
Mysteries of Dropbox
Property-Based Testing of a Distributed Synchronization Service

John Hughes∗†, Benjamin C. Pierce‡, Thomas Arts∗, Ulf Norell∗†,
∗ Quviq AB, Göteborg, Sweden

† Dept of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden
‡ Dept of Computer and Information Science, University of Pennsylvania, PA, USA

Abstract—File synchronization services such as Dropbox are
used by hundreds of millions of people to replicate vital data.
Yet rigorous models of their behavior are lacking. We present
the first formal—and testable—model of the core behavior of a
modern file synchronizer, and we use it to discover surprising
behavior in two widely deployed synchronizers. Our model is
based on a technique for testing nondeterministic systems that
avoids requiring that the system’s internal choices be made visible
to the testing framework.

I. INTRODUCTION

File synchronization services—distributed systems that
maintain consistency among multiple copies of a file or
directory structure—are now ubiquitous. Dropbox claim 400
million users,1 while Google Drive and Microsoft OneDrive
are reported to have over 240 million users each.2 In addition
to these large-scale commercial offerings and many smaller
ones, there are a plethora of open source synchronizers,
enabling users to create their own ‘cloud storage.’ With so
many people trusting their data to synchronization services,
their correctness should be a high priority indeed.

Surprisingly, then, it seems that only one file synchronizer
has been formally specified to date: Unison [1]–[3]. However,
even Unison’s specification is not directly useful for testing;
moreover, Unison works rather differently from contemporary
synchronization services: it synchronizes two peers at a time,
rather than many clients with one server; synchronization is
invoked explicitly by the user, rather than taking place auto-
matically in the background; and conflict resolution involves
user interaction, rather than being performed automatically.

Synchronizers are challenging not only to specify but also
to test. They are large-scale, nondeterministic distributed sys-
tems, with timing-dependent behavior. They must cope with
conflicts (when the same file is modified concurrently on two
or more clients). They work in the background, and their
state is unobservable. Moreover, they are slow. They share
these difficulties with a large class of critical systems; thus,
techniques for addressing these problems are valuable, not
only for testing file synchronizers, but in a broader context.

1techcrunch.com, “Dropbox now has more than 400 million registered
users”, June 24th, 2015.

2fortune.com, “Who’s winning the consumer cloud storage wars?”
November 6th, 2014.

Our goal in this paper is to present a testable formal specifi-
cation for the core behavior of a file synchronizer. We do so via
a model developed using Quviq QuickCheck [4]. Despite the
apparent simplicity of the problem, we encountered interesting
challenges regarding both specification and testing. We used
the model to test Dropbox, Google Drive, and ownCloud (an
open source alternative), exposing unexpected behavior in two
out of three.

In Section II, we introduce our testing framework. Sec-
tion III gives a high-level overview of the concepts used in our
model, in particular the operations performed by test cases, the
observations made when a test case is run on the system under
test (SUT), and the explanations that we construct to determine
whether the test has passed or failed. Section IV presents the
formal specification itself, beginning with a naive version and
refining it in light of failed tests that reveal subtleties in the
synchronizer’s handling of corner cases. Section V describes
further failed tests that, rather than pinpointing inadequacies
in the specification, seem to us to exemplify unintended
behaviors of both Dropbox and ownCloud, including situations
where each system can lose data. In Section VI, we discuss the
pragmatics of our testing framework, in particular our methods
for triggering timing-dependent behaviors, for observing when
the system has reached quiescence, and for shrinking tests to
minimal failing cases in the presence of nondeterminism. In
Section VII, we sketch an initially promising attempt to formu-
late the specification in terms of Lamport’s “happens before”
relation and explain why it ultimately proved unsuccessful.
Section VIII surveys related work, and Sections IX and X
present future directions and concluding remarks.

Our main contributions are as follows: (1) We construct the
first formal model of the core behavior of modern file synchro-
nizers. (2) To define the model, we develop a technique for
testing nondeterministic systems that does not require that the
system’s internal choices be visible to the testing framework.
Our technique is based on an explicit representation of hidden
system state plus “conjectured events” that mutate it. (3) We
validate our final model against two commercial synchronizers
and one open-source one, showing that their behavior agrees
with the model in most situations. (4) We demonstrate the
effectiveness of our model and testing framework by using it
to reveal a number of surprising behaviors, likely not intended
by the developers of these systems.



II. TESTING A SYNCHRONIZATION SERVICE

We begin by making a rather drastic simplifying assump-
tion: we consider only one file, with operations to read,
write, and delete it. We consider only operations that read
and write the entire file; we do not specify or test how the
synchronizer interacts with open files as they are modified.
Restricting our attention to one file may seem extreme, but
even this simple setting forces us to confront essential issues
of synchronization—in particular subtleties arising in the pres-
ence of conflicts—and it is enough to expose surprising be-
haviors in real systems. A plan for extending the specification
to multiple files and directories is sketched in Section IX.

We developed our model using Quviq QuickCheck [4],
a descendant of Haskell QuickCheck [5]. QuickCheck tests
properties—universally quantified boolean formulæ—by gen-
erating random values for the quantified variables and check-
ing that the formula evaluates to true. When a test fails,
QuickCheck “shrinks” it, searching for a similar but smaller
test that also fails and ultimately reporting a failing test that
is ‘minimal’ in some sense. (This process is akin to delta-
debugging [6], although the details are slightly different.)
QuickCheck provides a domain-specific language for defining
test data generators and shrinking searches; using this DSL,
users can exert fine control over the random distribution of
test cases. A part of this DSL is a notation for specifying
state machine models, which generate test cases consisting of
sequences of calls to an API under test [7], [8]; this is how
we generated test cases for synchronizers. Quviq QuickCheck
is embedded in the Erlang programming language—that is,
specifications are just Erlang programs that call libraries
supplied by QuickCheck—and the generated tests invoke the
SUT directly via Erlang function calls. As a result, there is
no distinction between ‘abstract’ and ‘concrete’ test cases, as
there often is in model-based testing, and there is no need for
a ‘system adapter’; instead, generated test cases are directly
executable.

We ran our tests on laptops running a host operating system
(Windows 8.1 or Mac OS) together with several virtual ma-
chines running Ubuntu Linux. The file synchronizer under test
was installed on each virtual machine and under the host op-
erating system, so we could read and write files on any of the
virtual machines, or on the host, and expect the synchronizer
to propagate changes to all of the others. We ran distributed
Erlang on the virtual machines and the host, using the host
to coordinate each test by making remote procedure calls
on the virtual machines. All machines were also connected
to the internet, allowing us to test synchronization servers
running either remotely (in the case of Dropbox and Google
Drive), or on another VM (in the case of ownCloud). The use
of multiple VMs on a single physical machine was purely
a matter of convenience: Erlang’s support for transparent
distribution would make it straightforward to run the same
setup on multiple nodes. We used 3 VMs for most tests.

We wanted a model that would apply (perhaps with minor
adjustments) to many file synchronizers, not just the specific

ones we have tested so far. In particular, we did not want to
assume any direct access to remote servers outside our control.
Therefore, we treat the synchronizer as a ‘black box’, which
we communicate with only through the file system; our tests
just read and write files on the virtual machines and check the
results for validity. This allows us to write the specification
without dependencies on synchronizer-specific APIs.3

III. OVERVIEW OF THE SPECIFICATION

Our strategy for test case generation is very simple: we
generate test cases consisting of random sequences of calls to
a small set of basic filesystem operations. The basic operations
we consider are
• READN , which reads the (one) file on node N (one of

the VMs), and
• WRITEN V , which writes the value V (a string) to the

file on node N .
We will introduce a few additional operations below.

We use QuickCheck’s state machine library to generate
tests, with a trivial model state—our tests are simply random
sequences of READs and WRITEs, with random arguments.
One might expect to track the file contents in the model state,
and check that READ returns the modeled contents—but this
could only work if synchronization were instantaneous, which
of course it is not. Instead of trying to express our specification
in this synchronous style, we collect observed events as each
operation is actually executed, and we use a separate state
machine to validate the resulting sequence of events.

The observed events corresponding to the READ and WRITE
operations are as follows:
• when READN returns the value V , we observe the event

READN → V , and
• when WRITEN V overwrites the value Vold , we observe

the event WRITEN V → Vold .
Notice that, when we write the file, we observe the previous
contents as well as the new one (taking the ‘previous contents’
of a newly created file to be the special value ⊥). The value
that we overwrite matters, because of the way synchronizers
handle conflicts. (This observation is not actually atomic, but
it is very unlikely that the dropbox dæmon will overwrite the
file between our read and write, and we have not observed it
to happen.)

A conflict occurs when two or more clients write the
file concurrently—that is, without having seen each other’s
updates. For example, if client 1 writes ‘a’ to the file, and
client 2 then writes ‘b’ before ‘a’ has been delivered to client 2
by the synchronizer, a conflict is created. One of the two values
wins, and eventually all clients will see this value in the file if
there are no more writes, but conflicting values are also saved
in special files in the same directory, with names derived from

3For testing the specification, we found it convenient to use limited
communication with the local dæmon, where available; for example, the
Dropbox client on Ubuntu provides a handy Python script for querying
whether the local dæmon thinks it is up to date, which we used to speed
up testing a bit. This adds <10 lines of code per synchronizer to the test
harness.



the name of the original file, such as ‘paper.tex (John’s
conflicted copy)’; these files are eventually replicated
to other clients just like any other file. To avoid depending
on implementation-chosen names, our model specifies just the
set of values expected to appear in conflict files, and our test
harness assumes that any files that appear in the same directory
as the main one are conflict files.

One subtlety in the specification of conflicts is that, because
conflicts can only be detected using global information, there
may be a delay in the creation of conflict files. Consider the
following sequence of observations.

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ⊥
READ2 → ‘a’

The two writes are in conflict, and the write of ‘a’ has ’won’,
so the value ‘b’ should appear in a conflict file. However,
client 2 cannot determine this locally (since a different client
could have overwritten ‘b’ with ‘a’ in the meantime). So we
must wait for pending communications with the server to finish
before checking for the existence of conflict files.

We therefore add another operation to our test cases,
STABILIZE, which waits for synchronization to complete on
all client nodes. At this point, the same value V should be
in the file on all clients, and all clients should have the same
set of conflict files. Once the system is stable, we observe the
event STABILIZE → (V,C), where C is the set of values in the
conflict files (i.e., both the value and the conflict files should
be eventually consistent; we will see later that our model can
always reach such a state). Note that this is a system wide
event, not an event observed on just one client. To check that
the correct conflict file is created in the example above, we
would add a STABILIZE operation to the end of the test, which
should result in the following observed events:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ⊥
READ2 → ‘a’

STABILIZE → (‘a’, {‘b’})

If ‘b’ were missing from the conflict set in the last observed
event, this would represent lost data and the test would fail.

But how can we implement STABILIZE? That is, how can
we tell that synchronization is complete, given that we treat
the synchronizer as a black box? Our solution is a little ad
hoc. Certainly, the value in the file and the conflict files must
be the same on each client. Also, under Ubuntu, Dropbox
provides a handy Python script to check the local Dropbox
dæmon’s status; the dæmons on each client must be reporting
‘up to date’. We wait for these necessary conditions to become
true—but they are not sufficient, since the server may still
be holding data that will be sent to the clients. So if a
STABILIZE → (V,C) operation ever leads to an observation
that would cause test failure, then we wait a bit longer and
retry the operation. We cannot wait too long, because failed

tests may well result in a stable state never being reached!
In practice we wait up to 30 seconds, long enough to allow
synchronization to finish if it is going to but short enough to
enable us to ‘shrink’ test cases (which involves running many,
many failing tests—see Section VI) in a reasonable amount of
time. After 30 seconds we record a “failed stabilization” ob-
servation of the form STABILIZE → {(V1, C1), . . . , (Vn, Cn)},
where each (Vi, Ci) records the the file contents and conflict
set on one of the nodes. Such an observation is regarded as
invalid by the specification, so any test that generates it is
considered to fail.

Since stabilization is slow—and most interesting after sev-
eral read and write operations—we include it only 1/10 as
often as READs and WRITEs. We also add a STABILIZE at
the end of every test case, which improves the probability of
detecting that something went wrong and also reduces the risk
of one test influencing the outcome of the next one.

How can we decide whether a sequence of observed events
is valid? We use a separate state machine, which accepts or re-
jects a sequence of observed events. However, the observations
we make do not tell the whole story: in the background, the
synchronizer is also performing actions. This makes our tests
nondeterministic—we cannot tell, from the events we have
observed, what state the whole system is in. We address this by
adding conjectured events to the observed ones, representing
actions taken by the synchronization service (messages be-
tween local dæmons and a central server, interactions between
dæmons and local filesystems, etc.). In general, we can add
conjectured events to a given sequence of observed events in
many different ways, each resulting in a different combined
sequence of observed and conjectured events, which we call an
explanation. If any of the explanations is accepted by our state
machine, we consider the test to have passed. If there is no
way to insert conjectured events so the resulting explanation
is accepted, then we consider that the test has failed.

Our conjectured events are uploads to, and downloads from,
the server. We write these events as UPN and DOWNN ,
where N is the node taking part in the up- or down-load.
Thus, when we model the state of the whole system, we will
need to include the server’s state in the model. (Of course,
in reality ’the Dropbox server’ may itself be a replicated
service involving many hosts. Our model implicitly assumes
strong consistency among these hosts; weaker consistency in
Dropbox’s implementation might in principle cause our tests
to fail, but we have not observed this.)

To make all of the above more concrete, here is an example
of a simple test case:

Client 1 Client 2
WRITE1 ‘a’

WRITE2 ‘b’
READ1

WRITE2 ‘c’
STABILIZE

Here is an observation that might arise from this test:



Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ‘a’
READ1 → ‘b’

WRITE2 ‘c’→ ‘b’
STABILIZE → (‘c’, ∅)

And here is a valid explanation of this observation:

Client 1 Client 2
WRITE1 ‘a’→ ⊥
UP1

DOWN2

WRITE2 ‘b’→ ‘a’
UP2

DOWN1

WRITE2 ‘c’→ ‘b’
UP2

READ1 → ‘b’
DOWN1

STABILIZE → (‘c’, ∅)

Of course, the same test may give rise to different observations
(and the same observation may be explained by many possible
explanations). For example, here is another observation that
might arise from running the test above:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ⊥
READ1 → ‘a’

WRITE2 ‘c’→ ‘b’
STABILIZE → (‘a’, {‘c’})

A valid explanation of this observation is:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ⊥
READ1 → ‘a’

WRITE2 ‘c’→ ‘b’
UP1

UP2
STABILIZE → (‘a’, {‘c’})

Conversely, suppose the synchronizer under test were mis-
behaving. Then the same test case might lead to an observation
with no valid explanations. For example:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ‘a’
READ1 → ‘b’

WRITE2 ‘c’→ ‘b’
STABILIZE → (‘c’, {‘a’})

Here, the final STABILIZE observation shows that a conflict
file has been created for the file value ‘a’. But ‘a’ was the
first value written to the file, and it must have been the first
value uploaded to the server (because the second WRITE saw

‘a’ as the previous value), so it cannot have been in conflict
with any of the other WRITEs.

IV. FORMALIZING THE SPECIFICATION

Formally, we use a deterministic state machine to accept or
reject explanations. We define the state of the machine, the
system state, as follows:

• a global stable value ServerVal (i.e., the value currently
held on the server)

• a global conflict set Conflicts (a set of values)
• for each node N ,

– a local value LocalValN ,
– a local freshness, Fresh?N ∈ {FRESH, STALE}, and
– a local cleanliness, Clean?N ∈ {CLEAN, DIRTY}.

Values (i.e., file contents) are just strings. (We define the result
of a READ or WRITE before the file has ever been written to
be the special value ⊥.)

In the initial state Sinit, the stable value and all the local
values are ⊥, and all nodes are FRESH and CLEAN.

There are three kinds of observed events (READ, WRITE,
and STABILIZE) and two kinds of conjectured events (UP
and DOWN). A sequence of observed events is called an
observation. A sequence of both kinds of events is called an
explanation. An explanation E explains an observation O if
deleting the conjectured events from E leaves just O.

For every event (of either kind), we will define a transition
consisting of a precondition (which tells us whether the event
can happen in a given system state) and an effect (which
defines the change to the system state after the event has
happened). Taken together, these preconditions and effects
define a partial function Next mapping a system state plus
an event to a new state (or failing, if the event’s precondition
is not satisfied by the state).

An explanation E is valid with respect to some starting state
S if either (1) E is the empty sequence of events, or else (2) E
is a non-empty sequence e : E′ (where : is ’cons’), such that
Next(S, e) yields a new state S′ and E′ is valid with respect
to S′.

An observation O is valid if it is explained by some
explanation that is valid with respect to the initial state. There
are only finitely many valid explanations for each observation,
as we explain below, so validity of observations is decidable.

A test is a sequence of operations. It fails if the observation
that arises by running it has no valid explanation; otherwise it
succeeds.

It remains only to define the transitions themselves. The
read and write transitions are straightforward:

READN → V

Precondition: LocalValN = V
Effect: none



WRITEN Vnew → Vold

Precondition: LocalValN = Vold

Effect: LocalValN ← Vnew

Clean?N ← DIRTY

A write event does have a precondition, because it observes
the value that is overwritten. That is, a read or write event on
client node N is valid with respect to some model state if the
value that the event observes in the filesystem agrees with the
model’s current value for that node. Observing a READ has no
effect on the model state, while observing a WRITE changes
the model’s local value for node N to the one that was written
by the WRITE operation and marks node N as DIRTY.

The STABILIZE → (V,C) event has no effects (it is like a
READ in this respect), but it has a very strict precondition:

STABILIZE → (V,C)

Precondition: ServerVal = V
Conflicts = C
for all N, Fresh?N = FRESH

Clean?N = CLEAN
Effect: none

The intuition for this precondition is that this observed event is
not considered valid unless the system model has also reached
a stable state. The precondition can be satisfied by adding
conjectured upload and download actions to the explanation
until all nodes in the system state are FRESH and CLEAN.

The transition for failed stabilization events has an even
stricter precondition: such an event is never allowed!

STABILIZE → {(V1, C1), . . . , (Vn, Cn)}
Precondition: False
Effect: none

This ensures that any observation including a failed stabiliza-
tion will be identified as a failing test case.

These are all the observed events. But we also need transi-
tions for the conjectured events UP and DOWN. Downloading
a value from the server to a client node stores the server’s
value as the local value for that node in the system state;
it also changes the node from STALE to FRESH. However, it
can only be performed if the client node is currently CLEAN.
(Otherwise, it must be preceded by an UP event, which will
reconcile the local value with the server’s.)

DOWNN

Precondition: Fresh?N = STALE
Clean?N = CLEAN

Effect: LocalValN ← ServerVal
Fresh?N ← FRESH

The most interesting case is the UP transition. Here is a
simple first attempt (we will refine it below):

UPN

Precondition: Clean?N = DIRTY
Effect: Clean?N ← CLEAN

if Fresh?N = FRESH then
Fresh?N ′ ← STALE for all N ′ 6= N
ServerVal ← LocalValN

else Conflicts ← Conflicts ∪ {LocalValN}

UPN is only allowed if node N is DIRTY (written since the last
DOWN). Its effect is either to update the server’s value from
node N ’s if N is currently FRESH—i.e., if it is not in conflict
with a WRITE on another node that has already reached the
server—or otherwise to mark the local value as a conflict. In
either case, node N is marked as CLEAN.

To decide whether a test succeeded, we construct a valid
explanation for the observation we made; that is, we insert
a sequence of UP and DOWN events between each pair of
observed events that makes the explanation valid. How many
conjectured events might we need to insert? First of all, note
that each UP event makes a DIRTY node CLEAN (and neither
UP nor DOWN can make a CLEAN node DIRTY). So, if there
are a total of N nodes, then at most N UP events can appear
between consecutive observed events. Secondly, note that each
DOWN event makes a STALE node FRESH. So there can be at
most N DOWN events in a row. Since an UP event makes
N − 1 nodes STALE, each UP can be followed by up to
N − 1 DOWN events before another UP or an observed event
must occur. Thus we need to insert at most N +N · (N − 1)
conjectured events between each pair of consecutive ordered
events; there are only finitely many possible explanations for
each observation, so it is decidable whether a test has passed.

In our implementation, we do not explore all possible
explanations. We construct the set of possible states before and
after each observed event in an observation. Given the set of
possible states before such an event, we select those satisfying
the event’s precondition and apply the event’s action to them,
resulting in the set of possible states after the event. If the set
of possible states ever becomes empty, then the test fails.

Now, given the set S of possible states after an observed
event, we construct the set of states before the following one
by taking the image of S under the transitive closure of UP and
DOWN. In any such state, (a) every node will have a LocalVal
drawn from the set V of all LocalVals plus the ServerVal in
the given state, (b) the ServerVal will also be an element of
V , (c) the Conflicts will be the union of the Conflicts in
the given state, and a subset of V , and (d) each node will be
FRESH or STALE, CLEAN or DIRTY. Since the size of V is at
most N +1, it follows that there can be at most (N +1)N+1 ·
2N+1 · 4N states reachable from S.

Should this set become too large to deal with during testing,
a pragmatic solution would be to abandon that test case and
generate another. We conjecture that most bugs can be found
by a relatively deterministic test, so we would not expect this
solution to make many interesting bugs impossible to find.

However, in our experiments, N was at most 3, giving a
bound of at most 262144 states reachable from each state—



a large but not unmanageable number. In practice, we have
almost never seen more than 1,000 different possible states
during a test. Synchronizers are so slow that there is plenty of
time to compute 1,000 model states after each observed event!

Refining the model: repeated values

Perhaps not surprisingly, with the first-draft model as
presented above, testing against Dropbox fails immediately.
QuickCheck reports the following minimal counterexample:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘a’→ ⊥
STABILIZE → (‘a’, ∅)

The test fails because the two writes conflict—neither saw the
value written by the other. Our model says that both nodes
must upload their values before the STABILIZE and that, on
the second UP required to enable it, the value should be added
to the set of conflicts. Yet the set of conflicts is observed to be
empty at the end. The Next function as defined above admits
no valid explanations of this observation.

Evidently, Dropbox considers that there is no conflict if the
same value is written independently by two clients. This is a
sensible design decision, but it needs to be reflected in our
specification. To make the implementation and specification
agree, we need to refine the specification to add special cases
in the UP event when the local and global values are identical:

UPN

Precondition: Clean?N = DIRTY
Effect: Clean?N ← CLEAN

if Fresh?N = FRESH then
if LocalValN 6= ServerVal then

Fresh?N ′ ← STALE for all N ′ 6= N
ServerVal ← LocalValN

else
if LocalValN 6= ServerVal then

Conflicts ← Conflicts ∪ {LocalValN}

With this modification, the test case passes. Here is a (newly
valid) explanation for the observation we made:

Client 1 Client 2
WRITE1 ‘a’→ ⊥
UP1

WRITE2 ‘a’→ ⊥
UP2

STABILIZE → (‘a’, ∅)

Adding deletion to the model

Since we already model reading from a missing file by the
special value ⊥, deletion can be modelled simply as writing ⊥
back to the file. Of course, when executing tests we actually
implement this by performing a real file deletion, but the event
that we observe is just WRITEN ⊥ → Vold , where Vold is
the contents of the file just before deletion. Since the model
already encompasses WRITE events, we might have expected

that no further changes would be required. But QuickCheck
soon finds this failing test case:

Client 1 Client 2 Client 3
WRITE1 ‘a’→ ⊥

READ2 → ‘a’
WRITE1 ⊥ → ‘a’

READ2 → ⊥
WRITE3 ‘b’→ ‘a’

READ1 → ‘b’

Why does this test fail? Because: at step 4, the server value
must be ⊥, since client 2 saw ⊥ after client 1 wrote it (and
client 2 previously read the value ‘a’, so client 2 is not simply
reading the initial ⊥); at step 5, because the value client 3
overwrites is not the server value, a conflict is created; the
value ‘b’ should thus only appear in conflict files on other
nodes, never as the value in the file itself—yet it does just
that in the last step. Thus, there can be no explanation for this
observation.

(This test is, of course, quite sensitive to timing. For
example, the second operation (READ2 → ‘a’) reads the
value written by the first WRITE1 ‘a’ → ⊥. This is only
possible if enough time passes after the first WRITE to allow
the synchronizer to act. The actual test case includes SLEEP
operations recording the need for these pauses, but they are
not shown in the observations we present. We will return to
the question of timing in more detail in Section VI.)

We have discovered another inconsistency with our model,
but not yet a bug: in fact, the behavior we are seeing reflects
another sensible design decision—that when a delete and
a write conflict, the write should take precedence (and the
deletion should be silently forgotten). We must amend our
model to reflect this too:

UPN

Precondition: Clean?N = DIRTY
Effect: Clean?N ← CLEAN

if Fresh?N = FRESH then
if LocalValN 6= ServerVal then

Fresh?N ′ ← STALE for all N ′ 6= N
ServerVal ← LocalValN

else
if LocalValN 6∈ {ServerVal , ⊥} then

Conflicts ← Conflicts ∪ {LocalValN}

The change is in the second-to-last line, which now states that
neither uploading the same value as the stable value, nor a
deletion, ever generates a conflict. With this change, we believe
our model reflects the intended behavior of the synchronizers
we have tested.

V. SURPRISES

What about unintended behaviors?

Dropbox Surprises

Up to this point, we were essentially debugging our model
using Dropbox as a reference implementation. However, con-



tinued testing revealed further inconsistencies between our
model and Dropbox.

The first surprise was that Dropbox can (briefly) delete a
newly created file:

Client 1 Client 2
WRITE1 ‘a’→ ⊥
WRITE1 ⊥ → ‘a’

WRITE2 ‘b’→ ‘a’
WRITE1 ‘c’→ ⊥
READ1 → ⊥

In this case, WRITE2 ‘b’ and WRITE1 ‘c’ are in conflict;
the final READ1 should see one of these values, with the
other eventually appearing in a conflict file—but at the time
we try to read the file, it is not there at all! In this case
stabilization would restore a correct file contents, but the test
fails because our model does not allow the file to be missing,
even briefly. (Of course, observing this transient behavior
requires executing the operations at just the right times; the
test case found by QuickCheck includes SLEEP operations that
make this more likely.)

The second surprise was that Dropbox can re-create deleted
files, even when only one client is modifying the file!4

Client 1
WRITE1 ‘b’→ ⊥
WRITE1 ⊥ → ‘b’

READ1 → ‘b’

In this case Dropbox does not later ‘correct the mistake’ by
deleting the file again: it remains there permanently. (Again,
of course, Dropbox does not always restore files after they
have been deleted: to provoke this behavior, the test case must
include a SLEEP operation of just the right length.)

A similar test shows that deleted files can reappear even if
the creation and deletion take place on different nodes:

Client 1 Client 2
WRITE2 ‘b’→ ⊥

WRITE1 ⊥ → ‘b’
READ1 → ⊥

STABILIZE → (‘b’, ∅)

The READ1 → ⊥ verifies that the file was properly deleted;
but, after waiting for the system to stabilize, it reappears.

The most alarming behavior we observed shows that Drop-
box can lose data completely:

Client 1 Client 2
WRITE2 ‘b’→ ⊥

WRITE1 ‘a’→ ‘b’
READ1 → ‘a’

STABILIZE →
{ (‘a’, ∅), (‘b’, ∅) }

4There were other machines logged in to the same Dropbox account, so
Dropbox was synchronizing the file at the same time to these other machines.
However, they were not involved in the test, and were not modifying the files
in question; they were simply passive observers.

Here the file is created on one client, synchronized to the other,
and overwritten there—but Dropbox does not copy the new
value to the other client, and so the system never becomes
stable. Further investigation shows that Client 1 behaves as
though it is still FRESH, rather than STALE, so Client 2 never
sees the value that Client 1 wrote, and if Client 2 writes
another value to the file then it is just copied onto Client 1—
no conflict is detected, and the value ‘a’ is lost forever.
Again, the behavior is timing dependent, occuring when the
second WRITE happens very soon after the value ‘b’ arrives
on Client 1.

Dropbox offered the following response to these surprises:
Our engineers thoroughly investigated the file and data issues
and were able to reproduce them programatically. Fortunately,
we don’t believe these issues have occurred outside of the lab
due to the precise conditions necessary for any data loss to
occur–namely, the local edit occurring within the same second
as the remote change and the saved file having the identical
file size as the original. While that fact gives us comfort,
Dropbox takes any potential data issue, no matter how remote
in possibility, extremely seriously and we are developing fixes
for the issue. We are grateful to the researchers for their
efforts in testing the Dropbox service using property-based
testing and raising awareness of property-based testing within
Dropbox.

ownCloud Surprises

While most of our effort has been spent testing Dropbox, we
have also used our model (unchanged) to test ownCloud and
Google Drive. So far, Google Drive has behaved as expected,
but we elicited some surprising behavior from ownCloud.

The first surprise was that ownCloud can delete newly
created directories, instead of propagating them to other
nodes. More surprising yet, we actually discovered this when
our test setup failed! To mitigate the risk of one test case
interfering with the next, we run each test in a new directory.
We create these directories in batches, to reduce the time
spent waiting for them to propagate to all the nodes. At the
start of a test run, we delete left-over test directories, then
recreate the ones we need. So, our preparation for a testing
run looks like this: (1) On the host, delete all the left-over
directories from previous tests. (2) On each virtual machine,
wait for the left-over directories to disappear. (3) On the
host, create several hundred ‘fresh’ directories for the first
few hundred test cases to use. (4) On each virtual machine,
wait for all these new directories to appear. To our surprise,
when using ownCloud as the synchronizer, step (4) often failed
to terminate. On checking progress, we found that not only
had the test directories not appeared on the virtual machines,
but they had been deleted from the host! We surmise that
ownCloud may arrange deletion followed by recreation of the
same directory in the wrong order, if they occur sufficiently
close together in time.

After we worked around this issue, QuickCheck found one
further discrepancy between the specification and ownCloud’s



actual behavior: ownCloud can lose changes. The following
observation illustrates what can happen:

Client 1 Client 2
WRITE1 ‘a’→ ⊥

WRITE2 ‘b’→ ‘a’
WRITE1 ‘c’→ ‘a’

STABILIZE → (‘b’, ∅)
At the end, all clients have stabilized on the value ‘b’, while
‘c’ has been completely forgotten even though it was written
independently from ‘b’ (both writes saw the previous value
‘a’) and, according to the specification, it should at least
appear in the final conflict set. This time, we could confirm the
reason by reading the ownCloud source code. The ownCloud
client uses a simple test for when a file has been changed and
needs to be uploaded to the server: it checks whether either the
file’s modification time or its length are different from their
last seen values. But modification times are recorded in the
filesystem with a 1-second granularity. So if the file is written
twice in quick succession (i.e., during the same second) and
the new contents is the same length as the old one, no change
will be detected. Thus, ‘b’ is recorded as the file’s stable value:
no matter how long we wait, the value (‘c’) will never reach
the server or Client 2. If the next write to the file occurs on
Client 2, ‘c’ will be silently overwritten.

VI. PRAGMATICS OF TESTING

Many of the behaviors we encountered were timing depen-
dent (we have not included timings here, since their values will
vary with factors like connection speed). Our main technique
for provoking timing-dependent behaviors was to include
SLEEP operations in our tests, which cause the whole testing
framework to pause for a specific period (up to one second,
randomly chosen during test generation).

We found that timing-dependent tests often failed with
fairly low probability, which we could increase manually—
once we’d identified a test case that sometimes failed—by
‘triggering’ some of the WRITE operations on changes in the
file. That is, we busy-wait on some node until a specified
value appears in the file and then immediately execute an
operation. Triggering an operation makes unexpected behavior
more likely, since it may create a race condition between
the test code running on node N , and the synchronization
dæmon on that node. For example, it allowed us to observe
the last two Dropbox surprises quite repeatably. It would be
interesting to go a step further and automatically generate
triggered operations as part of test cases; this would require
a slightly richer generation-time state so that we can predict
what value(s) might appear in the file.

We found the slowness of file synchronizers to be quite
a problem; also the unpredictability of synchronization time.
It is not easy to tell when synchronization is complete—in
particular, the icons that synchronizers display to show their
status are often wrong: the local dæmon itself is confused
about what state things are in! Yet we must know, if we are
to detect synchronization failures reliably. It does not work

just to allow a fixed time for synchronization to complete,
because the more file operations a test case performs, the
slower synchronization becomes. It appears that synchronizers
‘back off’ when files are changing rapidly, waiting for a
more opportune moment to do their job. This was the original
reason for including stabilization operations in our test cases,
combining observations from all of the virtual machines to try
to detect when the synchronizer has nothing left to do.

The examples we presented above are minimized test cases,
found by QuickCheck’s shrinking search. Shrinking tries to re-
duce the size of test cases by dropping calls from the sequence,
but also reducing the duration of SLEEP operations—shrunk
test cases should wait no longer than necessary to provoke
a failure. We also noticed that counterexamples leading to
wrong file contents were found in two forms: ending in a
READ operation, or ending in a deletion (a WRITE of ⊥),
which also observes the contents. We configured shrinking so
that deletions shrink to READ operations (provided the test
still fails, of course), so that the latter form would shrink to
the former.

Because of the non-determinism inherent in the system,
failing test cases may not fail every time they are run. This is
problematic both when searching for a failing test case, and
when shrinking one. Our solution in both cases is to run each
test several times, and consider the test to have failed if any
of the runs fails—thus reducing the probability of a ‘false
negative’ result. While running random tests, we repeated
each test three times, but while shrinking test cases, we
repeated each one twenty times. (We work harder to avoid false
negatives during shrinking, because they lead QuickCheck to
report non-minimal failing tests, which can waste a great deal
of human debugging time. In consequence, shrinking a failed
test to a minimal one can take 10–20 minutes to finish, at 10–
15 seconds per test. Twenty repetitions was usually enough to
minimize failing tests.)

VII. AN ALTERNATIVE SPECIFICATION ATTEMPT

There is an appealing analogy between file synchronization
services and the memory subsystems of modern multiproces-
sors. Network hosts with copies of a replicated file correspond
to individual processor cores, the local filesystems correspond
to per-core caches, and the central synchronization server
corresponds to the main memory. This suggests that one might
try to leverage ideas from the literature on specifications of
memory-system behavior (see [9], [10] for surveys) to specify
the desired behavior of a synchronizer. In particular, perhaps a
specification could be based on Lamport’s notion of happened
before relations [11], which express the causal ordering of
events in a distributed system. Indeed, an early version of our
QuickCheck specification was written in this style, rather than
the model-based style that we have described in this paper.

This early specification used the same notions of tests and
observed events as our current one. But instead of trying
to match the observed behavior against the transitions of
a concrete model of the system (including the server), it
directly specified which observations were legal by attempting



to construct a partial ordering ≺ on the observed events such
that (1) if an event e happened before e′ on the same client,
then e ≺ e′, and (2) if e is the WRITE event that writes the
value observed by e′, then e ≺ e′. If such a relation exists,
then it can be taken as an explanation for the observation. For
example, the validity of the observation

Client 1 Client 2
e1 : WRITE1 ‘a’→ ⊥
e2 : WRITE1 ‘b’→ ‘a’

e3 : WRITE2 ‘c’→ ‘b’

is justified by this relation e1 ≺ e2 ≺ e3. On the other hand,
if no ≺ relation exists that is consistent with the observations,
then a bug (or at least a discrepancy between the system and
the spec) has been detected. For example, the observation

Client 1 Client 2
WRITE1 ‘a’→ ⊥
WRITE1 ‘b’→ ‘a’

READ2 → ‘b’
READ2 → ‘a’

cannot be partially ordered in a way that respects the two
conditions above. To deal with conflicts, we specified that,
at stabilization points, all of the maximal values in the partial
order (that is, the values written by every WRITE event e such
that for no WRITE event e′ do we have e ≺ e′) must appear
either as the local value or in the conflict set on all nodes.

Unfortunately, although this style of specification at first
appeared quite natural and elegant, we found it difficult to
extend to encompass all the behaviors we cared about. In
particular, the fact that the same value can be written many
times during the same test run (e.g., the value ⊥ is written
every time a file is deleted), renders the second condition
above—“if e is the WRITE event that writes the value observed
by e′...”—impossible to test with certainty.

We tried dealing with this indeterminacy by constructing
≺ relations for all possible ways of matching WRITES with
later observations (and accepting a test case if we succeeded
for any one of them), but the result was tricky to implement
and slow because the set of possibilities quickly became
large. Fortunately, this failed attempt gave us the idea of
working with limited knowledge about what the system is
doing by explicitly maintaining sets of possibilities, leading
to the current model-based specification.

VIII. RELATED WORK

As far as we know, this is the first work to address testing
a distributed synchronization service. But the problems of
specifying the behavior of synchronizers and of testing the
behavior of nondterministic and distributed systems have both
received considerable attention.

A series of formal specifications of the Unison file syn-
chronizer [12] by Pierce and Balasubramaiam [1], Pierce
and Vouillon [2] and Ramsey and Csirmaz [3] were the
starting point for the present work. Those specifications go
further than ours in that they deal with multiple files and

directories—in particular, they spend considerable effort on
the subtleties of conflicts in this setting. However, they address
a different distribution scenario, in which the execution of
the synchronizer is a visible user-initiated action rather than
a continuous background activity and in which there is no
centralized “global value.” They have not been used for testing.

We have implicitly assumed that the local filesystem is
behaving correctly (so that discrepancies between our model
and actual observations are attributable to Dropbox). Ridge et
al. [13] show how this can be tested, using a specification with
significant similarities to ours.

A distinct body of specification work deals with specifying
the behavior of operational transform services—middleware
layers that maintain consistency of replicated data structures
(databases, documents, spreadsheets, etc.) under concurrent
updates. Operational transform algorithms are widely used—
for example, they underlie behind the collaboration features
in Apache Wave and Google Docs—and their theory is well
developed [14]–[16, etc.]. However, although it has been used
for debugging replication algorithms using symbolic model-
checking [17], the theory has not, to our knowledge, been
applied to testing of actual distributed implementations. In-
deed, since these specifications are based on notions of causal
ordering, our experiences reported in Section VII suggest that
it might be difficult to do so, at least in a black-box style.

Fraser and Wotowa [18] present a model-based testing
method for non-deterministic systems, using a model-checker
to generate test cases (sequences of transitions in the model)
which fulfill selected structural coverage criteria. But when test
cases are run, the implementation may choose to make differ-
ent transitions, because of non-determinism. If the implemen-
tation diverges from the model at a deterministic point, then
the test fails, but if divergence occurs at a non-deterministic
choice point, then the test is considered inconclusive. Fraser
and Wotowa show how to take inconclusive tests and generate
new branches, again using the model checker, that fulfill
the selected coverage goal, starting from the state that the
implementation chose. The test is repeated, and if the imple-
mentation follows either the original or the newly generated
path, then the coverage goal is reached. If the implementation
diverges again, then the test is still inconclusive, and another
branch can be added in the same way. Tests generated in
this way are tree-structured, and hopefully eventually the
implementation will follow one of the paths in the tree, and
the coverage goal will be reached.

Arcaini et al. [19] generate tests with a model checker in
a similar way, but instead of introducing branches, they reuse
the model as a run-time monitor, to check that even if the
system follows a different path from the test case, then its
input-output behavior still conforms to the model. They do
assume that the inputs in the generated test can be supplied to
the SUT even though it is following an unexpected path, and
they assume that outputs from the SUT always provide enough
information to uniquely identify the corresponding model state
(‘strong conformance’). They evaluate their approach using a
Tic-Tac-Toe game, in which the model requires moves to be



valid, but does not specify which moves the computer player
should make. The Java implementation must be annotated in
order to link it to the model. No errors were discovered in the
Tic-Tac-Toe implementation (but neither were any expected).

In comparison, we use two state machines, a trivial one
for generating tests, and a more interesting one as a run-time
monitor. Our monitoring state machine is deterministic, but
includes unobservable transitions—eliding those transitions
makes it non-deterministic. We allow multiple possible model
states during monitoring (‘weak conformance’ in the sense of
[19]), and we treat the SUT as a black box—there is no need
for instrumentation of the implementation to connect it to our
model. Our examples are more complex real applications, and
we found a number of unexpected behaviors.

Ulrich and König propose architectures for testing dis-
tributed systems [20], but assume that all internal actions of the
SUT are observable by the tester, and that software probes are
inserted into the SUT to allow the tester to control the timing
of communications between nodes, and ensure that test runs
are deterministic. Neither assumption holds in our setting.

Boy et al. report on an approach to testing servers by
running random sequences of API calls from a number of
clients, and checking that specified invariants hold over the
resulting traces [21]. The invariants are specified as patterns
that are matched against the traces, and assertions that must
hold if a pattern matches. Boy et al. found a subtle timing bug
in a lock server using this method. The approach does not
address ‘conjectured events’, however, and does not include
shrinking—the lock-server bug was minimized by hand.

A variety of work on testing nondeterministic systems can
be phrased in terms of the theory of input-output conformance
(ioco) testing [22], [23]. Indeed, there are some suggestive
similarities between aspects of this theory and the structures
we used in specification and testing of synchronizers—e.g.,
the inclusion in its labeled transition systems of quiescence
transitions, which are reminescent of our stabilization events.
It would be interesting to try to reframe our development in
terms of ioco concepts.

QuickCheck was originally developed in and for Haskell
[5], and it has become the most widely used testing tool
in that community. The version we used was developed
by Quviq and supports Quviq’s core business: specification-
based testing tools and services. Quviq QuickCheck [24]
extends the original version with libraries tailored for testing
industrial software, such as the state machine library used
here. It has been used to test many large systems, including
telecoms products [4], a messaging gateway [25], refactoring
tools [26], [27], and quadcopters [28]. Probably the largest
application so far was to test AUTOSAR basic software (C
code which runs in cars), in which a million lines of C
was tested against 3,000 pages of the AUTOSAR standard,
using 20,000 lines of QuickCheck code [29]. Most of these
systems are deterministic, but QuickCheck has also been used
to test for race conditions in concurrent programs [30], finding
two long-standing race conditions in the database distributed
with Erlang [31]. However, the approach to handling non-

determinism in those papers is quite different to the one used
here.

IX. FUTURE WORK

We have considered just the case of a single file. Naturally,
there are interesting questions to ask about a synchronizer’s be-
havior in the presence of multiple files and directory structures,
such as “what happens when a directory is deleted on one
client, while a file is written into that directory on another?”

Extending the testing framework to multiple files and di-
rectories will require slightly richer model states at test case
generation time, including the paths that have been created
so far, so that operations can stay within this set with high
enough probability to provoke bugs.

One challenge that can be expected when we make this
extension is that the set of possible system states given a
sequence of observed events is likely to grow much more
quickly (it will be exponential in the number of files), and
we will probably need to find clever representations for this
set. Possibilities include representing the set as a cartesian
product of smaller sets—we can overapproximate the set of
possible states without introducing false positives, so ideas
from abstract interpretation [32] should be applicable here.

Another rich source of incorrect behaviors in distributed
systems is network partitions. To provoke such behaviors, it
might be useful to extend our test cases with operations to
disconnect and reconnect hosts from the network.

X. CONCLUSIONS

We have described an executable formal specification of
the core behavior of file synchronization services. Since it’s
written in a black-box style, avoiding synchronizer-specific
APIs and communicating only via the filesystem, we were able
to apply it to three popular synchronizers—two commercial,
one open source—and found surprising behaviors in two of
them. This shows the effectiveness of the method.

Given that three different synchronizers appear to share the
same core specification, we expect that our model should be
applicable (perhaps with small changes to the testing frame-
work) to many others—e.g., Microsoft OneDrive, Box.net,
SpiderOak, Sugarsync, Seafile, Pulse, Wuala, Teamdrive,
Cloudme, Cx, etc. Given the surprising behaviors already
found, this should be a valuable exercise.

ACKNOWLEDGMENTS

We thank John Lai and other Dropbox engineers for their
feedback. This work is partially funded by the EU FP7
project PROWESS (#317820), the Swedish Strategic Research
Foundation (RAWFP), and the National Science Foundation
(CCF-1421243).

REFERENCES

[1] S. Balasubramaniam and B. C. Pierce, “What is a file synchronizer?” in
Fourth Annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking (MobiCom ’98), Oct. 1998, full version available
as Indiana University CSCI technical report #507, April 1998.



[2] B. C. Pierce and J. Vouillon, “What’s in Unison? A formal specification
and reference implementation of a file synchronizer,” Dept. of Computer
and Information Science, University of Pennsylvania, Tech. Rep. MS-
CIS-03-36, 2004.

[3] N. Ramsey and E. Csirmaz, “An algebraic approach to file synchro-
nization,” in Proceedings of the 8th European Software Engineering
Conference. ACM Press, 2001, pp. 175–185.

[4] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms
software with quviq quickcheck,” in Proceedings of the 2006
ACM SIGPLAN Workshop on Erlang, ser. ERLANG ’06. New
York, NY, USA: ACM, 2006, pp. 2–10. [Online]. Available:
http://doi.acm.org/10.1145/1159789.1159792

[5] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for
random testing of haskell programs,” in Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279. [Online].
Available: http://doi.acm.org/10.1145/351240.351266

[6] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200,
Feb. 2002. [Online]. Available: http://dx.doi.org/10.1109/32.988498

[7] J. Hughes, “Quickcheck testing for fun and profit,” in Proceedings of
the 9th International Conference on Practical Aspects of Declarative
Languages, ser. PADL’07, 2007, pp. 1–32.

[8] U. Norell, H. Svensson, and T. Arts, “Testing blocking operations
with quickcheck’s component library,” in Proceedings of the Twelfth
ACM SIGPLAN Workshop on Erlang, ser. Erlang ’13. New
York, NY, USA: ACM, 2013, pp. 87–92. [Online]. Available:
http://doi.acm.org/10.1145/2505305.2505310

[9] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” computer, vol. 29, no. 12, pp. 66–76, 1996.

[10] L. Higham, J. Kawash, and N. Verwaal, “Defining and comparing
memory consistency models,” in In Proc. of the 10th Int’l Conf. on
Parallel and Distributed Computing Systems, 1997, pp. 349–356.

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[12] B. C. Pierce, T. Jim, and J. Vouillon, “UNISON: A portable, cross-
platform file synchronizer,” 1999–present, http://www.cis.upenn.edu/
∼bcpierce/unison.

[13] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell, “Sibylfs: formal specification and oracle-based testing for
posix and real-world file systems,” in Proceedings of the 25th Symposium
on Operating Systems Principles. ACM, 2015, pp. 38–53.

[14] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
in Acm Sigmod Record, vol. 18, no. 2. ACM, 1989, pp. 399–407.

[15] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, Managing update conflicts in Bayou, a weakly
connected replicated storage system. ACM, 1995, vol. 29, no. 5.

[16] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Computing
Surveys (CSUR), vol. 37, no. 1, pp. 42–81, 2005.

[17] H. Boucheneb, A. Imine, and M. Najem, “Symbolic model-checking
of optimistic replication algorithms,” in Integrated Formal Methods.
Springer, 2010, pp. 89–104. [Online]. Available: https://hal.inria.fr/inria-
00524535/document

[18] G. Fraser and F. Wotawa, “Test-case generation and coverage analysis
for nondeterministic systems using model-checkers,” in Software En-
gineering Advances, 2007. ICSEA 2007. International Conference on.
IEEE, 2007, pp. 45–45.

[19] P. Arcaini, A. Gargantini, and E. Riccobene, “Combining model-based
testing and runtime monitoring for program testing in the presence
of nondeterminism,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2013 IEEE Sixth International Conference on.
IEEE, 2013, pp. 178–187. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.309.7963&rep=rep1&type=pdf

[20] A. Ulrich and H. König, “Architectures for testing distributed systems,”
in Testing of Communicating Systems. Springer, 1999, pp. 93–108.

[21] N. Boy, J. Casper, C. Pacheco, and A. Williams, “Automated testing
of distributed systems,” May 2004, final project report for MIT 6.824:
Distributed Computer Systems.

[22] J. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence,” Software—Concepts and Tools, no. TR-CTIT-96-26,
1996. [Online]. Available: http://doc.utwente.nl/65463/1/Tre96-CTIT96-
26.pdf

[23] ——, “Model based testing with labelled transition systems,” in Formal
methods and testing. Springer, 2008, pp. 1–38. [Online]. Available:
http://liacs.leidenuniv.nl/∼bonsanguemm/Toos/P9 TestingTransSyst.pdf

[24] J. Hughes, “Software testing with quickcheck,” in Proceedings of the
Third Summer School Conference on Central European Functional
Programming School, ser. CEFP’09. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 183–223. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1939128.1939134

[25] J. Boberg, “Early fault detection with model-based testing,” in
Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, ser.
ERLANG ’08. New York, NY, USA: ACM, 2008, pp. 9–20. [Online].
Available: http://doi.acm.org/10.1145/1411273.1411276

[26] D. Drienyovszky, D. Horpácsi, and S. Thompson, “Quickchecking
refactoring tools,” in Proceedings of the 9th ACM SIGPLAN Workshop
on Erlang, ser. Erlang ’10. New York, NY, USA: ACM, 2010, pp. 75–
80. [Online]. Available: http://doi.acm.org/10.1145/1863509.1863521

[27] H. Li and S. Thompson, “Implementation and application of functional
languages,” O. Chitil, Z. Horváth, and V. Zsók, Eds. Berlin,
Heidelberg: Springer-Verlag, 2008, ch. Testing Erlang Refactorings
with QuickCheck, pp. 19–36. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-85373-2 2

[28] B. Vedder, J. Vinter, and M. Jonsson, “Using simulation, fault injection
and property-based testing to evaluate collision avoidance of a quad-
copter system,” in Dependable Systems and Networks Workshops (DSN-
W), 2015 IEEE International Conference on, June 2015, pp. 104–111.

[29] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing autosar soft-
ware with quickcheck,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2015 IEEE Eighth International Conference on,
April 2015, pp. 1–4.

[30] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson,
T. Arts, and U. Wiger, “Finding race conditions in erlang with
quickcheck and pulse,” in Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’09.
New York, NY, USA: ACM, 2009, pp. 149–160. [Online]. Available:
http://doi.acm.org/10.1145/1596550.1596574

[31] J. M. Hughes and H. Bolinder, “Testing a database for race
conditions with quickcheck: None,” in Proceedings of the 10th
ACM SIGPLAN Workshop on Erlang, ser. Erlang ’11. New
York, NY, USA: ACM, 2011, pp. 72–77. [Online]. Available:
http://doi.acm.org/10.1145/2034654.2034667

[32] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

http://doi.acm.org/10.1145/1159789.1159792
http://doi.acm.org/10.1145/351240.351266
http://dx.doi.org/10.1109/32.988498
http://doi.acm.org/10.1145/2505305.2505310
http://www.cis.upenn.edu/~bcpierce/unison
http://www.cis.upenn.edu/~bcpierce/unison
https://hal.inria.fr/inria-00524535/document
https://hal.inria.fr/inria-00524535/document
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7963&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7963&rep=rep1&type=pdf
http://doc.utwente.nl/65463/1/Tre96-CTIT96-26.pdf
http://doc.utwente.nl/65463/1/Tre96-CTIT96-26.pdf
http://liacs.leidenuniv.nl/~bonsanguemm/Toos/P9_TestingTransSyst.pdf
http://dl.acm.org/citation.cfm?id=1939128.1939134
http://dl.acm.org/citation.cfm?id=1939128.1939134
http://doi.acm.org/10.1145/1411273.1411276
http://doi.acm.org/10.1145/1863509.1863521
http://dx.doi.org/10.1007/978-3-540-85373-2_2
http://dx.doi.org/10.1007/978-3-540-85373-2_2
http://doi.acm.org/10.1145/1596550.1596574
http://doi.acm.org/10.1145/2034654.2034667

