= End a block using the special tag:

<% end%>

= When the user requests a PSP:

« It is automatically compiled into a servlet class derived from
WebKit.Page

= The body of your PSP is translated into a writeHTML()
method

PSP Example

<%
def isprime(number):
if number == 2:
return 1
if number <= 1:
return 0
for i in range(2, number/2):
for jin range(2, i+1):
if i*j == number:
return 0
return 1
%>

<p>Here are some numbers, and whether or not they are prime:
<p>

<%for i in range(1, 101):%>
<%if isprime(i): %>
<%=i%> is prime!
<%end%><%else:%>
<%=i%> is not prime.
<%end%>

<%end%>

PSP Directives

» <% @ page imports="module,
package.module, package:module” %>
= equivalent to at module level:
= import module
= import package.module
« from package import module

» <% @ page extends="MyPSPBaseClass” %>
= makes the generated servlet derive from the specified class

» <% @ page method="writeContent” %>

= makes the body of your PSP be placed into a writeContent
method instead of the writeHTML method.

» <% @ page indentType="braces” %>
= Ignores indentation; uses braces for grouping

PSP: Braces Example

<%@page indentType="braces" %>
<%
def isprime(number): {
if number == 2: {
return 1
} if number <= 1: {
return 0
} for i in range(2, number/2+1): {
for j in range(2, i+1): {
if i*j == number: {
return 0

}

}
}
return 1
}
0/°>
<p>Here are some numbers, and whether or not they are prime:
<p>
<%
foriin range(1, 101): {
if isprime(i): { %>
<%=i%> is prime!
<%} else: {%>
<%=i%> is not prime.
<%}%>

<%}%>

PSP: Four Ways To Include

s <%@ include file="myinclude.psp”%>

= Includes the specified file at compile time and parses it for PSP
content, like #include in C

« If included file's contents changes, you must restart the app server
to pick up the change

s <psp:include path="myinclude”>

= Equivalent to self.includeURL('myinclude’)

= Changes to the included file's contents are reflected immediately
s <psp:insert file="myinclude.html”>

= File is included verbatim in the output. No PSP parsing.

= File is read from disk for every request, so changes to the included
file's contents are reflected immediately

s <psp:insert file="myinclude.html” static="1">

= Includes the specified file at compile time verbatim, without
parsing for PSP content.

« If included file's contents changes, you must restart the app server
to pick up the change

PSP: Methods

= Adding methods to a PSP servlet with the psp:method directive:

<psp:method name="add” params="a,b">
returna+b
</psp:method>

100 + 200 = <%=self.add(100, 200)%>
= Here's a slightly less contrived example:

<% @ page method="writeContent” %>

<psp:method name="title">
return 'Prime Numbers'
</psp:method>

i Web Services: XML-RPC

= Turn your Webware site into a “web service”

= Write a servlet derived from XMLRPCServlet

= Define exposedMethods() method that lists the methods
you want to expose through XML-RPC

= Write your methods

* Web Services: XML-RPC Servlet Example

from WebKit. XMLRPCServlet import XMLRPCServiet

class XMLRPCExample(XMLRPCServiet):
def exposedMethods(self):
return ['multiply’, ‘add’]
def multiply(self, x, y):
return x*y
def add(self, x, y):
return x+y

* Web Services: XML-RPC Client Example

import xmlirpclib

servlet = xmlrpclib.Server(
‘http://localhost/webkit/Examples/XMLRPCExample’)

print serviet.add(*foo’, ‘bar’)
print serviet.multiply(‘foo’, 3)
Print serviet.add(foo’, 3) # This raises an exception

Web Services: XML-RPC continued

= EXxceptions are propagated as XML-RPC Faults

= Configuration setting IncludeTracebackInXMLRPCFault
controls whether or not the full traceback is included in the
Fault

= Easy to customize XML-RPC Servlet behavior
= Just override call() in a subclass

= Examples:

= Suppose you want an authentication token or session ID
to be the first parameter of every method

= Rather than add that parameter to every method, just
write a custom call() method

PickleRPC

= Brand-new in Webware CVS
= Uses Python’s pickle format instead of xmlrpc format

= Advantages:

= Works correctly with all Python types that can be pickled,
including longs, None, mx.DateTime, recursive objects, etc.

= Faster (?)
= Disadvantages:
= Python-specific
= Security holes (may be addressed soon)

ShutDown handlers

= As we learned before, the
contextInitialize(application, path) function in
an __init__.py in a context is a good place to put
global initialization code

= Where do you put global finalization code?

s Answer:

= Register a shutdown handler function with
application.addShutDownHandler(func)

= On shutdown, all functions that have been registered using
addShutDownHandler get called in the order they were
added.

= New in CVS

Tracebacks

= If an unhandled exception occurs in a servlet:
= Application.config settings:

« If ShowDebugInfoOnErrors = 1, an HTML version of
the traceback will be shown to the user; otherwise, a
short generic error message is shown.

= You can configure WebKit so that it sends the traceback
by email: EmailErrors, ErrorEmailServer,
ErrorEmailHeaders

= Include “fancy” traceback using
IncludeFancyTraceback and
FancyTracebackContext
= Your users will NOT report tracebacks, so set up
emailing of fancy tracebacks!

Admin pages

= Password-protected

= Detailed activity log

= Detailed error log

= View configuration settings

= Application.config
= AppServer.config

= View plug-ins
= View servlet cache
= Application Control
= Shut down the app server

= Clear the servlet cache
= Reload selected modules

= My opinion: probably NOT a good idea to enable the admin
pages in a production site due to security concerns

One-Shot

= Webware automatically reloads servlets whose source code has
changed on disk

= Webware does NOT reload dependencies when they change

= Solution: OneShot.cgi

= CGI script that fires up the app server, handles one request, and
shuts down

= Very useful for debugging if you have a fast machine and are not
using any libraries that take a long time to load

=« Otherwise, can be unbearably slow
= Alternatives:

= Custom WebKit.cgi that restarts the app server only if files have
changed; see the Wiki

= Put a restart icon on your desktop. Windows example:

net stop WebKit
net start WebKit

Deployment issues: Unix

= WebKit/webkit

= Unix shell script launching WebKit at boot time using the
standard “init” mechanisms

= See the WebKit Install Guide and Wiki for hints

= Monitor.py

= This starts up WebKit and monitors its health, restarting it if
necessary.

= I've never used this one

Deployment issues: Windows NT/2000

= Installing as a Service
= Run python NTService.py install in your working dir

= This creates a service called WebKit App Server with a short
name of WebKit

= Use the Services Control Panel to configure a user account and a
startup policy (manual or automatic)

= Controlling the service
= Use the Services Control Panel
= From the command-line:
= het start WebKit
« het stop WebKit
= Removing the service
= Stop the service
= Run python NTService.py remove

= "Secret” AppServer.config setting: NTServiceLogFilename
(will change in the future)

i IIS: wkcgi.exe

CGI adapter written in C for greater speed
If you have to use IIS, this is your best option
Not as fast as Apache with mod_webkit

Download compiled version from
http://webware.sourceforge.net/MiscDownloads/

Connects to localhost:8086 by default

= If you need to connect elsewhere, place a webkit.cfg file in
the same directory

= See Webware/WebKit/Native/wkcgi/webkit.cfg for a sample

i I1S: wkISAPI

= Experimental ISAPI module for IIS that could result
in speed equal to Apache with mod_webkit

= Needs testing
= Rumored to have memory leaks

MiddleKit

= Object-Relational mapper

= Supports MySQL and MS SQL Server.
= PostgreSQL support soon?
= Can be used anywhere, not just WebKit applications.
= Write an object model in a Comma-Separated Values (CSV) file
using a spreadsheet
« Inheritance is supported

= Numbers, strings, enums, dates/times, object references, lists of
objects (actually sets of objects)

= Compile the object model

= This generates Python classes for each of your objects that contain
accessor methods for all fields

= Also, an empty derived class is provided where you can add your
own methods

= And, a SQL script is generated that you can run to create the tables

MiddleKit continued

= In your application code:

= Create a singleton instance of SQLODbjectStore pointing it to
your SQL Database and your object model CSV file

= Use store.fetchObjectsOfClass() to fetch objects from the
store as needed

= Create objects using their constructor

= Modify the objects using the accessor methods that were
generated for you

= Add objects to the store using store.addObject()

= Save changes to the database using store.saveChanges()
= Delete objects using store.deleteObject()

= See the MiddleKit documentation for all the details

i UserKit

= Basic framework for user and role management
= Pre-alpha status; needs much more work

TaskKit

= Useful framework for scheduling periodic tasks
= Can be used outside of WebKit

= Example:

from TaskKit.Task import Task
from TaskKit.Scheduler import Scheduler

class MyTask(Task):
def run(self):
Do something useful...

scheduler = Scheduler()
scheduler.start()

scheduler.addPeriodicAction(time() + 60*5, 60*5, MyTask(),
‘MyTask’)

i Cheetah

= http://www.cheetahtemplate.org/

= A Python-powered template engine and code
generator

= Integrates tightly with Webware

= Can also be used as a standalone utility or combined
with other tools
= Compared with PSP:
= Much more designer-friendly
= Perhaps less programmer-friendly?

= Paper on Cheetah being presented from 3:30-5:00
PM today

FunFormKit

= http://colorstudy.net/software/funformkit/

= A package for Webware that does:

= Form validation

= Value conversion
HTML generation

= Re-querying on invalid input

= Compound HTML widgets (for example a Date widget)
= LGPL license

Who's using Webware?

= Public sites:

= http://foreclosures.lycos.com/ - searchable database of
foreclosure property

= http://www.electronicappraiser.com/ - online home
valuations

« http://www.vorbis.com/ - home page for ogg vorbis audio
encoding technology
= Private sites — intranets and extranets

= Parlance Corporation: reporting and administrative
capabilities for their customers

= HFD: The Monkey, a content management system

= Juhe: a membership management system for the Austrian
Youth Hostel Association

= Several others listed in the Wiki

Future Plans

= Releases:
= New release every 2 months
= Next release 0.7 in 2" half of February

= Planned features (partial list):
= Comprehensive test suite

Improve documentation

= Some features are undocumented

= Install guide needs to be updated
PostgreSQL support in MiddleKit
Built-in HTTP server
Multi-application support
Distutils support

I Want To Contribute!

= See the Wiki for ideas on areas where we could use
help

= Contribute patches on SourceForge

= Write a module for use with Webware
= Could be useable independent of Webware (like Cheetah)
= Could be Webware-specific (like FunFormKit)
= Give it a “Kit” suffix
« If it needs to hook into WebKit, make it a "Plug-In”
= See WebKit/PlugIn.py for details
= PSP is an example of a plug-in that happens to be
included with Webware
= Please follow the Webware Style Guidelines

= See the documentation

* That's All!

= Any questions?

