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CARNEGIE MELLON UNIVERSITY

Abstract
Tepper School of Business, Carnegie Mellon University

Doctor of Philosophy

Algorithms for Ranking and Routing Problems

by Yang JIAO

In this thesis, we develop new algorithms for two categories of problems–ranking
and routing. In the first category, we classify the complexity of new problems for
mutually ranking participants and tasks when a ranking of the participants “nearby"
the optimal is given. In the second category, we give approximation algorithms
for inventory routing on line metrics, two new variants of inventory routing, and
provide fast heuristics for inventory routing on arbitrary metrics.

For the first category, we introduce and resolve the computational complexity of
a set of new problems that require ranking participants and tasks by their strengths
and difficulties, respectively, given the set of tasks that each participant completed
successfully. The ideal ranking ensures that stronger participants succeed at all tasks
that weaker participants performed successfully and easier tasks are performed suc-
cessfully by all the participants who succeeded at harder tasks. The new variants
we introduce and study account for recurring participants, by constraining the out-
come of the current ranking to be close to an initial given ranking of the participants
arrived from past contests. We provide a comprehensive study of the complexity of
all the variants.

The second category involves three sets of routing problems. The first among
them is the Inventory Routing Problem (IRP). Given clients on a metric, each with
daily demands that must be delivered from a depot, and holding costs over the plan-
ning horizon, a solution selects a set of daily routes from the depot through a subset
of clients to deliver all demands before they are due. The cost of the solution com-
bines the costs of the routes with the holding cost of the demand that arrives earlier
at clients. For Inventory Routing on line metrics, we give a constant approximation
algorithms by LP rounding and a primal dual method. We also study the computa-
tional aspect of IRP on general metrics. We design fast combinatorial heuristics for
IRP by connecting them to prize-collecting vehicle routing problems and evaluate
their performance on randomly generated data sets. The second variant of IRP we
study is called Deadline IRP. In this version, every client has a deadline within which
it will run out if it starts at full capacity, and each visit to every client fills the client
location to capacity. The goal is to determine an IRP solution so that no client ever
runs out. We provide logarithmic approximations and show a class of instances for
which our method cannot improve the approximation factor. The third set of routing
problems we study are variants of Inventory Routing with Facility Location, which
allows multiple depot locations to be opened for service at an extra cost. We provide
a 12-approximation for Star Inventory Routing with Facility Location assuming that
clients connect directly to the opened facilities.
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Chapter 1

Introduction

Motivation
We study a set of ranking problems and three types of routing problems that

involve coordinating schedules with the routes. The ranking problems arise from
the context of Massive Open Online Courses, where the large number of students
make it challenging to create appropriate ways to evaluate students such that their
results can all be graded efficiently for timely feedback. One way to speed up the
process is to restrict the test questions to automatically gradable questions e.g. mul-
tiple choice. Furthermore, to quickly create a large number of test questions, we
consider crowd-sourcing the creation of test questions to the students. However,
giving role of question creation to the students means that the instructor no longer
knows the difficulty of the questions. So we would like to find ways to quickly rank
the difficulty of the newly created questions as well as the strength of the students
after they attempt all the questions. Chapter 2 models variants of the this ranking
problem and resolves their complexity.

Routing problems with scheduling components have been studied extensively
on the computational side, but are fairly new within the theoretical realm. Although
a rich history of theoretical methods exist for network design problems (the routing
component), the integration of routing with scheduling create an interesting chal-
lenge to obtaining theoretical guarantees. We study variants of a popular inventory
routing problem in this thesis [80]. We consider the deterministic inventory routing
problem over a discrete finite time horizon. Given clients on a metric, each with
daily demands that must be delivered from a depot and holding costs over the plan-
ning horizon, an optimal solution selects a set of daily tours through a subset of
clients to deliver all demands before they are due and minimizes the total holding
and tour routing costs over the horizon. In particular, the best approximation for
Inventory Routing Problem (on general metrics) has yet to break a logarithmic fac-
tor. It is also unknown whether this problem can be shown to have a super constant
hardness of approximation. Constant factor guarantees have only been shown for
special cases such as when the metric is a tree or when the schedule is restricted to
be periodic. In the subsequent chapters, we extend LP-based methods to variants
of Inventory Routing and give fast heuristics that obtain near optimal solutions on
randomly generated data sets.
Summary
Ranking Problems The first category of problems we study are the ranking prob-
lems of Chapter 2. Here, we introduce a new set of problems based on the Chain
Editing problem. In our version of Chain Editing, we are given a set of participants
and a set of tasks that every participant attempts. For each participant-task pair,
we know whether the participant has succeeded at the task or not. We assume that
participants vary in their ability to solve tasks, and that tasks vary in their difficulty
to be solved. In an ideal world, stronger participants should succeed at a superset
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of tasks that weaker participants succeed at. Similarly, easier tasks should be com-
pleted successfully by a superset of participants who succeed at harder tasks. In
reality, it can happen that a stronger participant fails at a task that a weaker partici-
pants succeeds at. Our goal is to find a perfect nesting of the participant-task relations by
flipping a minimum number of participant-task relations, implying such a “nearest
perfect ordering” to be the one that is closest to the truth of participant strengths and
task difficulties. Many variants of the problem are known to be NP-hard.

We propose six natural k-near versions of the Chain Editing problem and classify
their complexity. The input to a k-near Chain Editing problem includes an initial
ordering of the participants (or tasks) that the final solution is required to be “close”
to, by moving each participant (or task) at most k positions from the initial ordering.
We obtain surprising results on the complexity of the six k-near problems: Five of
the problems are polynomial-time solvable using dynamic programming, but one of
them is NP-hard.
Inventory Routing Problem The second category of problems consists of three types
of routing problems. The first among them is inventory routing, introduced in Chap-
ter 3. For the special case that the metric is a line, we obtain a 5-approximation using
LP rounding and a 26-approximation using a primal dual algorithm.

Besides theoretical guarantees for the special case on line metrics, we study the
computational side of IRP arbitrary metrics in Chapter 4. In particular, we provide
fast heuristics for IRP on general metrics that uses a Prize-Collecting Steiner Tree
subproblem to guide the inventory routing solution to near optimality. Our best
heuristic solves instances of at least 160 clients over 6 days and 50 clients over 18
days to near optimality in a few seconds. It is three orders of magnitude faster than
solving the single commodity flow MIP formulation using Gurobi cut off at 10%
MIPGap.
Deadline Inventory Routing Problem The second type of routing problem, intro-
duced in Chapter 5, is called Deadline Inventory Routing, motivated by the replen-
ishment of ATMs. In Deadline Inventory Routing, every client has a deadline within
which it will run out if it starts at full capacity, and each visit to every client fills
the client location to capacity. The goal is to determine a set of routes, one for each
day, such that no client ever runs out. We show a log(n)-approximation, where n
is the number of clients. To obtain the logarithmic approximation, we first reduce
from arbitrary instances to a subclass of instances where each deadline is a power
of 2 by losing a constant factor in the cost of the solution. Within powers-of-2 in-
stances, a natural (though possibly costly) solution is one that visits on day l exactly
those clients whose deadlines 2i divide l (i.e., l is a multiple of 2i). We call such
a solution synchronized since it tries to group together as many clients as possible
who are appropriate to visit per day. Next, we introduce nondecreasing solutions,
which are those whose route per day must visit clients in nondecreasing order of
their deadline values. We show that nondecreasing solutions have cost at most a
logarithmic factor away from the cost of any arbitrary solution. Then, we show that
synchronized solutions are derivable from nondecreasing solutions preserving the
exact cost. So optimal synchronized solutions are also logarithmic factor from arbi-
trary solutions. Since the set of clients to visit per day is completely determined in
synchronized solutions, optimal synchronized solutions are easy to approximate by
approximating Steiner trees. Hence we obtain an O(log n)-approximation for Sta-
tionary Deadline Inventory Routing. We show that the analysis for this method is
tight on an infinite class of instances. Using an LP-based approach, we also obtain a
log(T)-approximation, where T is the number of days in the time horizon.
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Inventory Routing Problem with Facility Location The third type of routing prob-
lem is called Star Inventory Routing Problem with Facility Location (SIRPFL), which
we study in Chapter 6. As a stepping stone to solving SIRPFL, we first study the In-
ventory Access Problem (IAP), which is the single depot, single client special case
of IRP. We provide a simple dynamic program for Uncapacitated IAP and an NP-
hardness reduction for Capacitated IAP where each demand cannot be split among
different trips. Next, we study SIRPFL, which involves the extra decisions of where
to open facilities and which opened facility satisfies each demand. As is the case for
Facility Location, we assume that the connections per day are directly built between
opened facilities and clients, i.e., the client-facility connections form stars centered at
facilities. For Uncapacitated Star SIRPFL, we provide a 12-approximation by round-
ing an LP relaxation.
Main Contributions
• In Chapter 2, we introduced a set of ranking problems motivated by the need

to efficiently rank a large number of participants while having some history
of how they have performed. We resolved their computational complexity, in-
cluding a surprising NP-hardness result despite the similarity of the problems.
Intuitively, the problem that turned out to be NP-hard could not be solved with
similar methods due to its less constrained nature, which makes it harder to in-
fer the correct ordering.

• For Inventory Routing on line metrics, we proved a constant factor guarantee
by carefully pruning an initial solution from a primal dual method in Chap-
ter 3. The initial solution from the primal dual phase has cost arbitrarily far
from the optimal cost. By partitioning the line into regions at distances of pow-
ers of 2 away from the depot, we were able to modify the visits so that each
region’s LP values are charged only a constant number of times. On general
metrics, the difficulty remains in finding a pruning procedure that facilitates a
consistent charging scheme.

• Following the theoretical study, we provided near optimal, fast heuristics for
general IRP by creatively using PCST to form portions of the final IRP solution
in Chapter 4. In particular, we designed a set of local search heuristics where
we reduce each large neighborhood search to solving a Prize-Collecting Steiner
Tree (PCST) instance. Also, we provide a set-covering based greedy heuristic
that chooses the sets by solving an appropriately constructed PCST. Finally, we
give a primal dual heuristic that uses PCST to determine the visit sets during
the growth of the dual variables. Our best heuristics solved the test instances
within 1.08 factor of the optimal cost and performed three orders of magnitude
faster than standard MIP solvers.

• In Chapter 5, we introduced a new inventory replenishment problem moti-
vated by the delivery of cash to ATMs. We provided two logarithmic approxi-
mations and a class of instances where one of the methods cannot be improved.

• Finally, for SIRPFL, we extend rounding ideas for Facility Location, accounting
for scheduling aspect of satisfying demands, to obtain a constant approxima-
tion in Chapter 6.

Road Map
The subsequent chapters are organized as follows. In Chapter 2, we introduce

new problems involving ranking participants and tasks and classify the complex-
ity of each problem. Chapter 3 discusses our approximation algorithms for IRP on
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line metrics. In Chapter 4, we give three combinatorial heuristics that utilize Prize-
Collecting Steiner Tree solutions to find fast near optimal solutions for IRP. In Chap-
ter 5, we propose a new variant of IRP called Deadline IRP and state our approaches.
Chapter 6 introduces another variant of IRP, Star IRP with Facility Location and pro-
vides a constant approximation by LP rounding.
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Chapter 2

Algorithms for Automatic Ranking
of Participants and Tasks in an
Anonymized Contest

2.1 Introduction

2.1.1 Motivation

Consider a contest with a set S of participants who are required to complete a
set Q of tasks. Every participant either succeeds or fails at completing each task. We
aim to obtain rankings of the participants’ strengths and the tasks’ difficulties. This
situation can be modeled by a bipartite graph with participants on one side, tasks
on the other side, and edges present if a participant succeeded at the task. From the
edges of the bipartite graph, we can infer that a participant a2 is stronger than a1 if
the neighborhood of a1 is strictly contained in (or is strictly “nested in”) that of a2.
Similarly, we can infer that a task is easier than another if its neighborhood strictly
contains that of the other. If two participants or tasks have the same neighborhood,
then they are considered equally strong or equally easy. See Figure 2.1 for a visual-
ization of strengths of participants and difficulties of tasks. If all neighborhoods are
nested, then this nesting immediately implies a ranking of the participants and tasks.
However, participants and tasks are not perfect in reality, which may result in a bi-
partite graph with “non-nested” neighborhoods. For such more realistic scenarios,
we wish to determine a ranking of the participants and the tasks that is still “close”
to the ideal case. In this chapter, we define several variants of this problem that are
different in what changes can be made (adding, deleting, or adding and deleting
edges) and prior knowledge of rankings (exact for one side, no prior knowledge,
nearby starting values) that together give rise to varying problem complexities.

2.1.1.0.1 Relation to Truth Discovery.

A popular application of unbiased rankings is computational “truth discovery.”
Truth discovery is the determination of trustworthiness of conflicting pieces of infor-
mation that are observed often from a variety of sources [78] and is motivated by
the problem of extracting information from networks where the trustworthiness of
the actors are uncertain [57]. The most basic model of the problem is to consider
a bipartite graph where one side is made up of actors, the other side is made up
of their claims, and edges denote associations between actors and claims. Further-
more, claims and actors are assumed to have “trustworthiness” and “believability”
scores, respectively, with known a priori values. According to a number of recent
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FIGURE 2.1: An “ideal” graph is shown. Participants and tasks may
be interpreted as students and questions, or actors and claims. Par-
ticipant a1 succeeds at b1 to b2; a2 succeeds at b1 to b4; a3 succeeds at
b1 to b5. The nesting of neighborhoods here indicate that participant
a1 is weaker than a2, who is weaker than a3, and task b1 and b2 are

easier than b3 and b4, which in turn are easier than b5.

surveys [57, 78, 70], common approaches for truth discovery include iterative proce-
dures, optimization methods, and probabilistic graphic models. (1) Iterative meth-
ods [38, 50, 76, 84] update trust scores of actors to believability scores of claims, and
vice versa, until convergence. Various variants of these methods (such as Hubs and
Authorities (or Sums) [65], TruthFinder [84], AverageLog, Investment, and Pooled-
Investment [76]) have been extensively studied and proven in practice [3]. (2) Opti-
mization methods [10, 69] aim to find truths that minimize the total distance between
the provided claims and the output truths for some specified continuous distance
function; coordinate descent [16] is often used to obtain the solution. (3) Probabilis-
tic graphical models [77] of truth discovery are solved by expectation maximization.
Other methods for truth discovery include those that leverage trust relationships be-
tween the sources [52]. Our study is conceptually closest to optimization approaches
(we minimize the number of edge additions or edits), but we suggest a discrete objec-
tive for minimization, for which we need to develop new algorithms.

2.1.1.0.2 Our Motivation: Massively Open Online Courses.

Our interest in the problem arises from trying to model the problem of automatic
grading of large number of students in the context of MOOCs (massively open on-
line courses). Manual grading of assignments from many students is infeasible. In
turn, creating many automatically gradable questions (that are also relevant to the
topics of a class) is difficult. Our idea is to crowd-source the creation of automati-
cally gradable questions (in particular, multiple choice items) to students, and have
all the students take all questions. In this context, we do not know the difficulty
of questions and would like to quickly compute a roughly accurate ordering of the
difficulty of the crowd-sourced questions from the answers chosen by the students.
Additionally, we also want to rank the strength of the students based on their perfor-
mance. In an ideal world, stronger participants should succeed at a superset of tasks
that weaker participants succeed at, which motivates our nesting property. In real-
ity, it can happen that a stronger participant fails at a task that a weaker participants
succeeds at. Our goal is to find a ranking of students and questions that “explains”
our observations as much as possible and is thus a close to the ideal case as possible.
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2.1.1.0.3 Our Model.

Henceforth, we refer to participants as students and tasks as questions in the rest
of the chapter. We cast the ranking problem as a discrete optimization problem of
minimizing the number of changes to a given record of the students’ performance
to obtain nested neighborhoods. This is called the Chain Editing problem. It is often
possible that some information regarding the best ranking is already known. For
instance, if the observed rankings of students on several previous assignments are
consistent, then it is likely that the ranking on the next assignment will be similar.
We model known information by imposing an additional constraint that the changes
made to correct the errors to an ideal ranking must result in a ranking that is near
a given base ranking. By near, we mean that the output position of each student
should be within at most k positions from the position in the base ranking, where
k is a parameter. Given a nearby ranking for the students, we consider all possible
variants arising from how the question ranking is constrained. The question rank-
ing may be constrained in one of the following three ways: (i) the exact question
ranking is specified (which we term the “constrained” case), (ii) it must be near a
given question ranking (the “both near” case), or (iii) the question ranking is un-
constrained (the “unconstrained” case). We provide the formal definitions of these
problems next.

2.1.2 Problem Formulations

Here, we define all variants of the ranking problem. The basic variants of Chain
Editing are defined first and the k-near variants are defined afterward.

2.1.3 Basic Variants of Chain Editing

First, we introduce the problem of recognizing an “ideal” input. Assume that we
are given a set S of students, and a set Q of questions. Every student attempts every
question. Edges between S and Q indicate which questions the students answered
correctly. Denote the resulting bipartite graph by G = (S ∪Q, E). Let n = |S|+ |Q|.
For every pair (s, q) ∈ S× Q, we are given an edge between s and q if and only if
student s answered question q correctly.

For a graph (V, E), denote the neighborhood of a vertex x by N(x) := {y ∈ V :
xy ∈ E}. In other words, the neighborhood of a question is the set of student who
answered the question correctly. Similarly, the neighborhood of a student is the set
of questions that the student answered correctly.

Strength and Difficulty We say that student s1 is stronger than student s2 if N(s1) ⊃
N(s2), and student s1 is equivalent to s2 if N(s1) = N(s2). We say that question q1 is
harder than question q2 if N(q1) ⊂ N(q2), and question q1 is equivalent to question
q2 if N(q1) = N(q2). Given an ordering α on the students and β on the questions,
α(s1) > α(s2) shall indicate that s1 is stronger than s2; β(q1) > β(q2) shall indicate
that q1 is harder (more difficult) than q2; α(s1) = α(s2) and β(q1) = β(q2) shall
indicate that s1 is equivalent to s2 and q1 is equivalent to q2, respectively.

Interval and Nesting properties An ordering of the questions satisfies the interval
property if for every student s, its neighborhood N(s) consists of a block of con-
secutive questions (starting with the easiest question) with respect to the order-
ing of the questions. An ordering α of the students satisfies the nesting property if
α(s1) ≥ α(s2)⇒ N(s1) ⊇ N(s2).
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Definition The objective of the Ideal Mutual Orderings (IMO) problem is to order the
students and the questions so that they satisfy the interval and nesting properties
respectively, or output NO if no such orderings exist.

Observe that IMO can be solved efficiently by comparing containment relation
among the neighborhoods of the students and ordering the questions and students
according to the containment order.

Proposition 2.1.1. There is a polynomial time algorithm to solve IMO.

Proof. Compare the neighborhood of every pair of students {s1, s2} ⊆ S and check
whether N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2). If N(s1)∩N(s2) is a strict subset of N(s1)
and N(s2), then output NO. Now, assuming that every pair {s1, s2} ⊆ S satisfies
N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2), we know that there is an ordering α : S → [|S|]
such that α(s1) ≤ α(s2) ⇒ N(s2) ⊆ N(s2). We easily find such an ordering by
sorting the students according to their degrees, i.e., from lowest to highest degree,
the students will receive labels from the smallest to the largest. Denote the resulting
ordering by π. Since all neighborhoods are subsets or supersets of any other neigh-
borhood and π was sorted by degree, π(s1) ≤ π(s2) ⇒ N(s1) ≤ N(s2). So we have
satisfied the nesting property.

To satisfy the interval property, we order the questions according to the nesting
of the neighborhoods. Recall that we have N(π−1(1)) ⊆ · · · ⊆ N(π−1(|S|)). Now,
we order the questions so that whenever q1 ∈ N(π−1(i)) and q2 ∈ N(π−1(j)) with
i < j, we have q1 labeled smaller q2 according to the ordering. We can do so by
labeling the questions in N(π−1(1)) the smallest numbers (the ordering within the
set does not matter), then the questions in N(π−1(2)) the next smallest, and so on.
Call the resulting ordering β. Note that for all s ∈ S, s = π−1(i) for some i. So N(s) =
N(π−1(i)) ⊇ N(π−1(1)), i.e., s correctly answers the easiest question according to
β. Furthermore, N(s) is a block of questions that are consecutive according to the
ordering β. So the interval property is also satisfied.

To determine the run time, note that we made O(n2) comparisons of neighbor-
hoods. Each set intersection of two neighborhoods took O(n) time assuming that
each neighborhood was stored as a sorted list of the questions (sorted by any fixed
labeling of the questions). Ordering the students by degree took O(n log n) time and
ordering the questions took O(n) time. So the total run time is O(n2).

Next, observe that the nesting property on one side is satisfiable if and only if
the interval property on the other side is satisfiable. Hence, we will require only the
nesting property in subsequent variants of the problem.

Proposition 2.1.2. A bipartite graph has an ordering of all vertices so that the questions
satisfy the interval property if and only if it has an ordering with the students satisfying the
nesting property.

Proof. First, we prove the forward direction. Assume that G = (S ∪ Q, E) satisfies
the interval property with respect to the ordering β on Q. By definition of interval
property, for every u ∈ S, we have N(u) = {β−1(1), . . . , β−1(j)} for some j ∈ [|Q|].
Then for every u1, u2 ∈ S, we have N(u1) ⊆ N(u2) or N(u2) ⊆ N(u1). Let α be an
ordering of S by degree of each u ∈ S. Then the nesting property holds with respect
to α.

Second, we prove the backward direction. Assume that G = (S ∪ Q, E) satisfies
the nesting property with respect to α on S. Then N(α−1(1)) ⊆ · · · ⊆ N(α−1(|S|)).
Using the algorithm in the proof of Proposition 2.1.1 for IMO, we obtain an ordering
β on Q so that the interval property holds with respect to β.
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Next, we define three variants of IMO, which model the possible ways we would
allow changes to the edges in the graph in order to achieve the nesting property:
allowing edges to be added, or deleted, or both.

Chain Editing (CE) In the Chain Editing (CE) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set of
edge edits that admits an ordering of the students satisfying the nesting property.

A more restrictive problem than Chain Editing is Chain Addition. Chain Ad-
dition is variant of Chain Editing that allows only edge additions and no dele-
tions. Chain Addition models situations where students sometimes accidentally
give wrong answers on questions that they know how to solve but never answer
a hard problem correctly by luck, e.g., in numerical entry questions.

Chain Addition (CA) In the Chain Addition (CA) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set of
edge additions that admits an ordering of the students satisfying the nesting prop-
erty.

On the other hand, weak students may accidentally solve hard questions cor-
rectly when the questions are multiple choice or true/false. Chain Deletion models
such situations.

Chain Deletion (CD) In the Chain Deletion (CD) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set of
edge deletions that admits an ordering of the students satisfying the nesting prop-
erty.

Among the three problems, Chain Addition and Chain Deletion are isomorphic,
i.e., solving one enables us to solve the other. The key property that connects Chain
Addition with Chain Deletion is that a graph satisfies the nesting property if and
only if its complement satisfies the nesting property. To solve Chain Deletion on a
graph G, consider the complement G of G and solve Chain Addition on G. Let F
be the set of edges in an optimal solution for Chain Addition on G. By definition of
complement, F must have been a subset of the edges in G. Since G ∪ F satisfies the
nesting property, its complement G ∪ F = G \ F must also satisfy the nesting prop-
erty. So F is an optimal solution for Chain Deletion on G. A symmetric argument
applies to solve Chain Addition from Chain Deletion. Since the addition and the
deletion cases are isomorphic, we consider only the addition and the more general
edition, which – together with the three constraint variants from subsection 2.1.1.0.3
– give rise to our 6 problem formulations.

Analogous to needing only to satisfy one of the two properties, it suffices to find
an optimal ordering for only one side. Once one side is fixed, it is easy to find an
optimal ordering of the other side respecting the fixed ordering.

Proposition 2.1.3. In Chain Editing, if the best ordering (that minimizes the number of
edge edits) for either students or questions is known, then the edge edits and ordering of the
other side can be found in polynomial time.

Proof. Consider the special case that one side of the correct ordering is given to us,
say the questions are given in hardest to easiest order v1 ≥ · · · ≥ vq. Then we can
find the minimum number of errors needed to satisfy the required conditions by
correcting the edges incident to each student u individually.
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We know by the interval property that every student u must correctly answer
either a set of consecutive questions starting from v1 or no questions at all. For each
u ∈ S, and for each vj, simply compute the number of edge edits required so that
the neighborhood of u becomes {v1, . . . , vj}. Select the question vu that minimizes
the cost of enforcing {v1, . . . , vj} to be the neighborhood of u. Once the edges are
corrected, order the students by the containment relation of their neighborhoods.

The algorithm correctly calculates the minimum edge edits since the interval
property was satisfied at the minimum cost possible per student. The algorithm
finds the neighborhood of each student by trying at most |Q| < n difficulty thresh-
olds vj, and the cost of calculation for each threshold takes O(1), by using the value
calculated from the previous thresholds tried. Summing over the |S| < n students
gives a total running time no more than O(n2).

2.1.3.0.1 k-near Variants of Chain Editing or Addition

We introduce and study the nearby versions of Chain Editing or Chain Addition.
Our problem formulations are inspired by Balas and Simonetti’s [11] work on k-near
versions of the TSP.

k-near CE or CA In the k-near problem, we are given an initial ordering α : S →
[|S|] and a nonnegative integer k. A feasible solution exhibits a set of edge edits
(additions) attaining the nesting property so that the associated ordering π, induced
by the neighborhood nestings, of the students satisfies π(s) ∈ [α(s)− k, α(s) + k].

Next, we define three types of k-near problems. In the subsequent problem formu-
lations, we bring back the interval property to our constraints since we consider
problems where the question side is not allowed to be arbitrarily ordered.

Unconstrained k-near CE or CA In Unconstrained k-near Chain Editing (Addition),
the student ordering must be k-near but the question side may be ordered any way.
The objective is to minimize the number of edge edits (additions) so that there is a
k-near ordering of the students that satisfies the nesting property.

Constrained k-near CE or CA In Constrained k-near Chain Editing (Addition), the
student ordering must be k-near while the questions have a fixed initial ordering
that must be kept. The objective is to minimize the number of edge edits (additions)
so that there is k-near ordering of the students that satisfies the nesting property and
respects the interval property according to the given question ordering.

Both k-near CE or CA In Both k-near Chain Editing (Addition), both sides must be
k-near with respect to two given initial orderings on their respective sides. The ob-
jective is to minimize the number of edge edits (additions) so that there is a k-near
ordering of the students that satisfies the nesting property and a k-near ordering of
the questions that satisfies the interval property.

2.1.4 Main Results

In this chapter, we introduce k-near models to the Chain Editing problem and
present surprising complexity results. Our k-near model captures realistic scenarios
of MOOCs, where information from past tests is usually known and can be used to
arrive at a reliable initial nearby ordering.

We find that five of the k-near Editing and Addition problems have polynomial
time algorithms while the Unconstrained k-near Editing problem is NP-hard. Ad-
ditionally, we provide an O(kn) additive approximation algorithm for the NP-hard
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NP-hard [83,

39]

NP-hard
Thm 2.3.4,
O(kn)-approx

Thm 2.3.5

O(n324kk4k)
Thm 2.3.3

O(n2)
Prop 2.1.3

k-near
Editing

NP-hard
Thm 2.3.4,
O(kn)-approx

Thm 2.3.5

O(n328kk8k+4)
Thm 2.3.6

Addi-
tion

O(n324kk4k)
Thm 2.3.3

O(n328kk8k+4)
Thm 2.3.7

O(n324kk4k+2)
Thm 2.3.2

Constrained O(n2)
Prop 2.1.3

O(n324kk4k+2) Thm 2.3.2 O(n2)

FIGURE 2.2: All variants of the decision version of the problems are
shown with their respective complexities. The complexity of Uncon-
strained/Unconstrained Addition [83] and Editing [39] were derived
before. More detailed results for these cases will be shown in Fig-
ure 2.3. All other results are given in this chapter. Most of the prob-
lems have the same complexity for both Addition and Editing ver-
sions. The only exception is the Unconstrained k-near version where
Editing is NP-hard while Addition has a polynomial time algorithm.

case. Our intuition is that the Constrained k-near and Both k-near problems are con-
siderably restrictive on the ordering of the questions, which make it easy to derive
the best k-near student ordering. The Unconstrained k-near Addition problem is
easier than the corresponding Editing problem because the correct neighborhood of
the students can be inferred from the neighborhoods of all weaker students in the
Addition problem, but not for the Editing version.

Aside from restricting the students to be k-near, we may consider all possible
combinations of whether the students and questions are each k-near, fixed, or uncon-
strained. The remaining (non-symmetric) combinations not covered by the above
k-near problems are both fixed, one side fixed and the other side unconstrained, and
both unconstrained. The both fixed problem is easy as both orderings are given in
the input and one only needs to check whether the orderings are consistent with the
nesting of the neighborhoods. When one side is fixed and the other is unconstrained,
we have already shown that the ordering of the unconstrained side is easily deriv-
able from the ordering of the fixed side via Proposition 2.1.3. If both sides are un-
constrained, this is exactly the Chain Editing (or Addition) problem, which are both
known to be NP-hard (see below). Figure 2.2 summarizes the complexity of each
problem, including our results for the k-near variants, which are starred. Note that
the role of the students and questions are symmetric up to flipping the orderings.

To avoid any potential confusion, we emphasize that our algorithms are not
fixed-parameter tractable algorithms, as our parameter k is not a property of prob-
lem instances, but rather is part of the constraints that are specified for the outputs
to satisfy.

The remaining sections are organized as follows. Section 2.2 discusses existing
work on variants of Chain Editing that have been studied before. Section 2.3 shows
the exact algorithms for five of the k-near problems, and includes the NP-hardness
proof and an O(kn) additive approximation for the last k-near problem. Section 2.4
summarizes our main contributions.
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2.2 Related Work

The earliest known results on hardness and algorithms tackled Chain Addition.
Since many results parameterize in terms of the value of an optimal solution to their
problem, we use OPT to denote the optimal value, where the problem solved de-
pends on the context. Before stating the results, we define a couple of problems
closely related to Chain Addition. The Minimum Linear Arrangement problem con-
siders as input a graph G = (V, E) and asks for an ordering π : V → [|V|] min-
imizing ∑vw∈E |π(v) − π(w)|. The Chordal Completion problem, also known as the
Minimum Fill-In problem, considers as input a graph G = (V, E) and asks for the
minimum size set of edges F to add to G so that (V, E ∪ F) has no chordless cycles.
A chordless cycle is a cycle (v1, . . . , vr, v1) such that for every i, j with |i− j| > 1 and
{i, j} 6= {1, r}, we have vivj /∈ E. Yannakakis [83] proved that Chain Addition is NP-
hard by a reduction from Linear Arrangement. He also showed that Chain Addition
is a special case of Chordal Completion on graphs of the form (G = U ∪V, E) where
U and V are cliques. Recently, Chain Editing was shown to be NP-hard by Drange
et al. [39].

Another problem called Total Chain Addition is essentially identical to Chain Ad-
dition, except that the objective function counts the number of total edges in the out-
put graph rather than the number of edges added. For Total Chain Addition, Feder
et al. [44] gave a 2-approximation. The total edge addition version of Chordal Com-
pletion has an O(

√
∆ log4(n))-approximation algorithm [1] where ∆ is the maximum

degree of the input graph. For Chain Addition, Feder et al. [44] claimed an 8d + 2-
approximation, where d is the smallest number such that every vertex-induced sub-
graph of the original graph has some vertex of degree at most d. Natanzon et al. [74]
gave an 8OPT-approximation for Chain Addition by approximating Chordal Com-
pletion. However, no approximation algorithms are known for Chain Editing.

Modification to chordless graphs and to chain graphs have also been studied
from a fixed-parameter point of view. A fixed-parameter tractable (FPT) algorithm for
a problem of input size n and parameter p bounding the value of the optimal solu-
tion, is an algorithm that outputs an optimal solution in time O( f (p)nc) for some
constant c and some function f dependent on p. For Chordal Completion, Kaplan et
al. [63] gave an FPT in time O(2O(OPT)+OPT2nm). Fomin and Villanger [48] showed
the first subexponential FPT for Chordal Completion, in time O(2O(

√
OPT log OPT) +

OPT2nm). Cao and Marx [27] studied a generalization of Chordal Completion,
where three operations are allowed: vertex deletion, edge addition, and edge dele-
tion. There, they gave an FPT in time 2O(OPT log OPT)nO(1), where OPT is now the
minimum total number of the three operations needed to obtain a chordless graph.
For the special case of Chain Editing, Drange et al. [39] showed an FPT in time
2O(
√

OPT log OPT) + poly(n), where poly(n) represents a polynomial function with re-
spect to n. They also showed the same result holds for a related problem called
Threshold Editing.

On the other side, Drange et al. [39] showed that Chain Editing and Threshold
Editing do not admit 2o(

√
OPT)poly(n) time algorithms assuming the Exponential

Time Hypothesis (ETH). For Chain Completion and Chordal Completion, Bliznets

et al. [19] excluded the possibility of 2O(
√

n/ log n) and 2O(OPT
1
4 / logc OPT)nO(1) time al-

gorithms assuming ETH, where c is a constant. For Chordal Completion, Cao and
Sandeep [28] showed that no algorithms in time 2O(

√
OPT−δ)nO(1) exist for any posi-

tive δ, assuming ETH. They also excluded the possibility of a PTAS for Chordal Com-
pletion assuming P 6= NP. Wu et al. [82] showed that no constant approximation
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Chordal Chain

Editing Unknown approximation,
FPT [38]

Unknown approximation,
FPT [38]

Addition 8OPT-approx [74], FPT [38] 8OPT-approx [74],
8d + 2-approx [44], FPT [38]

Total Addition O(
√

∆ log4(n))-approx [1],
FPT [38]

2-approx [44], FPT [38]

FIGURE 2.3: This table shows existing results for the case that both
sides are unconstrained, which are all known to be NP-hard from the

upper left block of Figure 2.2.

is possible for Chordal Completion assuming the Small Set Expansion Conjecture.
Figure 2.3 summarizes the known results for the aforementioned graph modifica-
tion problems.

For the k-near problems, we show that the Unconstrained k-near Editing problem
is NP-hard by adapting the NP-hardness proof for Threshold Editing from Drange et
al. [38]. The remaining k-near problems have not been studied. An abbreviated ver-
sion of this chapter appeared in the proceedings of the 11th International Conference
and Workshops on Algorithms and Computation [62].

2.3 Polynomial Time Algorithms for k-near Orderings

We present our polynomial time algorithm for the Constrained k-near Addition
and Editing problems, the Both k-near Addition and Editing problems, and the Un-
constrained k-near Addition problem. We also show the NP-hardness of the Un-
constrained k-near Editing problem and provide a O(kn) additive approximation
algorithm for it.

We assume correct orderings label the students from weakest (smallest label)
to strongest (largest label) and label the questions from easiest (smallest label) to
hardest (largest label). We associate each student with its initial label given by the
k-near ordering. For ease of reading, we boldface the definitions essential to the
analysis of our algorithm.

2.3.1 Constrained k-near

We will solve the Constrained k-near Editing and Addition problems in time
O(n324kk4k+2) by dynamic programs. First, we will solve the Constrained k-near
Editing problem. Then we modify the algorithm to solve the Constrained k-near
Addition problem.

2.3.1.0.1 Constrained k-near Editing

Theorem 2.3.1 (Constrained k-near Editing). Constrained k-near Editing can be solved
in time O(n324kk4k+2).

Proof. Assume that the students are given in k-near order 1, . . . , |S| and that the ques-
tions are given in exact order 1 ≤ · · · ≤ |Q|. We construct a dynamic program for
Constrained k-near Editing. First, we introduce the subproblems that we will con-
sider. Define C(i, ui, Ui, vji) to be the smallest number of edges incident to the weak-
est i positions that must be edited such that ui is in position i, Ui is the set of students
in the weakest i− 1 positions, and vji is the hardest question correctly answered by
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the i weakest students. Before deriving the recurrence, we will define several sets
that bound our search space within polynomial size of n = |S|+ |Q|.
Search Space for Ui. Given position i and student ui, define Pi,ui to be the set of
permutations on the elements in

[
max{1, i − k}, min{|S|, i + k − 1}

]
\ {ui}. Let

Fi,ui :=
{
{π−1(1), . . . , π−1(k)} : π ∈ Pi,ui , π(a) ∈ [a − k, a + k], ∀a ∈

[
max{1, i −

k}, min{|S|, i + k − 1}
]
\ {ui}

}
. The set Pi,ui includes all possible permutations of

the 2k students centered at position i, and the set Fi,ui enforces that no student moves
more than k positions from its label. We claim that every element of Fi,ui is a candi-
date for Ui \

[
1, max{1, i− k− 1}

]
given that ui is assigned to position i. To under-

stand the search space for Ui given i and ui, observe that for all i ≥ 2, Ui already must
include all of

[
1, max{1, i− k− 1}

]
since any student initially at position ≤ i− k− 1

cannot move beyond position i− 1 in a feasible solution. If i = 1, we have U1 = ∅.
From now on, we assume i ≥ 2 and treat the base case i = 1 at the end. So the set Ui \[
1, max{1, i− k− 1}

]
will uniquely determine Ui. We know that Ui cannot include

any students with initial label [k + i, |S|] since students of labels ≥ k + i must be as-
signed to positions i or later. So the only uncertainty remaining is which elements in[

max{1, i− k}, min{|S|, i+ k− 1}
]
\ {ui}make up the set Ui \

[
1, max{1, i− k− 1}

]
.

We may determine all possible candidates for Ui \
[
1, max{1, i− k− 1}

]
by trying all

permutations of
[

max{1, i − k}, min{|S|, i + k − 1}
]
\ {ui} that move each student

no more than k positions from its input label, which is exactly the set Fi,ui .

Feasible and Compatible Subproblems. Next, we define Si =
{
(ui, Ui, vji) : ui ∈[

max{1, i − k}, min{|S|, i + k}
]
, Ui \

[
1, max{1, i − k − 1}

]
∈ Fi,ui , vji ∈ Q ∪ {0}

}
.

The set Si represents the search space for all possible vectors (ui, Ui, vji) given that
ui is assigned to position i. Note that ui is required to be within k positions of i
by the k-near constraint. So we encoded this constraint into Si. To account for the
possibility that the i weakest students answer no questions correctly, we allow vji to
be in position 0, which we take to mean that Ui ∪ {ui} gave wrong answers to all
questions.

Now, we define Ri−1,ui ,Ui ,vji
:= {(ui−1, Ui−1, vji−1) ∈ Si−1 : vji−1 ≤ vji , Ui =

{ui−1} ∪Ui−1}. The set Ri−1,ui ,Ui ,vji
represents the search space for smaller subprob-

lems that are compatible with the subproblem (i, ui, Ui, vji). More precisely, given
that ui is assigned to position i, Ui is the set of students assigned to the weak-
est i − 1 positions, and vji is the hardest question correctly answered by Ui ∪ ui,
the set of subproblems of the form (i − 1, ui−1, Ui−1, vji−1) which do not contradict
the aforementioned assumptions encoded by (i, ui, Ui, vji) are exactly those whose
(ui−1, Ui−1, vji−1) belongs to Ri−1,ui ,Ui ,vji

. We illustrate compatibility in Figure 2.4.
The Dynamic Program. Finally, we define cui ,vji

to be the number of edge edits
incident to ui so that the neighborhood of ui becomes exactly {1, . . . , vji}, i.e., cui ,vji

:=
|NG(ui)4{1, . . . , vji}|. We know that cui ,vji

is part of the cost within C(i, ui, Ui, vji)

since vji is the hardest question that Ui ∪ {ui} is assumed to answer correctly and ui
is a stronger student than those in Ui who are in the positions before i. We obtain the
following recurrence.

C(i, ui, Ui, vji) = min
(ui−1,Ui−1,vji−1

)∈Ri−1,ui ,Ui ,vji

{C(i− 1, ui−1, Ui−1, vji−1)}+ cui ,vji

The base cases are C(1, u1, U1, vj1) = |NG(u1)4{1, . . . , vj1}| if vj1 > 0, and
C(1, u1, U1, vj1) = |NG(u1)| if vj1 = 0 for all u1 ∈ [1, 1 + k], vj1 ∈ Q ∪ {0}.
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FIGURE 2.4: Subproblem (i − 1, ui−1, Ui−1, vji−1) is compatible with
subproblem (i, ui, Ui, vji ) if and only if vji−1 is no harder than vji
and Ui = {ui−1} ∪ Ui−1. The cost of (i, ui, Ui, vji ) is the sum of the
minimum cost among feasible compatible subproblems of the form
(i− 1, ui−1, Ui−1, vji−1) and the number of edits incident to ui to make

its neighborhood exactly {1, . . . , vji}.

By definition of our subproblems, the final solution we seek is
min(u|S|,U|S|,vj|S| )∈S|S| C(|S|, u|S|, U|S|, vj|S|).

Running Time. Now, we bound the run time of the dynamic program. Note that
before running the dynamic program, we build the sets Pi,ui , Fi,ui , Si, Ri−1,ui ,Ui ,vji

to
ensure that our solution obeys the k-near constraint and that the smaller subproblem
per recurrence is compatible with the bigger subproblem it came from. Generating
the set Pi,ui takes (2k)! = O(22kk2k) time per (i, ui). Checking the k-near condition to
obtain the set Fi,ui while building Pi,ui takes k2 time per (i, ui). So generating Si takes
O(k · 22kk2kk2 · |Q|) time per i. Knowing Si−1, generating Ri−1,ui ,Ui ,vji

takes O(|S|)
time. Hence, generating all of the sets is dominated by the time to build ∪i≤|S|Si,
which is O(|S|k322kk2k|Q|) = O(n222kk2k+3).

After generating the necessary sets, we solve the dynamic program. Each sub-
problem (i, ui, Ui, vji) takes O(|Ri−1,ui ,Ui ,vji

)| time. So the total time to solve the
dynamic program is O(∑i∈S,(ui ,Ui ,vji )∈Si

|Ri−1,ui ,Ui ,vji
|) = O(|S||Si||Si−1|) = O(n(k ·

22kk2k · n)2) = O(n324kk4k+2).

2.3.1.0.2 Constrained k-near Addition

We use the same framework as Constrained k-near Editing to solve the Con-
strained k-near Addition. We change the definitions of the subproblem, the relevant
sets, and the costs appropriately to adapt to the Addition problem.

Theorem 2.3.2 (Constrained k-near Addition). Constrained k-near Addition can be
solved in time O(n324kk4k+2).

Proof. First, redefine C(i, ui, Ui, vji) to be the smallest cost of adding edges incident
to the weakest i positions so that ui is in position i, Ui is the set of students in the
weakest i − 1 positions, and vji is the hardest question correctly answered by the i
weakest students.

The sets Pi,ui and Fi,ui will stay the same as before. We redefine Si :={
(ui, Ui, vji) : ui ∈

[
max{1, i − k}, min{|S|, i + k}

]
, Ui \

[
1, max{1, i − k − 1}

]
∈

Fi,ui , vji ∈ Q ∪ {0}, vji ≥ max NG({ui} ∪Ui)
}

. Requiring that vji is at least as hard

as NG({ui} ∪ Ui) ensures that the final solution will satisfy the interval property
with respect to the given question order. It was not needed in the Editing problem
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because wherever vji landed, the edges that reach questions harder than vji were
deleted. The definition of Ri−1,ui ,Ui ,vji

will stay the same as before, but using the new
definition of Si−1 from this section. Finally, the cost cui ,vji

will become the number
of edge additions incident to ui so that the neighborhood of ui becomes {1, . . . , vji},
i.e., cui ,vji

:= |{1, . . . , vji} \ NG(ui)|.
The recurrence relation from Constrained k-near Editing still applies here. How-

ever, the base cases become C(1, u1, U1, vj1) = |{1, . . . , vj1} \ NG(u1)| if vj1 > 0, and
C(1, u1, U1, vj1) = 0 if vj1 = 0.

The run time is still dominated by the dynamic program since the time to con-
struct Si becomes only |Q| times larger (to enforce the additional constraint that vji
is hard enough). Hence the total time to solve this problem remains O(n324kk4k+2).

2.3.2 Unconstrained k-near

First, we solve the Unconstrained k-near Addition problem in time O(n324kk4k).
Second, we show that the Unconstrained k-near Editing problem is NP-hard.

Assume that the students are given in k-near order 1, . . . , |S|. The questions are
allowed to be ordered arbitrarily in the final solution.

2.3.2.0.1 Unconstrained k-near Addition

Theorem 2.3.3 (Unconstrained k-near Addition). Unconstrained k-near Addition can
be solved in time O(n324kk4k).

Proof. We introduce subproblems of the form (i, ui, Ui). Define C(i, ui, Ui) to be the
smallest number of edges incident to the weakest i positions that must be added so
that ui is in position i and Ui is the set of the i− 1 weakest students.

We use the same Pi,ui and Fi,ui as defined for Constrained k-near Editing to bound

the search space for Ui given that ui is in position i. Define Si :=
{
(ui, Ui) : ui ∈[

max{1, i− k}, min{|S|, i + k}
]
, Ui \ [1, max{1, i− k− 1} ∈ Fi,ui

}
.

Next, define Ri−1,ui ,Ui :=
{
(ui−1, Ui−1) ∈ Si−1 : Ui = {ui−1} ∪ Ui−1

}
. The

set Ri−1,ui ,Ui ensures that the smaller subproblems have prefixes that are compatible
with those assigned in the bigger subproblems they came from. Compatibility is
illustrated in Figure 2.5.

Lastly, define cui ,Ui to be the number of edge additions incident to ui so that the
neighborhood of ui becomes the smallest set of questions containing NG(Ui ∪ {ui}),
i.e., cui ,Ui := |NG(Ui ∪ {ui}) \ NG(ui)|.

Using the above definitions, we have the following recurrence:

C(i, ui, Ui) = min
(ui−1,Ui−1)∈Ri−1,ui ,Ui

{C(i− 1, ui−1, Ui−1)}+ cui ,Ui

The base cases are C(1, u1, U1) = |NG(U1) \ NG(u1)| for all (u1, U1) ∈ S1, since
u1 must add edges to the questions that the weaker students correctly answered.

The final solution to Unconstrained k-near Addition is
min(u|S|,U|S|)∈S|S| C(|S|, u|S|, U|S|).

To bound the run time, note that generating Si takes O(n · 22kk2kk2) time.
The dynamic program will dominate the run time again. In the dynamic pro-
gram, each subproblem (i, ui, Ui) takes O(|Ri−1,ui ,Ui |) time. So the total time is
O(∑i∈S,(ui ,Ui)∈Si

|Ri−1,ui ,Ui |) = O(|S||Si||Si−1|) = O(n(n22kk2k)2) = O(n324kk4k).
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FIGURE 2.5: Subproblem (i − 1, ui−1, Ui−1) is compatible with sub-
problem (i, ui, Ui) if and only if Ui = {ui−1} ∪ Ui−1. The cost of
(i, ui, Ui) is sum of the minimum cost among feasible compatible sub-
problems of the form (i− 1, ui−1, Ui−1) and the number of additions
incident to ui to make its neighborhood the smallest set of questions

containing the existing neighbors of Ui.

2.3.2.0.2 Unconstrained k-near Editing

The Unconstrained k-near Editing problem is NP-hard even for k = 1. We closely
follow the proof of Drange et al. [38] for the NP-hardness of Threshold Editing to
show that Unconstrained k-near Editing is NP-hard. In Drange et al.’s construction,
they specified a partial order for which the cost of Threshold Editing can only worsen
if the output ordering deviates from it. We crucially use this property to prove NP-
hardness for Unconstrained 1-near Editing.

Theorem 2.3.4 (Unconstrained k-near Editing). Unconstrained k-near Editing is NP-
hard.

Proof. Let G = (S, Q, E) be a bipartite graph with initial student ordering π. Con-
sider the decision problem Π of determining whether there is a 1-near uncon-
strained editing of at most t edges for the instance (G, π). We reduce from 3-SAT
to Π. Let Φ be an instance for 3-SAT with clauses C = {c1, . . . , cm} and variables
V = {v1, . . . , vn}. We construct the corresponding instance Π = (GΦ, πΦ, tΦ) for
1-near unconstrained editing as follows. First we order the variables in an arbi-
trary order and use this order to define π. For each variable vi, create six students
si

a, si
b, si

f , si
t, si

c, si
d. Next, we define a partial ordering P that the initial order πΦ shall

obey. Define P to be the partial order satisfying si
a > si

b > si
f , si

t > si
c > si

d for all

i ∈ [n] and si
α > sj

β for all i < j, α, β ∈ {a, b, c, d, f , t}. Define πΦ to be the linear
ordering satisfying all relations of P for the variables in the initial arbitrary order,
and additionally si

f > si
t. We remark that the proof works regardless of whether we

set si
f > si

t or si
f < si

t in πΦ. We shall impose that optimal solutions satisfy all of the
relations of P. To do so, for every s > s′, we add tΦ + 1 new questions each with
edges to s and no edges to s′, and with edges to all r > s in πΦ. Then whenever
an editing solution switches the order of s and s′, it must edit at least tΦ + 1 edges.
After adding the necessary questions to ensure feasible solutions must preserve the
partial order P, we create a question qcl for each clause cl . If a variable vi appears
positively in cl , then add the edge qcl s

i
t. If vi appears negatively in cl , then add the

edge qcl s
i
f . If vi does not occur in cl , then add the edge qcl s

i
c. For all variables vi and

clauses cl , add the edges qcl s
i
b and qcl s

i
d. Finally, define tΦ = |C|(3|V| − 1). Refer to

Figure 2.6 for an illustration of the construction.
Now, we show that there is a satisfying assignment if and only if there is a 1-near

editing of at most tΦ edges. First, we prove the forward direction. Assume there is a
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FIGURE 2.6: Each set of six vertices represents the students corre-
sponding to a variable x, y, or z. The bottom vertex represents a ques-

tion corresponding to the clause cl = w ∨ x̄ ∨ y.

satisfying assignment f : V → {T, F}. Let cl be a clause. One of the literals vi in cl is
set to T under the assignment f . If vi occurs positively, then edit the neighborhood
of qcl to be all students s such that s ≥ si

t according to P and impose si
t > si

f in the
solution. If vi occurs negatively in qcl , then edit the neighborhood of qcl to be all
students s such that s ≥ si

f and keep the initial order that si
f > si

t. In both cases, the
neighborhood of qcl changed by 2 among the six students corresponding the variable
vi and changed by 3 for the remaining groups of six students. So the number of edge
edits incident to each (clause) question is 3|V| − 1. Note that the neighborhoods of
the extra questions we added to impose P are already nested because each time a
new question was added, it received edges to all students who are stronger than
a particular student according to P. So only the questions that came from clauses
potentially need to edit their neighborhoods to achieve nesting. Hence, the total
number of edge edits is |C|(3|V| − 1) = tΦ.

Second, we prove the backward direction. Assume there is an unconstrained 1-
near editing of |C|(3|V| − 1) edges to obtain a chain graph. Let cl be a clause. For
any variable vj not occurring in cl , the original edges that qcl has to the six students

corresponding to vj are to sj
b, sj

c, sj
d. If the cut-off point of the edited neighborhood

of qcl is among sj
a, sj

b, sj
f , sj

t, sj
c, sj

d, then the edges incident to qcl must change by at
least three among those six, which means that qcl would have at least 3|V| edges
incident to it. If the cut-off point of the edited neighborhood of qcl is among the six
students corresponding to a variable vi that occurs in cl , then the edges incident to
qcl must change by at least two (by switching the order of si

f and si
t when needed)

among those six students and at least three for the students corresponding to the
remaining variables. Thus qcl has at least 3|V| − 1 edges edits incident to it for every
cl . So the smallest number of edge edits possible is at least |C|(3|V| − 1). By the
assumption, GΦ has a feasible editing of at most |C|(3|V| − 1) edges. Then each qcl

must have exactly 3|V| − 1 edits incident to it. So the cut-off point for the edited
neighborhood of each qcl must occur among the six students corresponding to a
variable vi occurring inside cl . If the occurring variable vi is positive, then the cut-
off point must have been at si

t and required si
t > si

f since all other cut-offs incur at
least three edits. Similarly, if vi is negative, then the cut-off point must have been
at si

f and required si
f > si

t. All clauses must be consistent in their choice of the
ordering between si

f and si
t for all i ∈ [n] since the editing solution was feasible.

Hence, we obtain a satisfying assignment by setting each variable vi true if and only
if si

t > si
f .
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Next, we show a simple O(kn) additive approximation algorithm for Uncon-
strained k-near Editing.

Theorem 2.3.5 (Approximation for Unconstrained k-near Editing). Unconstrained k-
near Editing has an O(kn) additive approximation algorithm.

Proof. Fix the student side to the initial ordering σ : S → [|S|] given for the k-near
condition and solve the corresponding Constrained Unconstrained Editing problem
exactly. Denote by F the edge edits found from solving the Constrained Uncon-
strained Editing problem. Let σ∗ be the ordering for S in an optimal solution to the
original k-near Unconstrained problem. Let H be the minimum size edge edits cor-
responding to σ∗. It suffices to show that for each q ∈ Q, |NF(q)| − |NH(q)| ≤ 2k− 2,
since this inequality would imply that |F| − |H| ≤ (2k− 2)|Q| ≤ 2kn.

For q ∈ Q, let p(q) be the position of the weakest student who answers q cor-
rectly according to the ordering σ∗. By the k-near condition, any student more than
k − 1 positions after p(q) cannot be ordered before p(q) and vice versa. If p(q) re-
mains the position of the weakest student who correctly answers q according to the
ordering σ, then the edge edits required would be the same as H, except for possi-
bly those edges from q to students who are within k− 1 positions of p(q). For each
q, F is determined by choosing the cut-off position for the neighborhood of q that
minimizes the number of edits needed. Then NF(q) should differ from NH(q) no
more than the case where the cut-off point for q stays the same position as p(q). So
|NF(q)| − |NH(q)| ≤ 2(k− 1). Hence |F| − |H| = O(kn).

2.3.3 Both k-near

We will solve the Both k-near Editing and Addition problems in time
O(n328kk8k+4). We first show our solution for the Editing problem and then adapt it
to the Addition problem.

Assume that the students and questions are both given in k-near order with stu-
dent labels 1, . . . , |S|, and question labels 1, . . . , |Q|.

2.3.3.0.1 Both k-near Editing

Theorem 2.3.6 (Both k-near Editing). Both k-near Editing can be solved in time
O(n328kk8k+4).

Proof. We consider subproblems of the form (i, ui, Ui, ji, vji , Vji). Define
C(i, ui, Ui, ji, vji , Vji) to be the smallest number of edges incident to the weak-
est i students that must be edited so that student ui is in position i, Ui is the set of the
i− 1 weakest students, ji is the position of the hardest question correctly answered
by Ui ∪ {ui}, vji is the question in position ji, and Vji is the set of the ji − 1 easiest
questions.
Feasible and Compatible Subproblems. Next, we define the search space for
(ui, Ui, ji, vji , Vji) given that ui is in position i. We use the same Pi,ui and Fi,ui defined

in the proof for Constrained k-near Editing. Define Si :=
{
(ui, Ui, ji, vji , Vji) : ui ∈[

max{1, i− k}, min{|S|, i + k}
]
, Ui \

[
1, max{1, i− k− 1}

]
∈ Fi,ui , vji ∈

[
max{1, ji −

k}, min{|Q|, ji + k}
]
, Vji \

[
1, max{1, ji− k− 1}

]
∈ Fji ,vji

}
. Here, we need to constrain

both the student side and the question side to make sure that all elements are k-near
as opposed to only enforcing the k-nearness on the students in Constrained k-near
Editing.
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|𝑄|
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∈ 𝑉𝑗𝑖

∉ 𝑉𝑗𝑖

Permutable 

except 𝑗𝑖

…
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…
…𝑣𝑗𝑖 → 𝑗𝑖

…𝑉𝑗𝑖−1

ji − k − 1
Compatible

Hardest

FIGURE 2.7: Subproblem (i− 1, ui−1, Ui−1, ji−1, vji−1 , Vji−1) is compat-
ible with subproblem (i, ui, Ui, ji, vji , Vji ) if and only if Ui = {ui} ∪
Ui−1, ji−1 represents a position no harder than ji, Vji ∪ {vji} con-
tains Vji−1 ∪ {vji−1}, and ji−1 strictly easier than ji implies that Vji
contains Vji−1 ∪ {vji−1}. The cost of (i, ui, Ui, ji, vji , Vji ) is the sum
of the minimum cost among feasible compatible states of the form
(i− 1, ui−1, Ui−1, ji−1, vji−1 , Vji−1) and the number of edits incident to

ui that makes its neighborhood Vji ∪ {vji}.

To bound the search space for subproblems to be compatible with
the bigger subproblems they came from, we define Ri−1,ui ,Ui ,ji ,vji ,Vji

:={
(ui−1, Ui−1, ji−1, vji−1 , Vji−1) ∈ Si−1 : Ui = Ui−1 ∪ {ui−1}, ji ≥ ji−1, Vji ∪ {vji} ⊇

Vji−1 ∪ {vji−1}, ji > ji−1 ⇒ Vji ⊇ Vji−1 ∪ {vji−1}
}

. The constraints in the set
Ri−1,ui ,Ui ,ji ,vji ,Vji

ensure that the prefixes of position i and position ji in the smaller
subproblem will be compatible with the bigger subproblem that it came from. Fur-
thermore, ji ≥ ji−1 ensures that stronger students correctly answer all questions that
weaker students correctly answered. We demonstrate compatibility in Figure 2.7.
The Dynamic Program. Finally, define cui ,vji ,Vji

to be the number of edge ed-
its incident to ui so that the neighborhood of ui becomes exactly Vji ∪ {vji}, i.e.,
cui ,vji ,Vji

:= |NG(ui)4Vji ∪ {vji}|.
Using the above definitions, we obtain the following recurrence.

C(i, ui, Ui, ji, vji , Vji) =

min
(ui−1,Ui−1,ji−1,vji−1

,Vji−1
)∈Ri−1,ui ,Ui ,ji ,vji

,Vji

{C(i− 1, ui−1, Ui−1, ji−1, vji−1 , Vji−1)}

+ cui ,vji ,Vji

The base cases are C(1, u1, U1, j1, vj1 , Vj1) = |NG(u1)4{vj1} ∪ Vj1 | for all
(u1, U1, j1, vj1 , Vj1) ∈ S1.

The final solution is min(u|S|,U|S|,j|S|,vj|S| ,Vj|S| )∈S|S| C(|S|, u|S|, U|S|, j|S|, vj|S| , Vj|S|).

Running Time. First, observe that |Si| = O(k224kk4k|Q|), since there are O(k)
choices for ui and vi, O(22kk2k) choices for Ui and Vji , and |Q| choices for ji. To
build Si, we need to build Fi,ui and Fji ,vji

. In Section 2.3, we saw that each of the
Fi,ui takes O(k222kk2k) time to build. Then building the set Si is upper bounded by
O(k · 22kk2kk2 · |Q| · k · 22kk2kk2) per i, where we are over-counting the time to gen-
erate all possible Ui and Vji by the time it takes to build Fi,ui and Fji ,vji

. Building the
set Ri−1,ui ,Ui ,ji ,vji ,Vji

while building Si will take O(|S| + |Q|) to check the conditions
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that restrict Si−1 to Ri−1,ui ,Ui ,ji ,vji ,Vji
. Due to the size of Si, the construction of sets

will still be dominated by the time to solve the dynamic program. Specifically, each
subproblem (i, ui, Ui, ji, vji , Vji) takes O(|Ri−1,ui ,Ui ,ji ,vji ,Vji

|) time. So the total time is
O(∑i∈S,(ui ,Ui ,ji ,vji ,Vji )∈Si

|Ri−1,ui ,Ui ,ji ,vji ,Vji
|) = O(|S||Si||Si−1|) = O(n(k2 · 24kk4kn)2) =

O(n328kk8k+4).

2.3.3.0.2 Both k-near Addition

To solve the Addition version, we apply the method from the solution for Both
k-near Editing.

Theorem 2.3.7 (Both k-near Addition). Both k-near Addition can be solved in time
O(n328kk8k+4).

Proof. We redefine C(i, ui, Ui, ji, vji , Vji) to be the smallest number of edges incident
to the weakest i students that must be added so that student ui is in position i, Ui is
the set of the i− 1 weakest students, ji is the position of the hardest question correctly
answered by Ui ∪ {ui}, vji is the question in position ji, and Vji is the set of the ji − 1
easiest questions.

We keep Pi,ui and Fi,ui the same as in the proof for Constrained k-near Edit-

ing. Redefine Si :=
{
(ui, Ui, ji, vji , Vji) : ui ∈

[
max{1, i − k}, min{|S|, i +

k}
]
, Ui \

[
1, max{1, i − k − 1}

]
∈ Fi,ui , vji ∈

[
max{1, ji − k}, min{|Q|, ji + k}

]
, Vji \[

1, max{1, ji − k− 1}
]
∈ Fji ,vji

, Vji ∪ {vji} ⊇ NG({ui} ∪Ui)
}

. The addition constraint

Vji ∪ {vji} ⊇ NG({ui} ∪ Ui) is added here to ensure that the interval property in-
duced by the current student ordering is satisfied every step. It was not needed
in section 2.3.3.0.1 because existing edges to questions outside Vji ∪ {vji} could be
deleted. The definition of Ri−1,ui ,Ui ,ji ,vji ,Vji

remains the same as section 2.3.3.0.1, but
using the newly defined Si−1. Lastly, redefine cui ,vji ,Vji

to be the number of edge ad-
ditions incident to ui so that the neighborhood of ui becomes exactly Vji ∪ {vji}, i.e.,
cui ,vji ,Vji

:= |Vji ∪ {vji} \ NG(ui)|.
The general recurrence relation of Section 2.3.3.0.1 stays the same. The base cases

change to C(1, u1, U1, j1, vj1 , Vj1) = |{vj1} ∪ Vj1 \ NG(u1)|, with the convention that
j1 = 0 means Vj1 = ∅ and vj1 is omitted from the count |{vj1} ∪Vj1 |.

Although the time to construct Si is larger by a factor of |Q|, the total run time is
dominated by the dynamic program, which takes O(n328kk8k+4).

It is possible that the above running times for the five “easy” problems could
improve. Our dynamic programs are designed based on the intuitiveness of the
states and not necessarily optimized for time complexity.

2.4 Conclusion

We proposed a new set of problems that arise naturally from ranking partici-
pants and tasks in competitive settings and classified the complexity of each prob-
lem. First, we introduced six k-near variants of the Chain Editing problem, which
capture a common scenario of having partial information about the final orderings
from past rankings. Second, we provided polynomial time algorithms for five of the
problems and showed NP-hardness and an O(kn) additive approximation for the
remaining one.
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Some open questions still remain for the NP-hard problems in Figure 2.2. For
Chain Editing when both sides are unconstrained, there are no known approxima-
tion algorithms. For the corresponding Chain Addition problem, can a constant
approximation can be achieved? For the Unconstrained k-near Editing problem, can
the O(kn) additive approximation be improved?
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Chapter 3

Inventory Routing on Line Metrics

3.1 Introduction

The inventory routing problem (IRP) has been studied extensively in supply
chain optimization [23, 29, 25, 26]. It models the delivering decisions that a sup-
plier must make to satisfy demands for its product at various locations over a time
horizon. For instance, a chain store may have different levels of demand for a prod-
uct depending on the location of the store. As the product sells, each location needs
to be replenished to satisfy future demands. The supplier is asked by the chain store
to decide when and how much of its product to ship to each location. Storing extra
amounts of the product over time incurs holding cost while each delivery to differ-
ent locations from the supply center incurs routing cost. The supplier would like
to minimize its total shipping cost and storage cost over the time horizon. Visiting
frequently incurs high routing cost while visiting sparsely incurs high holding cost.
Minimizing the total cost requires finding the right trade off between the two costs.

We now give the formal definition of IRP. In IRP, we are given a complete graph
Kn = (V, E) whose vertices are potential locations of clients and whose edge weights
are determined by a metric w : E → R≥0 (wxz ≤ wxy + wyz for all x, y, z ∈ V). In a
graph metric, the distance between every pair of vertices is the length of the shortest
path between them in a given weighted graph. There is a depot r ∈ V from which
a vehicle loads supply to drop off to clients. The vehicle may carry any amount of
supply from the depot at each time. We have a discrete time horizon 1, . . . , T over
which client v ∈ V demands dv

t ≥ 0 units of supply to be delivered to it by time t.
For each client v ∈ V, demand time t ∈ [T], and potential serving time s ≤ t, storing
one unit of supply at v during time [s, t] incurs a holding cost of hv

s,t. We assume that
the holding costs are monotone, i.e., hv

s1,t ≥ hv
s2,t for every client v ∈ V, t ∈ [T], and

s1 ≤ s2. We denote by D(V × [T]) the set points (v, t) such that dv
t > 0. When the

context of V and [T] are clear, we use D and D(V × [T]) interchangeably. We call
such points demand points. The objective is to select a tour from r through a subset of
clients per time t ∈ [T] to satisfy every demand point (no late delivery allowed) so
that the total routing cost and holding cost over [T] is minimized. For simplicity, we
assume that the route is a Steiner tree (instead of a tour) through the selected subset
of clients each day since previous work in approximation algorithms for IRP assume
the same. Observe that a Steiner tree can be converted into a tour of twice its cost by
doubling the tree’s edges and short-cutting. Denote by Hv

s,t the holding cost incurred
if dv

t is served at time s, i.e., Hv
s,t = hv

s,td
v
t . We remark that there is always an optimal

solution such that each dv
t is served at a single time, for if dv

t is delivered in separate
portions at times s1 < . . . < sl , then the total cost does not increase if we move all of
dv

t to be delivered at time sl .
In this chapter, we construct constant factor approximation algorithms (polynomial
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time algorithms producing solution within a guaranteed factor of the cost of an opti-
mal solution) for IRP restricted to line metrics. First, we show a 5-approximation for
IRP on line metrics with a simple rounding method. Second, we provide a primal
dual algorithm for IRP on line metrics, proving a 26-approximation. The line metric
induces the distance between each pair of vertices to be the total weight of the edges
between them on a given weighted line. Although there is a dynamic program [18]
for the line metric case of IRP, we study LP based methods as they are more gener-
alizable to harder metrics. Our primal dual algorithm extends the method [67] for
the closely related joint replenishment problem (JRP) to IRP on the line to obtain a
26-approximation.

The remaining sections are organized as follows. In Section 4.2, we summarize
known approximation algorithms, heuristics, and policies for IRP. In Section 3.3, we
provide a 5-approximation for IRP on line metrics via LP rounding. In Section 3.4,
we show a 26-approximation by a primal dual method for IRP on line metrics. In
Section 3.5, we state related open questions.

3.2 Related Work

Approximation algorithms for special cases of IRP have been studied while the
general problem has no known constant factor approximation. IRP on general met-
rics has a O( log T

log log T )-approximation by Nagarajan and Shi [73] and an O(log N)-
approximation by Fukunaga et al [49]. For IRP restricted to nested periodic sched-
ules, Fukunaga et al. [49] provide a 2.55-approximation. The joint replenishment
problem is equivalent to IRP on a two-level tree metric, where the first level has only
one edge. For JRP, Levi et al. [67] give a 2-approximation via a primal dual approach.
They reduced the approximation factor to 1.8 in [68] by LP rounding. Recently, Bi-
enkowski et al. [17] improve the factor to 1.791 by randomized rounding. For the
online version of JRP, Buchbinder et al. [22] give a 3-approximation by a different
primal dual method. A generalization of the JRP is IRP on arbitary trees, for which
Cheung et el. [32] provide a 3-approximation.

Heuristics for IRP and its variants have been extensively studied. For instance,
Federgruen and Zipkin [45] study both stochastic and deterministic IRP with capaci-
tated vehicles using a single day approach to initialize a feasible solution and switch
clients between routes to reduce the cost. In a different single day approach, Golden
et al. [56] determine the client set per day by the urgency level of each client. Chien
et al. [33] study a single day approach that passes information between consecutive
days. They seek to maximize daily profit, where the profit is determined by the rev-
enue gained from the quantity delivered and the revenue lost from not satisfying
demands, but unsatisfied demand for one day is recalculated as revenue gain for
the next day. In a short term planning approach for IRP with capacitated storage
locations, Dror et al. [40, 41] find the next best replenishment day per client for each
short term period based on the routing cost and stockout cost. For stochastic IRP,
Jaillet et al. [12, 13, 61] find the best replenishment day per client within every two
week period, assigning only the first week’s solution, and re-solving the next two
weeks.

Researchers have also developed policies for IRP by restricting the structure of
the routes. Kleywegt et al. [66] consider the stochastic IRP with stockout penalties
under the restriction that the vehicle must visit the depot after each client visit. For
deterministic IRP, Anily and Federgruen [5] break the client set into regions and
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study the restricted version where every region’s entire client set must be visited
whenever one of its client is visited.

3.3 Primal Rounding for Line

Here, we give a 5-approximation for IRP on the line by rounding an optimal
primal solution. We use the edge-based LP specialized to the line. Given a line
metric, let we be the weight of edge e in the line. For each v ∈ V, let Erv be the set of
edges between r and v in the line. The LP relaxation is:

min ∑
e∈E

T

∑
s=1

weye
s + ∑

(v,t)∈D(V×[T])

t

∑
s=1

Hv
s,tx

v
s,t

s.t.
t

∑
s=1

xv
s,t ≥ 1 ∀(v, t) ∈ D(V × [T]) (3.1)

ye
s ≥ xv

s,t ∀(v, t) ∈ D(V × [T]), s ∈ [t], e ∈ Erv
(3.2)

xv
s,t ≥ 0 ∀(v, t) ∈ D(V × [T]), s ∈ [t] (3.3)
ye

s ≥ 0 ∀e ∈ E, s ∈ [T]. (3.4)

Observe that in an optimal solution, if e1 is left of e2, then ye1
s ≥ ye2

s for all s by the
second constraint.

The idea of our rounding algorithm is to space out the visits at doubling dis-
tances from r so that we can pay for each visit with a disjoint portions of ye

s. For
each visit distance, we decide when to visit these locations based on the amount ye

s
accumulated over time.

Label the clients 1, . . . , N as before. Denote the edge incident to r by e1. For each
i such that we12i ≤ DN , if there is no client at distance we12i from r, insert a dummy
client vi here with dvi

t = 0 for all t ∈ [T]. We label any existing client at distance we12i

from r by vi as well. Let L be the last i such that we12i ≤ DN . For consistency of
notation, vL+1 shall denote the a dummy client (of zero demand) at distance we12L+1

from r. We may assume DN > we12L; otherwise the same analysis will hold up to
vL. Let ei+1 be the edge incident to vi to the left of vi. Let Ri be the path from vi−1 to
vi. Solve the LP of the instance with the newly added edges and clients and call the
solution (x, y). We round the LP solution as follows:

1: Pick α ∈ (0, 1).
2: for accumulation thresholds p← α, 2α, . . . , b 1

αcα do
3: for i← 1, . . . , L + 1 do
4: visit up to client vi the first time t′i such that ∑

t′i
t=1 yei

t ≥ p.
5: end for
6: end for
7: for each (i, t) ∈ D(V × [T]) do
8: deliver at latest visit passing through i.
9: end for
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FIGURE 3.1: Each arrow from an edge to a location indicates that
accumulation of the LP values of that edge determines the times as-

signed to visits up to that location.

We will choose α after finding the routing and holding costs. For each i ∈ [1, L + 1],

let t1
i , . . . , tli

i be the set of earliest times such that ∑
tj
i

t=1 yei
t ≥ jα. We set t0

i = 0. Observe
that for each i, visits to vi+1 are less numerous over time than those to vi. We illustrate
the idea of our rounding algorithm below.

First, we bound the routing cost. Consider client vi with i ∈ [1, L + 1]. The
routing cost of client vi is at most we12i (possibly lower for vL+1). To visit vi at time
tk
i , we charge the LP solution

∑
e∈Ri−1

tk
i

∑
t=tk−1

i +1

weye
t ≥ ∑

e∈Ri−1

we

tk
i

∑
t=tk−1

i +1

yei
t

≥ ∑
e∈Ri−1

we[kα− (k− 1)α]

=

(
∑

e∈Ri−1

we

)
α

= |Ri−1|α
= we1(2

i−1 − 2i−2)α

= we12i−2α.

So the routing cost ratio is
we1 2i

we1 2i−2α
= 4

α .

Second, we bound the holding cost. Let i ∈ [1, L + 1]. Let v ∈ Ri. Consider a
demand time t̂ ∈ [T]. Let tk̂

i be the latest tj
i such that tj

i ≤ t̂. Then tk̂+1
i > t̂. Then

the holding cost of demand point (v, t̂) is Hv
tk̂
i ,t̂

. To cover the holding cost of (v, t̂), we

charge the LP solution ∑
tk̂
i

t=1Hv
t,t̂x

v
t,t̂.

Lemma 3.3.1. ∑
tk̂
i

t=1 xv
t,t̂ ≥ 1− α.

Proof. If ∑
tk̂
i

t=1 xv
t,t̂ < 1− α, then ∑t̂

t=tk̂
i +1

xv
t,t̂ > α, i.e., ∑t̂

t=tk̂
i +1

yei
t > α since ei ∈ Erv,

which contradicts the minimality of tk̂+1
i .
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So the LP pays

tk̂
i

∑
t=1

Hv
t,t̂x

v
t,t̂ ≥

tk̂
i

∑
t=1

Hv
tk̂
i ,t̂

xv
t,t̂

= Hv
tk̂
i ,t̂

tk̂
i

∑
t=1

xv
t,t̂

≥ (1− α)Hv
tk̂
i ,t̂

.

So the holding cost ratio for all clients is 1
1−α .

If 4
α = 1

1−α , then α = 4
5 , which gives an overall ratio of 5.

3.4 Primal Dual

Here, we give a 26-approximation using a primal dual approach similar to the
approach from [67]. In subsection 3.4.1, we provide the primal and dual LPs that we
use to construct the primal dual algorithm. The algorithm will involve two parts: a
primal dual phase and a pruning phase. In subsection 3.4.2, we provide the primal
dual phase of the algorithm and the analysis of the costs of this phase. In subsec-
tion 3.4.3, we give an example where the primal dual phase incurs a Ω(T/ log T)
factor in the cost. In subsection 3.4.4, we give the pruning phase and the analysis of
the constant factor that the pruning phase obtains.

3.4.1 LP Formulation

Here, we give our distance-based LP formulation for IRP on the line. This LP is
a modification of Levi et al.’s LP for JRP. We label the vertices 0, . . . , N on the line
in increasing distance to r, identifying r with 0. Denote by Di the distance from r
to i. Without loss of generality, we assume that the depot is the leftmost vertex on
the line. Otherwise, we may decompose the problem into the two sides of the depot
since clients on one side do not affect those on the other side.

min ∑
(i,t)∈D(V×[T])

T

∑
s=1

Hi
s,tx

i
s,t +

T

∑
s=1

N

∑
i=0

Diyi
s

s.t.
T

∑
s=1

xi
s,t = 1 ∀(i, t) ∈ D(V × [T]) (3.5)

N

∑
j=i

yj
s ≥ xi

s,t ∀(i, t) ∈ D(V × [T]), s ∈ [t] (3.6)

xi
s,t ≥ 0 ∀(i, t) ∈ D(V × [T]), s ∈ [t] (3.7)

yi
s ≥ 0 ∀i ∈ [0, N], s ∈ [T]. (3.8)

The variable xi
s,t indicates if (i, t) is served at time s. The variable yi

s indicates if
the farthest client visited at time s is i. The first constraint ensures that each (i, t)
is served by time t. The second constraint ensures that the path at time s passes
through i if (i, t) is served at time s for some t ≥ s.

We introduce dual variables bi
t for the first primal constraint and βi

s,t for the sec-
ond constraint. The dual LP is:
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max ∑
(i,t)∈D(V×[T])

bi
t

s.t bi
t ≤ Hi

s,t + βi
s,t ∀(i, t) ∈ D(V × [T]), s ∈ [t] (3.9)

∑
(j,t)∈D(V×[T]):j≤i,t≥s

β
j
s,t ≤ Di ∀i ∈ [0, N], s ∈ [T] (3.10)

βi
s,t ≥ 0 ∀(i, t) ∈ D(V × [T]), s ∈ [t].

(3.11)

The variable bi
s,t represents the budget (i, t) can pay for a visit. The variable β

j
s,t rep-

resents the share of payment (j, t) contributes to a visit at time s that passes through
(possibly beyond) j.

3.4.2 Basic Primal Dual Phase and Analysis

Before stating the algorithm formally, we give an overview of the ideas. We interpret
of the dual variables bi

t as the total budget that demand (i, t) has available to pay for
potential visits who may serve it. We think of the dual variables βi

s,t as visit-specific
payments that (i, t) may want to offer for a visit at time s to serve it. However, since
βi

s,t variables are not part of objective function in the dual LP, we cannot directly use
βi

s,t to pay for visits. Instead, βi
s,t represent copies of the total budget bi

t, one copy
for each s. In particular, the number of visits s for which βi

s,t > 0 is an upper bound
on the number of times that the whole budget bi

t of (i, t) is overused. The general
framework is to raise the budgets of demands as long as all constraints in the dual
LP are able to hold. The final values of the budgets are determined by the tightening
of dual constraints that they are involved in.

At the beginning of the algorithm, all budgets bi
t and visit-specific payments βi

s,t
are to start at 0. We introduce a continuous parameter τ that slides through time from
T to 1 at a constant rate. The position of τ within the time horizon will determine
what value to raise the budgets and visit-specific payments. Whenever τ passes
through an integral time t (i.e. τ < t), it “wakes up” the budgets bi

t of demands (i, t)
occurring at time t. Those bi

t shall increase at the same rate that Hi
τ,t is increasing

as τ is sliding towards 1, i.e., we keep bi
t at exactly the same value as Hi

τ,t. The
definition of Hi

τ,t for non-integral τ is interpolated linearly, i.e., define Hi
τ,t = (1−

τ + bτc)Hi
bτc,t + (τ − bτc)Hi

dτe,t.

Observe that keeping bi
t = Hi

τ,t ensures that each demand (i, t) can at least pay for
the holding cost from time τ to t. To maintain feasibility to the dual constraints, we
also raise βi

s,t as needed to keep constraint 3.9 satisfied. That means for each demand
(i, t) and each s ∈ (τ, t], we raise the value of βi

s,t to exactly Hi
τ,t − Hi

s,t. As the visit-
specific payments are increased, constraint 3.10 will start becoming tight (satisfied at
equality) for some (i, s). Whenever a constraint is tight at (i, s), the algorithm shall
create a visit up to Di at time s. We may think of using the βi

s,t in the left hand sum of
the constraint to pay for the visit up to Di at time s. However, as mentioned earlier,
the βi

s,t cannot be used directly to pay for visits. Rather, each budget bi
t may need

to be used many times to pay for all of the visits created while we want to use each
budget only a constant number of times. We will repair this issue by a selecting only
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a subset of the visits and extending the length of those visits, which we will describe
in the pruning phase.

Now we formally define the primal dual algorithm.

As τ moves from T to 1, keep all unfrozen bi
t = Hi

τt.

1. Initialize bi
t = 0 and βi

s,t = 0 for all (i, t) ∈ D(V × [T]) and s ≤ t.

2. Whenever τ reaches some s, raise βi
st at the same rate as bi

t for all i ∈ [N], t ≥ s
so that constraint 3.9 continues to hold.

3. Whenever there is some i∗, s∗ such that the second dual constraint is tight, for
each such (i∗, s∗), freeze β

j
s∗t for all j ≤ i∗, t ≥ s∗ (which freezes bj

t for all j ≤ i∗,
t ≥ s∗, which freezes β

j
st for all j ≤ i∗, t ≥ s∗, s ≤ τ). Visit up to i∗ at time s∗.

4. If τ < 1, set βi
11 = Di − Di−1 for all i ∈ [N] such that (i, 1) ∈ D(V × [T]), and

bi
1 = βi

11. Freeze remaining bi
t and βi

st.

5. Let ĩ be the farthest client such that there exists t ∈ [T] for which (ĩ, t) has not
been served by the visits so far. Visit up to ĩ at time 1.

Next, we define some terms to be used in our analysis. For visit s, let i(s) be
the farthest client visited at time s. For demand point (i, t), let s(i, t) be the latest
visit through i by time t. Let f reeze(i, t) be the value of τ when bi

t froze, which
need not be integer. Let µ(i, t) be the number of visits s ∈ [ f reeze(i, t), t] such that
i(s) ≥ i. Observe that demand point (i, t) has positive βi

s,t only if s ∈ [ f reeze(i, t), t]
and i(s) ≥ i. We say that (i, t) contributes to a visit s if βi

s,t > 0. We call [ f reeze(i, t), t]
the active interval of (i, t) since bi

t is growing only when τ ∈ [ f reeze(i, t), t]. The
freezing visit of (i, t) is the visit s whose tightening of constraint 3.10 at (i(s), s) caused
bi

t to freeze. For every demand point (i, t), denote the freezing visit of (i, t) by s′(i, t).
We visualize our primal dual solution by a plot of the set of all active intervals

with [ f reeze(i, t), t] plotted at location Di on the y-axis spanning its corresponding
interval along the x-axis. We assume that distances are in increasing order down-
wards and times are in increasing order rightwards. We also plot each visit from
the primal dual solution at time s down to Di(s). In the following figure, we show
an example of a plot of active intervals with the visits grown by our primal dual
algorithm.
We state some simple observations that will help with our analysis.

Proposition 3.4.1. Given a demand point (i, t), we have s′(i, t) ∈ [ f reeze(i, t), t].

Proof. First, s′(i, t) ≤ t since s′(i, t) freezes only the budges of demand points whose
time is at least s′(i, t). Let (i′, s′(i, t)) be the dual constraint whose tightening froze
bi

t. Then i′ ≥ i. Suppose s′(i, t) < f reeze(i, t). Then when τ = f reeze(i, t), β
j
s′(i,t),r = 0

have not grown for all j ≤ i′ and r ≥ s′(i, t), contradicting that the constraint at
(i′, s′(i, t)) became tight at τ = f reeze(i, t).

Corollary 3.4.2. For each demand point (i, t), the holding cost of (i, t) from our primal dual
solution is at most bi

t.

Proof. For each (i, t) whose f reeze(i, t) > 1, it is being served at or after s′(i, t) ≥
f reeze(i, t), which means its holding cost is Hi

s(i,t),t ≤ Hi
s′(i,t),t <= Hi

f reeze(i,t),t = bi
t.

For (i, t) whose f reeze(i, t) = 1, step 5 of the primal dual algorithm ensures
that s(i, t) ∈ [1 = f reeze(i, t), t], which means the holding cost of (i, t) is Hi

s(i,t),t ≤
Hi

f reeze(i,t),t = bi
t.
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FIGURE 3.2: The red dots at location Di time s indicate that visit s is
the freezing visit of the demand point (i, t) whose [ f reeze(i, t), t] 3 s.
The horizontal colored portion of each active interval [ f reeze(i, t), t]
represents the amount βi

s,t = Hi
f reeze(i,t),t − Hi

s,t that (i, t) contributes
to the routing cost of visit s of the same color.

Proposition 3.4.3. Given a demand point (i1, t1), for all i2 > i1, if t2 ≤ t1, then
f reeze(i2, t2) ≤ f reeze(i1, t1).

Proof. Assume i2 > i1 and t2 ≤ t1. At τ = f reeze(i2, t2), the freezing visit s′(i2, t2)

of (i2, t2) would also cause bi1
t1

to freeze if it was not already frozen since i1 ≤ i2 and
t1 ≥ t2, i.e., f reeze(i1, t1) ≥ f reeze(i2, t2).

Proposition 3.4.4. Given demand points (i1, t1) and (i2, t2) such that i2 ≥ i1 and
f reeze(i2, t2) > f reeze(i1, t1), s′(i2, t2) > t1.

Proof. Assume i2 ≥ i1 and f reeze(i2, t2) > f reeze(i1, t1). If s′(i2, t2) ≤ t1, then s′(i2, t2)

would cause bi1
t1

to freeze when τ = f reeze(i2, t2) since t1 ≥ s′(i2, t2) and i1 ≤ i2,
contradicting that f reeze(i2, t2) > f reeze(i1, t1).

Let (x, y) be the primal solution from our primal dual algorithm. Let OPT be the
cost of an optimal solution. We will show that our holding cost is at most OPT and
our routing cost is at most max(i,t)∈D(V×[T])(µ(i, t) + 1)OPT.

Lemma 3.4.5. Let h(x, y) and r(x, y) be the holding cost and routing cost of (x, y) respec-
tively. Then h(x, y) ≤ OPT and r(x, y) ≤ max(i,t)∈D(V×[T])(µ(i, t) + 1)OPT.



3.4. Primal Dual 31

Proof. The holding cost is

h(x, y) = ∑
(i,t)∈D(V×[T])

Hi
s(i,t),t

≤ ∑
(i,t)∈D(V×[T])

Hi
f reeze(i,t),t by Proposition 3.4.1

≤ ∑
(i,t)∈D(V×[T])

bi
t by definition of f reeze(i, t)

≤ OPT.

The routing cost is

r(x, y) =
T

∑
s=2

Di(s) + Di(1)

≤
T

∑
s=2

T

∑
(j,t)∈D(V×[T]):j≤i(s),[ f reeze(j,t),t]3s

β
j
st + max

(i,t)∈D(V×[T])
Di by definition of freeze operation

= ∑
(i,t)∈D(V×[T])

∑
s≥2:s∈[ f reeze(i,t),t]:i≤i(s)

βi
st + OPT

≤ ∑
(i,t)∈D(V×[T])

∑
s≥2:s∈[ f reeze(i,t),t]:i≤i(s)

bi
t + OPT by dual feasibility

≤ ∑
(i,t)∈D(V×[T])

µ(i, t)bi
t + OPT

≤ max
(i,t)∈D(V×[T])

(µ(i, t) + 1)OPT.

3.4.3 Example with High Routing Cost

From the analysis in the previous subsection, the routing cost depends on the
number of times µ(i, t) that bi

t is used. We show an example where the overuse of a
budget bi

t is as many as T times, although the actual primal cost is Θ(T/ log T) times
the total dual budget available.

Example 1.
Consider an instance with T time units and only one client at distance D from r.
Assume the demand is one each time i.e. dt = 1 for all t ∈ [T]. Set holding costs by
h1,t = D/(T− t + 1) for all t ∈ [T], and hs,t = D/(T− t + 1)− D/(T− s + 1) for all
s ≥ 2, t ≥ s. Then as τ slides from T to 2, no constraint tightens. When τ reaches 1, all
of the constraints tighten. So the client gets a visit at all times 1, . . . , T. In particular,
βs,T > 0 for all s ∈ [T], i.e. bT is used T times in our bound for the routing cost. The
described behavior of primal dual on this instance can verified by checking that for
all integer t > τ, we have Hτ,t + ∑T

j=1 Hτ,t+j− Ht,t+j ≤ D, which holds with equality
only at τ = 1. Here, our dual budget is ∑T

t=1 bt = D + D/2+ . . . + D/(T− 1) + D =
Θ(D log T). The primal cost of our T visits is DT. So the overhead cost relative to
our available budget is Θ(T/ log T).
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FIGURE 3.3: The above shows the active intervals of the instance in
Example 1.

3.4.4 Pruning Phase and Analysis

As we saw in the example, the dual budget grown from our primal dual algo-
rithm cannot always pay for the total cost of its corresponding primal solution. We
now modify our primal dual solution to obtain a constant bound. Let M be the
smallest integer such that DN ≤ 2M. For all i ∈ [M], let Ri be the rectangular region
spanning (2i−1, 2i] along the distance axis and spanning [1, T] along the time axis.
We write Ri = [1, T]× (2i−1, 2i] and let R0 = [1, T]× [0, 1]. The idea of our pruning
procedure is to select a sparse set of visits for each region Ri, copy the original vis-
its to a second visit time, and extend their lengths to 2i so that every demand point
within Ri is served by some visit within its active interval. This will keep the hold-
ing cost within OPT. We then refine our analysis so that each bi

t is charged at most
three times. In addition, our charging scheme will ensure that each visit’s routing
cost is paid for within one eighth of its total length. So the total dual budget will
pay for one twenty-fourth of the total routing cost after accounting for using each
bi

t three times. Then the holding cost and routing cost together will incur a factor of
twenty-six, after accounting for the extra route at time 1 in the last step of the primal
dual phase.

Here, we define some notation we will need in our pruning algorithm. Given
(i, t) ∈ D(V × [T]), let î(i, t) be the first client at i or farther such that the dual
constraint at (î(i, t), s′(i, t)) became tight during the primal dual algorithm. Let
t̂(i, t) be a demand time such that (î(i, t), t̂(i, t)) contributes to s′(i, t). Observe that
f reeze(i, t) = f reeze(î(i, t), t̂(i, t)) by definition of î(i, t).
The following modification of the visits grown from the primal dual algorithm will
yield a 26-approximation.

1: Initialize I1, . . . , IM, S1, . . . , SM each to ∅.
2: for j← M to 1 do
3: Greedily add to Ij the active interval [ f reeze(i, t), t] × {Di} ∈ Rj with the

largest f reeze(i, t) > 1 having no time in common with the existing active inter-
vals in Ij such that [ f reeze(i, t), t] 63 s for every s ∈ ∪M

k=j+1Sk until no such active
interval exists in Rj.

4: for each [ f reeze(i, t), t]× {Di} ∈ Ij do
5: add to Sj two visits at times d f reeze(i, t)e and s′(i, t), each up to distance

max{2j, Dî(i,t)}.
6: end for
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7: end for
8: Return S := ∪M

j=1Sj
⋃{{1} × [0, Dĩ]}.

Denote the holding cost of S by h(S) and the routing cost of S by r(S).

Proposition 3.4.6. h(S) ≤ OPT.

Proof. Let (i, t) ∈ D(V × [T]). Then there is some j ∈ [M] such that [ f reeze(i, t), t]×
{Di} ∈ Rj. First, assume that f reeze(i, t) > 1. If [ f reeze(i, t), t] × {Di} ∈ Ij, then
(i, t) is served at time s′(i, t) or later, which incurs a holding cost of Hi

s′(i,t),t ≤ bi
t.

Now assume that [ f reeze(i, t), t]×{Di} /∈ Ij. Then there is some (i′, t′) ∈ Ij such that
[ f reeze(i, t), t] ∩ [ f reeze(i′, t′), t′] 6= ∅, i.e., f reeze(i, t) ≤ d f reeze(i′, t′)e ≤ t′ by our
construction of Ij. Since Sj 3 t′ and t′ visits up to at least 2j, demand point (i, t) is
served at time d f reeze(i′, t′)e or later.

Second, if f reeze(i, t) = 1, then the visit at time 1 to Dĩ serves (i, t) within
[ f reeze(i, t), t]. So (i, t) incurs a holding cost of at most Hi

t′,t ≤ Hi
d f reeze(i′,t′)e,t = bi

t.

Hence OPT ≥ ∑(i,t)∈D(V×[T]) bi
t is sufficient to pay for h(S).

Theorem 3.4.7. r(S) ≤ 25OPT.

Proof. For the visit at time to distance Dĩ, we charge on copy of OPT. Now, we state
which portion of the total budget we will charge for each visit after time 1 in S. Let
s ∈ S. Let (i, t) be the demand point such that s ∈ {d f reeze(i, t)e, s′(i, t)}, where
[ f reeze(i, t), t]× {Di} ∈ Ij for some j. Let ĵ be the index such that Dî(i,t) ∈ (2 ĵ−1, 2 ĵ].
Since the two visits d f reeze(i, t)e and s′(i, t) reach the same distance, we will focus
only on paying for the visit at time s′(i, t) and account for the extra factor of 2 for
having both visits in the final solution.

To pay for s′(i, t), we will charge the budget of each demand point within
R ĵ ∪ R ĵ−1 whose active interval is crossed by s′(i, t). More formally, let Ps′(i,t) =

{(i′, t′) ∈ D(V × [T]) ∩ (R ĵ ∪ R ĵ−1) : [ f reeze(i′, t′), t′] 3 s′(i, t), i′ ≤ î(i, t)}. Assume
for now that 2j ≤ Dî(i,t). If not, then we pay an extra factor of 2 for visiting up to
2j since Dî(i,t) ≥ Di ≥ 2j−1 (since (i, t) ∈ Rj). We will pay for s′(i, t) up to distance

Dî(i,t) within a factor of 2 by charging the dual solution Bs′(i,t) := ∑(i′,t′)∈Ps′(i,t)
βi′

s′(i,t),t′ .
Now, we show that Bs′(i,t) ≥ Dî(i,t)/2. Observe that the only other demand points
who could potentially contribute to visit s′(i, t) are those in ˜Ps′(i,t) := {(i′, t′) ∈
D(V × [T]) ∩ (R0 ∪ · · · ∪ R ĵ−2) : [ f reeze(i′, t′), t′] 3 s′(i, t), i′ ≤ î(i, t)}. Let

˜Bs′(i,t) = ∑(i′,t′)∈ ˜Ps′(i,t)
βi′

s′(i,t),t′ . We claim that ˜Bs′(i,t) ≤ Dî(i,t)/2, which would imply

Bs′(i,t) ≥ Dî(i,t)/2 as a consequence. To see why ˜Bs′(i,t) ≤ Dî(i,t)/2, suppose for con-

tradiction that ˜Bs′(i,t) ≥ (Dî(i,t)/2) + δ for some δ > 0. Since Dî(i,t) ≥ 2 ĵ−1, we

have ˜Bs′(i,t) ≥ 2 ĵ−1 + δ. Let (i0, t0) = argmax(i′,t′)∈ ˜Ps′(i,t)
Di′ . By our primal dual al-

gorithm, while τ is moving towards 1, there exists (i′, t′) ∈ ˜Ps′(i,t) such that βi′
s′(i,t),t′

has not froze only if ˜Bs′(i,t) < Di0 since as soon as ∑(i′,t′)∈D(V×[T]):i′≤i0,t′≥s′(i,t) βi′
s′(i,t),t′

reaches Di0 , the budget bi′
t′ freezes for all (i′, t′) such that i′ ≤ i0 and t′ ≥ s′(i, t).

Since ˜Bs′(i,t) ≤ ∑(i′,t′)∈D(V×[T]):i′≤i0,t′≥s′(i,t) βi′
s′(i,t),t′ , we have ˜Bs′(i,t) stays bounded

above by Di0 ≤ 2 ĵ−2 during all values of τ when as τ lowers from T to 1. Hence
Bs′(i,t) ≥ Dî(i,t)/2, which means that Bs′(i,t) is sufficient to pay for s′(i, t) within a fac-
tor of 4 (in case 2j > Dî(i,t)). So we have a routing factor of 8 so far for paying for the
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actual visits of S, which include both d f reeze(i, t)e and s′(i, t) for each (i, t) whose
active interval is in ∪M

j=1 Ij.

FIGURE 3.4: βs′(i,t) ≥ Dî(i,t)
/2.

Now, we will show that each bi
t is charged at most three times for the freezing

visits s′(i, t) by the above charging scheme that uses Bs′(i,t) to pay for s′(i, t). For
each j ∈ [M], let Fj be the set of freezing visits in Sj, i.e., Fj := {s′(i, t) : (i, t) ∈
Rj and [ f reeze(i, t), t] × {Di} ∈ Ij}. Fix (i, t) ∈ D(V × [T]) and let j be the index
such that (i, t) ∈ Rj. More formally, we will show that there are at most three visits
s1, s2, s3 ∈ ∪M

k=1Fk such that βi
sl ,t > 0 for all l ∈ [3]. Suppose for contradiction that

(i, t) contributes to at least four visits s1, . . . , s4 ∈ ∪M
k=1Fk. For each l ∈ [4], let (il , tl)

be the demand point whose active interval is in ∪M
k=1 Ik such that s′(il , tl) = sl .

First, we show that no two sls are in the same Fk. Suppose that there is some
k ∈ [M] such that sl < sm ∈ Fk for some l, m ∈ [4]. Then sl , sm ∈ [ f reeze(i, t), t]. Since
î(il , tl), î(im, tm) ≥ i, we have f reeze(î(il , tl), t̂(il , tl)), f reeze(î(im, tm), t̂(im, tm)) ≤
f reeze(i, t) by Proposition 3.4.4. Then f reeze(im, tm) = f reeze(î(im, tm), t̂(im, tm)) ≤
f reeze(i, t) ≤ sl ≤ tl . So [ f reeze(im, tm), tm]∩ [ f reeze(il , tl), tl ] 6= ∅, which contradicts
that the intervals in Ik are time-disjoint. Hence s1, . . . , s4 are in disjoint Fks.

Finally, we show that there cannot be four such visits. By our charging scheme,
(i, t) pays for sl only if (î(il , tl), t̂(il , tl)) ∈ Rj ∪ Rj+1. Then no sl is in Fj+2 ∪ · · · ∪ FM

since î(il , tl) ≥ il . So s1, . . . , s4 ∈ F1 ∪ · · · ∪ Fj+1. Since each Fk contains at most
one sl among s1, . . . , s4, there must be at least two of them in F1 ∪ · · · ∪ Fj−1. With-
out loss of generality, assume that s4 ∈ Fp and s3 ∈ Fq where 1 ≤ p < q ≤ j − 1.
By the pruning algorithm, there are visits at times d f reeze(i3, t3)e and s3 up to dis-
tance Dî(i3,t3)

∈ (2j−1, 2j+1]. Since [ f reeze(i4, t4), t4] ∈ Ip and p < j, the inter-
val [ f reeze(i4, t4), t4] has no overlap with times d f reeze(i3, t3)e and s3. Since (i, t)
contributes to s4, we have t4 ≥ s4 ≥ f reeze(i, t). Observe that f reeze(i4, t4) =
f reeze(î(i4, t4), t̂(i4, t4)) ≤ f reeze(i, t) because î(i4, t4) ≥ i. Then f reeze(i4, t4) ∈
( f reeze(i3, t3), f reeze(i, t)]. Since [ f reeze(i4, t4), t4] 63 s3, we have t4 < s3 ≤ t3. So
[ f reeze(î(i4, t4), t̂(i4, t4)] ∈ ( f reeze(i3, t3), t3) while î(i4, t4) > i3 by j > q, which con-
tradicts Proposition 3.4.3. Hence each (i, t) is charged for at most three visits in
∪M

k=1Fk. This produces an extra factor of 3 on top of the 8 we had earlier for paying
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for S. So the final routing cost of S is paid for by 24 copies of ∑(i,t)∈D(V×[T]) bi
t ≤ OPT,

i.e., r(S) ≤ 25OPT after accounting for the visit at time 1.

3.5 Open Questions

The main open problem is improving the O( log T
log log T ) approximation for IRP on

general metrics or showing hardness of approximation. It is unknown whether IRP
on the grid admits a constant factor approximation. It is also interesting to find con-
stant factor approximation on circularly decomposable metrics, which generalizes
tree metrics.

FIGURE 3.5: At most one freezing visit charges bi
t per Fk.
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FIGURE 3.6: At most three freezing visits total charge bi
t.
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Chapter 4

Combinatorial Heuristics for
Inventory Routing on General
Metrics

4.1 Introduction

The Inventory Routing Problem (IRP) arises from Vendor Managed Inventory
systems in which a product supplier and its retailers cooperate in the inventory plan-
ning. First, the retailers share with the supplier the demand patterns for its product
and the storage costs for keeping early deliveries per retailer location. Then the sup-
plier is responsible for planning a delivery schedule that serves all the demands on
time. Naturally, the supplier wishes to minimize its routing cost and storage cost
over the time horizon. This optimization problem is called IRP and has been studied
extensively [23, 29, 25, 26].

In the classical single-depot IRP, a set of client demand locations in a metric con-
taining the depot is given, and for a planning horizon of T days, a daily demand at
each client location is specified. The goal is to come up with vehicle routing sched-
ules in each of the T days to stock the client demands before they materialize. How-
ever, early stocking at a location incurs a location- and duration-specific inventory
holding cost that are also specified. If we assume the daily replenishing vehicle has
infinite capacity, the distance traveled by the vehicle in a daily route translates to a
routing cost. The goal of IRP is to find daily vehicle schedules for the T days that
deliver enough supply at each location to meet all daily demands and minimizes
the sum of inventory holding costs for units supplied ahead of their demand and
the daily routing costs of the vehicle, over the T days.
Problem Definition. We now give the formal definition of IRP. In IRP, we are given
a complete graph Kn = (V, E) whose vertices are potential locations of clients and
whose edge weights are determined by a metric w : E → R≥0 (wxz ≤ wxy + wyz for
all x, y, z ∈ V). In a graph metric, the distance between every pair of vertices is the
length of the shortest path between them in a given weighted graph. There is a depot
r ∈ V from which a vehicle of infinite capacity loads supply to drop off to clients.
The vehicle may carry any amount of supply from the depot at each time. We have
a discrete time horizon 1, . . . , T over which client v ∈ V demands dv

t ≥ 0 units of
supply to be delivered to it by time t. For each client v ∈ V, demand time t ∈ [T], and
potential serving time s ≤ t, storing one unit of supply at v during time [s, t] incurs
a holding cost of hv

s,t. We denote by D(V × [T]) the set points (v, t) such that dv
t > 0.

When the context of V and [T] are clear, we use D and D(V × [T]) interchangeably.
We call such points demand points. The objective is to select a tour from r through
a subset of clients per time t ∈ [T] to satisfy every demand point (no late delivery
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FIGURE 4.1: In this instance, we have four stores over five days. A
demand at store v on day t is labeled dv

t . The distances are labeled
next to each edge. The holding cost is linear, i.e., Hv

s,t = (t− s)dv
t .

FIGURE 4.2: A possible feasible solution is to serve stores 2 and 3 on
day 2 and stores 1 and 4 on day 4. Since stores 3 and 4 are served one
day before their demands are due, they incur holding costs of 12 and
8, respectively. The route on day 2 has cost 22, and the route on day 4

has cost 20. The total IRP cost for this solution is 62.

allowed) so that the total routing cost and holding cost over [T] is minimized. Denote
by Hv

s,t the holding cost incurred if dv
t is served at time s, i.e., Hv

s,t = hv
s,td

v
t . We remark

that there is always an optimal solution such that each dv
t is served at a single time,

for if dv
t is delivered in separate portions at times s1 < . . . < sl , then the total cost

does not increase if we move all of dv
t to be delivered at time sl . This is due to the

infinite capacity available at the delivery vehicle. In Figure 4.1 and Figure 4.2, we
demonstrate an example of an IRP instance and a feasible solution for the instance.

A related problem, called Prize-Collecting Steiner Tree (PCST), will be crucially
used in our heuristics for obtaining IRP solutions. The Prize-Collecting Steiner Tree
problem has as input a graph G = (V, E) with root r, edge weights w : E → R≥0
and vertex penalties π : V → R≥0. The goal is to find a tree visiting some subset
of vertices minimizing the total edge cost of the tree and the penalties of vertices
not spanned by the tree. The closely related Prize-Collecting Traveling Salesman
Problem (PCTSP) is to find a tour instead of a tree with the same specifications.

Although existing computational research on IRP has been extensive, the in-
stance sizes solved are still limited. So far, the largest instance sizes studied have
only 200 clients over 6 days, detailed in Section 4.2. There have not been new con-
ceptual ideas beyond refinements of traditional integer programming methods e.g.
branch and cut [7], branch cut and price [37], and matheuristics [8][6].
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The unifying theme of our heuristics is to reduce the search space of IRP by creat-
ing and solving PCTSP instances as intermediate steps to determine which clients to
visit each day. PCST is a suitable intermediate problem because it is much faster
to solve than IRP since it does not involve the inter-temporal constraints of IRP.
In practice, PCST problems can be solved quickly to near-optimality over 200, 000
nodes [LLLS18]. Additionally, PCST is able to capture the challenge of IRP’s trade
off between holding cost and routing cost by using the trade off between routing
cost and penalty cost in its own objective, even though it does not have the multi-
period nature of IRP. Each of our heuristics will convert the holding cost of IRP over
the whole planning horizon to penalties in PCST so that the PCST solutions eventu-
ally form a good IRP solution. Next, we explain in more detail our contributions to
applying ideas from PCST solutions in deriving better computational results for IRP.
Contributions.

1. We exploit a recently discovered conceptual reduction of periodic IRP to PCST
[49] and extend the ideas to general IRP.

2. We design a new suite of algorithms for general IRP using this reduction to
look for local improvements; In particular, we define a very large neighbor-
hood search step and reduce it to a PCST problem.

3. We design a new greedy construction heuristic using a reduction of the greedy
step to a PCST problem.

4. We adapt the primal dual method to design a primal construction heuristic.
While the algorithm proceeds using a reverse waveform method introduced in
earlier work of Levi et al. [67] , we introduce a new additional step of choosing
routes in each period by solving an appropriately defined PCST.

5. We implement all the above ideas and compare their performance using a data
generation model of Archetti et al. [8] without the capacity constraints on the
vehicles and clients, resulting in much faster solving time while still obtaining
low gaps.

Techniques. Our heuristics are inspired by the theoretical work of Fukunaga et
al.’s [49] approximation algorithms for the periodic case of IRP. In the periodic IRP,
we are given additionally a set of frequencies f0, . . . , fk to assign to the clients. As-
signing a client v to frequency f means that v must be visited exactly every f days.
A feasible solution will choose a frequency from the available set for each client and
produce a delivery schedule that obeys the assigned frequencies. Thus, the periodic
IRP is more restrictive than the general IRP we consider here. Fukunaga et al. exploit
the restrictiveness of periodic schedules by reducing the periodic IRP to the Prize-
Collecting Steiner Tree (PCST) problem such that the holding costs are simulated by
the penalties of PCST. The idea of the reduction is to create a copy of the input graph
per frequency fi. For the ith copy of the graph, scale the edge costs by roughly T/ fi
because the clients assigned frequency fi are to be visited bT/ fic many times in the
schedule. To capture the holding costs of periodic IRP, they set the penalties p(vj)

so that ∑i−1
j=0 p(vj) is the holding cost for v if v is visited every fi days (Section 4.3.1

contains an example of how we adapt this to our setting). In this way, the connec-
tion cost and penalty cost of the PCST instance correspond to the routing cost and
holding cost of the periodic IRP instance. See [49] for more details.

We adapt the ideas of [49] to propose three types of heuristics that each take ad-
vantage of solving the easier PCST problem. First, our local search heuristics use
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PCST to quickly perform large neighborhood search among the potential improve-
ments per round. Adaptive large neighborhood search has been used on IRP with
Transshipments [CCL12a] and Multi-vehicle IRP [CCL12b]. Large neighborhood
search has also been investigated on other variants of IRP [81, 2, 54].

Second, our greedy heuristic uses PCST to determine the best density demand
set to cover each round. Finally, the primal-dual heuristic uses PCST to guide the
growth of the dual values and identify the set of demands to serve. We describe
the motivation for using PCSTs in Section 4.3. The best of our heuristics achieves
optimality ratios between 1.04 and 1.08 (across various problem settings), and yet
was able to solve instances of size 140 clients over 6 days and 50 clients over 14 days
within 2.01 seconds and under 1 second, respectively. They are still able to solve
even larger instances quickly, but we do not have lower bounds to evaluate their
solution quality for instances larger than the aforementioned sizes. Both of these
solution times are over three orders of magnitude faster than solving a single com-
modity flow MIP model of IRP, which requires over 2837 seconds and 1481 seconds,
respectively, to solve within 10% MIPGap.
Chapter Outline. The remaining sections are organized as follows. In Section 4.2,
we describe related work. Section 4.3 describes three local search heuristics. Sec-
tion 4.4 provides a greedy heuristic. Section 4.5 presents a primal dual heuristic. In
Section 4.6, we describe a single commodity flow MIP formulation of IRP to attain
lower bounds for the costs of optimal solutions to compare with the heuristics. Fi-
nally, Section 4.7 shows the computational results of the various heuristics across a
range of input parameters.

4.2 Related Work

Methods for Capacitated IRP. For the capacitated single-vehicle deterministic IRP,
Archetti et al. [7] introduced and found exact solutions for small benchmark instances
of up to 50 clients over 3 days and up to 30 clients over 6 days. Later, Archetti
et al. [8] gave a heuristic combining tabu search with MIPs that found near-optimal
solutions to the small instances. They also improved upper bounds on large instances
of 200 clients over 6 days in the case of order-up-to-level policy. For the more general
multivehicle case, Desaulniers et al. [37] provide a branch-price-and-cut algorithm,
finding 54 new optima out of the 238 instances from Archetti et al. [8] with unknown
optima. Archetti et al. [6] give a metaheuristic that solves MIPs both before and
after tabu search. To initialize a solution, they formulate MIPs of different strengths
and choose the MIP based on the instance size, stronger MIP for smaller instances.
Then the tabu search adds, deletes, or moves visits. If the instance was small, the
MIP after the tabu search fixes some variables to integer values based on how often
the variable is 0 or 1 among the solutions from the search. For large instances, the
routes from the tabu solutions are included as route variables in the MIP. They were
able to improve the upper bound on 224 of the 240 large instances. We remark that
our results are not directly comparable with these existing results since we consider
the uncapacitated version of the problem. To the best of our knowledge, there are no
computational studies specifically geared towards the uncapacitated IRP considered
here. However, as a starting point, we test our heuristics on uncapacitated instances
having the same parameter values (except for the capacities that we ignore) as the
large instances of size 200 by 6 [8].
Prize-Collecting Steiner Trees and Tours. Since we will use the solvers for PCST
in our implementation, we also review previous work on PCST. Specifically, we use
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the dual-ascent-based branch-and-bound solver of Leitner et al. [LLLS18] for PCST,
which reaches near-optimality and performs the fastest on many categories of in-
stances from the DIMACS Challenge. Prior to this, Ljubić et al. [71] and Fischetti et
al. [46] provided the most competitive algorithms to find exact solutions for PCST.
Whenever we obtain a tree from the solver [LLLS18], we convert the tree to a tour
by running the TSP solver Concorde [Cook15] on the subset of vertices spanned by
the tree.

Theoretically, our greedy algorithm will solve a PCST problem to find low den-
sity set covers. The solution to each PCST instance will come from the primal dual
algorithm for PCST [55], whose analysis is used in eventually proving a logarithmic
factor guarantee of our greedy algorithm for IRP.
Approximation Algorithms for IRP. On the theoretical side, approximation algo-
rithms for special cases of IRP have been studied but mostly for the uncapacitated
versions that we study here. IRP on general metrics has a O( log T

log log T )-approximation
by Nagarajan and Shi [73] and an O(log N)-approximation by Fukunaga et al [49].
For variants of periodic IRP, Fukunaga et al. [49] provide constant approximations.
Another special case of IRP is the joint replenishment problem (JRP). JRP is equiv-
alent to IRP on a two-level tree metric, where the first level has one edge of cost
K0 and the second level consists of children of the first level, with an edge of cost
Ki for each commodity i. JRP is known to be NP-hard [9] and APX-hard [75]. On
the positive side, Levi et al. [67] give a 2-approximation via a primal dual approach.
The approximation factor was reduced to 1.8 in [68] by LP rounding. Bienkowski et
al. [17] improve the approximation factor further to 1.791 by randomized rounding.

4.3 Local Search

We examine three local search algorithms: DELETE, ADD, and prioritized.
Among them, the latter two solve PCSTs to compute the improvement step. The
reason we use PCST in our heuristics is that solving PCSTs allows us to attain locally
optimal solutions to IRP. In the ADD local search, an ADD operation on day s will
find the subset of clients whose addition to the existing visit set on day s maximizes
the total cost savings from the current solution. This best subset is found by solving
a PCST problem with appropriately constructed penalties that capture the savings in
holding cost for extra visits. The extra connection cost is naturally modeled into the
edge costs of the PCST problem. To keep track of the feasible solutions found during
the local searches, we use T to denote candidate solutions to the IRP, overloading it
with all the relevant information in the solution such as the trees in the daily visits,
the visit times at each demand and the implied holding costs. Since global optimal-
ity implies local optimality, if we started with an optimal solution T and deleted all
visits on a fixed day, then applying ADD on that day will yield back the original set
visited by T.

We prove this claim formally in Lemma 4.3.1 of Section 4.3.2.
All of the local searches rely on the fact that the test instances generated using

Archetti et al.’s model have all positive demands for every v ∈ V, 1 ≤ t ≤ T. So all
local search heuristics consider modifying the visit set only on days 2, . . . , T, not day
1, since any feasible solution must satisfy all the demands on day 1.

To obtain an IRP solution at the end, we convert each day’s tree into a tour vis-
iting the clients spanned by the tree by calling Concorde on the graph induced by
the spanned clients. We will apply the same conversion from trees to tours in all
remaining heuristics as well.
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In Section 4.3.1, we introduce a local search procedure that applies only
DELETEs. Section 4.3.2 describes a local search procedure applying only ADDs.
In Section 4.3.3 we introduce the DELETE-ADD operation and define a more refined
local search that applies all three operations in order of complexity.

4.3.1 DELETE

In the delete-only local search, we start with a feasible solution that visits every-
one everyday and delete an entire day’s visit as long as it makes an improvement.

We define the following notations needed for the algorithm. Let l(v, s) be the
latest visit before day s that visits v. Denote by Ts the existing tree on day s in the
current step of the algorithm. We use the vector T to represent the current set of
existing trees on each day throughout the time horizon. Let t̂(v, s) be the latest day t
such T does not visit v during the time interval [s + 1, t]. Notice that if a visit to v on
day s is removed, then each demand (v, t) with t ∈ [s, t̂(v, s)] would incur an extra
holding cost of Hv

l(v,s),t − Hv
s,t. So we set the penalty of removing v on day s to be

πs(v) :=

{
∑t̂(v,s)

t=s (Hv
l(v,s),t − Hv

s,t) if v ∈ Ts

0 else.
(4.1)

If the tree Ts on day s is deleted, then the routing cost decreases by c(E(Ts)) and
the change to the holding cost increases by πs(V(Ts)). So the total change in cost
for deleting the tree on day s is ∆DELETE(s) := −c(E(Ts)) + πs(V(Ts)). Finally, the
operation DELETE(s) removes the existing tree Ts on day s.

Denote by c(T) the total cost of a solution T. The improvement ratio of an operation
is the magnitude of the change in cost induced by the operation divided by the total
cost of the current feasible solution. In all of the local search heuristics, whenever we
scan through the time period to find an improving step, we will make the improving
operation on the day that gives the best improvement. To avoid potentially long
running time, we shall stop looking for improvements whenever the best possible
improvement ratio is smaller than some small value, typically 0.01.

Now, we formally define the DELETE algorithm.

Algorithm 1 Local Search with DELETE

1: Initialize a feasible solution T.
2: Let t′ = arg mins∈[2,T] ∆DELETE(s).

3: while |∆DELETE(t′)|
|c(T)| ≥ 0.01 do

4: DELETE(t′)
5: end while

The initial feasible solution here is a “full” solution, where each day consists of
a minimum cost tree that visits everyone. We delete only trees within time [2, T]
to keep the solution feasible. Since all (v, t) have positive demands, any feasible
solution must visit everyone on day 1. So leaving T1 untouched does not make our
solution costlier than a local optimum.

4.3.2 ADD

In the add-only local search, we start with a feasible solution and we find an
optimal subset of clients to add to the current subset on some day as long as it im-
proves the total cost. To find the best subset of clients to add on a given day s, we
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FIGURE 4.3: Here, we consider an ADD operation on day s. If a client
v is added to the existing tree on day s (shown in blue), then any
demand point at v with deadline day t within s and t̂(v, s) would
benefit from the extra visit. The red segment represents the amount
of holding cost that would be reduced for (v, t) if v was visited on
day s instead of day l(v, s). To reach v from the existing tree, the
extra routing required is represented by the purple path connecting

the blue tree to v.

solve an appropriately constructed PCST problem whose cost captures the rewards
in terms of savings in holding cost when visits are added and the extra routing cost
to connect the added visits.

We use the same definitions of l(v, s), Ts, and t̂(v, s) from Section 4.3.1. However,
the penalties now apply to the clients not visited on the day we are adding visits.
In particular, if a visit to v on day s is added, then every demand point (v, t) with
t ∈ [s, t̂(s, v)] saves a holding cost of Hv

l(v,s),t− Hv
s,t. So we set the penalties as follows.

πs(v) :=

{
∑t̂(v,s)

t=s (Hv
l(v,s),t − Hv

s,t) if v /∈ Ts

0 else.
(4.2)

The total change in cost is ∆ADD(s) := c(E(PCSTs)) − πs(V(PCSTs)), where
PCSTs denotes an optimal PCST solution on the instance G with penalty function πs
and edge weights defined as follows.

ws(e) :=

{
c(e) if e /∈ Ts

0 else.
(4.3)

The reason we set edge costs to 0 for the edges in Ts is that the existing tree
should be free to use for connecting to the vertices that the PCST adds to the visit
set. Notice that minimizing c(E(PCSTs))−πs(V(PCSTs)) is the same as minimizing
this quantity after adding a fixed constant value πs(V). After this addition, the total
minimization objective becomes c(E(PCSTs))+πs(V \V(PCSTs)). Thus solving the
PCST with its original objective function is consistent with minimizing ∆ADD(s). The
operation ADD(s) adds the tree E(PCSTs) to Ts covering the extra clients V(PCSTs).
Figure 4.3 shows how the penalty at each client captures the savings in holding cost
if the client is added on a specified day.

Note that the neighborhood for the improvement step is of exponential size since
each step decides which subset of vertices to add to the current tree for some fixed
day. Creating and solving the appropriate PCST instance enables us to find the best
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improvement step quickly in practice. Unlike the DELETE step where the PCST
instance evaluates good possibilities for deletes (of which there are is at most one
tree per day), the ADD step uses the auxiliary PCST instance to carry out the very
large neighborhood search efficiently, and represents a key innovation in our algo-
rithm. Algorithm 2 formally describes the ADD algorithm, where the initial feasible
solution used is a near-empty solution, which visits everyone only on day 1.

Algorithm 2 Local Search with ADD

1: Initialize a feasible solution T.
2: Let t′ = arg mins∈[2,T] ∆ADD(s).

3: while |∆ADD(t′)|
c(T) ≥ 0.01 do

4: ADD(t′)
5: end while

Next, we show that if the visit set of a fixed day was entirely removed from an
optimal solution, then we can recover that solution using the local search with ADD.

Lemma 4.3.1. Let T be an optimal solution to an instance Π of IRP. Let T′ be the same as T,
except for removing the tree on day s from T. Starting with T′ as the feasible initial solution,
Algorithm 2 will output T.

Proof. First, if ADD(s) is applied to T′, then it gives back T since there is no better
subset to add on day s than Ts by the optimality of T. Second, there cannot be
another day s′ such that ∆ADD(s′) < ∆ADD(s), again by the optimality of T. So the
first operation applied to T′ in Algorithm 2 is exactly ADD(s), which recovers the
optimal solution T.

4.3.3 Prioritized Local Search

For the prioritized local search, we start with the final solution from the ADD
local search of Section 4.3.2. Then we try three operations in order of complexity.
First, we try to find a day that DELETE improves the cost on. If no such day exists,
we try to find one that ADD improves the cost on. If still no such day exists, we
try to find a pair (s1, s2) of days such that the net change in cost of DELETE(s1)
followed by ADD(s2) is negative. As long as any of the three operations makes an
improvement, we continue updating the solution. Now we formally define the final
pairwise operation DELETE− ADD(s1, s2).

In the previous sections, the cost change ∆DELETE(s1) and ∆ADD(s2) were each
computed relative to the existing trees T. Here, ∆DELETE(s1) will be defined relative
to the existing trees T, but ∆ADD(s2) will be defined relative to the leftover trees
after deleting Ts1 from T since we want to find the cost of adding to day s2 right
after deleting everything from day s1. To keep the context of which solution the cost
changes are computed on, we denote the new cost changes by ∆DELETE(T, s1) and
∆ADD(T− Ts1es1 , s2). Then the change in cost for the pairwise DELETE− ADD is
∆DA(s1, s2) := ∆DELETE(T, s1) + ∆ADD(T− Ts1es1 , s2). We now put together all ideas
to get a final local search algorithm. The algorithm for prioritized local search is as
follows.

We define the greedy and primal dual heuristics in subsequent sections, and we
also test prioritized local search starting with the solution from greedy and primal
dual, respectively, as the initial feasible solution.

In the prioritized local search, the cost-minimizing pair of days for DELETE-
ADD often has s1 coinciding with s2, although they are different occasionally.
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Algorithm 3 Prioritized Local Search

1: Initialize the final solution T from Local Search with ADD.
2: while

1. ∃s ∈ [2, T] such that |∆DELETE(s)|
c(T) ≥ 0.01 ,

2. or ∃s ∈ [2, T] such that |∆ADD(s)|
c(T) ≥ 0.01 ,

3. or ∃s1, s2 ∈ [2, T] such that |∆DA(s1,s2)|
c(T) ≥ 0.01

do
3: if Condition 1 holds then
4: Apply DELETE(arg mins∈[2,T] ∆DELETE(s))
5: end if
6: if Condition 2 holds then
7: Apply ADD(arg mins∈[2,T] ∆ADD(s))
8: end if
9: if Condition 3 holds then

10: Apply DELETE− ADD(arg mins1,s2∈[2,T] ∆DA(s1, s2))
11: end if
12: end while

As a heuristic to reduce the run time of prioritized local search, we also test
the restricted version of it that only applies DELETE-ADDs to the same day, i.e.,
DELETE− ADD(s, s).

We will next examine another use of the PCST ideas to design a greedy construc-
tion heuristic in the next section.

4.4 Greedy Heuristic

In this section, we introduce a greedy heuristic for IRP. Section 4.4.1 adapts the
greedy framework of set cover to IRP, where a minimum density set is repeatedly
chosen to cover some subset of demands. The search space for a minimum density
set involves an exponential number of subsets of vertices. To simplify the choices
needed to pick the set, we instead will show how to find a set whose density at
most 3 times the minimum density value in Section 4.4.2. We prove that picking the
approximately minimum density as the greedy step achieves a logarithmic approx-
imation factor for IRP. However, this greedy step is still computationally expensive
(even though it is in polynomial time). So the implementation will modify the algo-
rithm to repeatedly pick any set whose density is within a certain specified threshold
and raise that threshold whenever no more such sets exists. The details of the im-
plementation are described in 4.4.3.

4.4.1 Greedy Framework

The greedy algorithm will attempt to cover the demands with routes choosing a
route that minimizes the ratio of the coverage cost to the number of newly covered
demands.

As before, Tt denotes the existing tree on day t. Let D be the set of uncovered
demands. Let r be the routing cost function, h the holding cost function. For D′ ⊂ D,
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FIGURE 4.4: To apply the greedy algorithm for set cover to IRP, we
define a set in IRP to be a subset of demands. The way that a set is
served is determined by three choices: a day t of service, a subset of
stores to visit on day t which induces a minimum cost tree T span-
ning the subset, and a subset D(T) of demands with deadlines no
earlier than t. The routing cost of this set is cost of the blue tree. The
holding cost of this set is the holding cost to serve D(T) from day t,

represented by the red segments.

define d(D′) = ∑(v,t)∈D′ dv
t . The density of a tree T and coverage set D(T) of demands

is ρ(T, D(T)) := r(T)+h(D(T))
d(D(T)) .

The greedy algorithm is as follows.

Algorithm 4 Greedy Framework

1: Initialize Tt ← ∅∀t ∈ [1, T] and D ← D(V × [T]).
2: while |D| > 0 do
3: Find a day t, tree T on day t, and coverage set D(T) ⊂ D minimizing

ρ(T, D(T))
4: D ← D \ D(T)
5: Tt ← Tt ∪ T
6: end while

Figure 4.4 illustrates how sets of demands are chosen to be covered by visits.
Instead of finding the exact minimum density tree and coverage set, we will find
those of density at most 3 times the minimum density by solving a PCST whose
penalties will represent the best total value of new demands to cover.

4.4.2 Approximate Minimum Density Set

Formally, given a time t that we attempt to add client v to and target density
value ρ, define the coverage number η(v, t, ρ) to be the maximum number of consec-
utive (with respect to the timeframe) uncovered demand points D′ at client v day
within days [t, T] such that the weighted average holding cost h(D′)

d(D′) to serve all such
demands is at most ρ. Let A(v, t, ρ) and h(v, t, ρ) be the total demand and total
holding cost, respectively, corresponding to the η(v, t, ρ) many uncovered demand
points whose weighted average holding cost stays within ρ. We use the Algorithm 0
to approximate the minimum density tree and coverage set.
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Algorithm 5 Approximately Minimum Density Set

1: Guess the best day t∗ to add a minimum density tree and density value ρ∗ of the
best coverage set.

2: Find the classical primal dual solution [55] to the PCST with edge costs and
penalties

w(e) :=

{
c(e) if e /∈ E(Tt∗)

0 else
(4.4)

π(v) :=

{
A(v, t∗, ρ∗)ρ∗ if v /∈ V(Tt∗)

0 else.
(4.5)

3: Return the PCST tree PCSTt∗ and coverage set ∪v∈V(TPCST)\V(Tt∗ )
Dv where Dv is

the set of η(v, t∗, ρ∗) uncovered demands with demand time closest to t∗ (starting
from t∗).

Next, we show that the above procedure approximates the minimum density set
within a factor of 3. For the analysis, we provide the dual LP used to construct the
primal dual solution for PCST [55].

min ∑
e∈E

cexe + ∑
X⊂V\{r}

π(X)zX (4.6)

s.t. ∑
e∈δ(S)

xe + ∑
X:X⊃S

zX ≥ 1 ∀S ⊂ V \ {r} (4.7)

xe ≥ 0 ∀e ∈ E (4.8)
zX ≥ 0 ∀X ⊂ V \ {r} (4.9)

max ∑
S⊂V\{r}

yS

s.t. ∑
S:e∈δ(S),S 63r

yS ≤ we ∀e ∈ E (4.10)

∑
S:S⊂X

yS ≤ π(X) ∀X ⊂ V \ {r} (4.11)

yS ≥ 0 ∀S ⊂ V \ {r} (4.12)

We can bound the routing cost with respect to the dual values using the same
analysis as [55], except that we bound the cost with respect to ∑S⊂V(T) yS instead
of their ∑S⊂V\{r} yS. Let y denote the dual solution defined by the algorithm in
selecting the tree T. The following lemma is implicit in [55].

Lemma 4.4.1. r(T) ≤ 2 ∑S⊂V(T) yS.

Lemma 4.4.2. Let T and D(T) be the tree and coverage set returned by the above PCST
algorithm. Then ρ(T, D(T)) ≤ 3ρ∗.
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Proof. First, we compute the routing cost of T. We have

r(T) ≤2 ∑
S⊂V(T)

yS by Lemma 4.4.1

≤2π(V(T)) by the dual constraints

≤2 ∑
v∈V(T)

A(v, t∗, ρ∗)ρ∗.

Second, the holding cost of D(T) is

h(D(T)) ≤ ∑
v∈V(T)

∑
(v,t)∈Dv

Hv
t∗,t

≤ ∑
v∈V(T)

A(v, t∗, ρ∗)ρ∗.

We know d(D(T)) = ∑v∈V(T) A(v, t∗, ρ∗). So ρ(T, D(T)) = r(T)+h(D(T))
d(D(T)) ≤ 3ρ∗.

Finally, we show that if all demand values are at least 1, then the greedy al-
gorithm which uses a 3-approximate minimum density tree and coverage set each
round still attains a logarithmic approximation for IRP. The derivation is a simple
modification of the set cover analysis.

Theorem 4.4.3. If dv
t ≥ 1∀(v, t) ∈ D, then iteratively picking a 3-approximate minimum

density tree and coverage set yields an O(log(d(D)))-approximation for IRP.

Proof. In each iteration, a set of density at most 3 times the minimum density was
found. For each demand point, define its price to be the density of the set that cov-
ered it. Label the demand points in order of coverage from (v1, t1) to (v|D|, t|D|).
Then the kth demand point covered has price at most 3OPT

d(D\{(v1,t1),...,(vk−1,tk−1)})
. So the

final cost is at most ∑|D|k=1
3OPT

d(D\{(v1,t1),...,(vk−1,tk−1)})
≤ 3Hd(D)OPT = O(log(d(D)))OPT,

where the first inequality follows from dv
t ≥ 1∀(v, t) ∈ D.

4.4.3 Implementation Detail

While the aforementioned greedy algorithm attains a provable bound on the cost,
it is impractical to run on large instances. Just finding one coverage set per round
involves a binary search for the best density value ρ∗ that will induce an approxi-
mately minimum density set. On instances of 30 clients over 60 days, the version of
greedy that searches for the approximately lowest density set took over an hour per
instance. Another technique we tried to reduce the running time was to search for a
single value of the lowest density such that there is a feasible set cover, instead of a
different low density per round. However, the single density version of greedy still
took over 45 minutes per 30 by 60 sized instance. Finally, we implemented a modi-
fication of this version that further limits the search space. First, given the existing
trees Tt per day t and the uncovered set D, define the procedure COVER(ρ) as in
the following algorithm.

If ρ is too low, it is possible that COVER(ρ) does not satisfy all demands. So
whenever COVER(ρ) stops serving new demands, we will relax the target density
ρ by multiplying it a factor α > 1 to continue serving demands until all are sat-
isfied. Formally, given a relaxation factor α > 1, we implement a heuristic called
GREEDY(α) defined in Algorithm 7.
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Algorithm 6 COVER(ρ)

1: while there is a set of density ≤ ρ do
2: Find a day t, tree T on day t, and coverage set D(T) ⊂ D with lowest density

(minimized over t ∈ T), with PCST penalties induced by ρ and t.
3: D ← D \ D(T).
4: Tt ← Tt ∪ T.
5: end while

Algorithm 7 GREEDY(α)

1: Initialize Tt ← ∅∀t ∈ [1, T].
2: Find lowest value ρmin such that COVER(ρmin) serves a nonempty set of de-

mands and apply COVER(ρmin).
3: while |D| > 0 do
4: ρmin ← α ∗ ρmin.
5: Apply COVER(ρmin).
6: end while

To estimate the correct value for ρmin, we start with a small initial value for ρmin
and double it until COVER(ρmin) returns a nonempty set.

Since PCST already has fast near-optimal solvers, our implementation also dif-
fers from the stated algorithm by finding using the solver of Leitner et al. [LLLS18] to
solve PCSTs rather than the primal dual algorithm of Goemans and Williamson [55].

Besides the pure Greedy heuristic, we also test how well Prioritized local search
does if it is initialized with the solution from Greedy instead of from local search
with ADDs. We refer to the combination of Greedy with Prioritized local search as
Pruned Greedy.

In the next section, we show a third application of the PCST ideas to design a
primal-dual based heuristic for IRP.

4.5 Primal Dual

In this section, we investigate a primal-dual approach similar to [67] for solving
it. Inspired by the waveform mechanism introduced in [67] which was used for solving
JRP, we generalize this idea and try to make it applicable for solving IRP. We will
solve PCST instances where each vertex of the input represents a demand point of
the IRP instance.

Section 4.5.1 states the primal and dual LP relaxations for IRP. Using the LPs, the
primal dual algorithm is presented in Section 4.5.2. For simplicity of the algorithm,
not all of the dual values are defined explicitly in the algorithm. In Section 4.5.3,
we prove that there is always a feasible setting of dual values corresponding to the
growth of moats in the algorithm. Finally, Section 4.5.4 discusses a more efficient
way that the primal dual algorithm can be implemented.

4.5.1 LP Formulation

To simplify the notation, we assume that each client v has a unique day t such
that dv

t > 0, otherwise we may add cost 0 edges to relabel multiple demand points
at the same vertex as different vertices. Given a client v, the day t for which dv

t >
0 is denoted by t(v). For convenience, we use v to represent the demand point
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(v, t(v)). The variable ye
s indicates whether edge e is used on day s. The variable

xv
s,t(v) indicates whether demand (v, t(v)) is served on day s.

First, we state primal linear program and its dual:

min ∑
e∈E

T

∑
s=1

weye
s + ∑

v∈D

t(v)

∑
s=1

Hv
s,t(v)x

v
s,t(v)

s.t.
t(v)

∑
s=1

xv
s,t(v) ≥ 1 ∀(v, t(v)) ∈ D (4.13)

∑
e∈δ(X)

ye
s ≥ xv

s,t(v) ∀(v, t(v)) ∈ D, 1 ≤ s ≤ t(v), X ⊂ V : X 3 v, X 63 r

(4.14)

xv
s,t(v) ≥ 0 ∀(v, t(v)) ∈ D, 1 ≤ s ≤ v(t) (4.15)

ye
s ≥ 0 ∀e ∈ E, 1 ≤ s ≤ T (4.16)

max ∑
(v,t(v))∈D

bv
t(v)

s.t. bv
t(v) ≤ Hv

s,t(v) + ∑
X3v,X 63r

βv,X
s,t(v) ∀(v, t(v)) ∈ D, 1 ≤ s ≤ t(v) (4.17)

∑
(v,t(v))∈D,X3v,X 63r,δ(X)3e

βv,X
s,t(v) ≤ we ∀e ∈ E, 1 ≤ s ≤ T (4.18)

bv
t(v) ≥ 0 ∀(v, t(v)) ∈ D (4.19)

βv,X
s,t(v) ≥ 0 ∀(v, t(v)) ∈ D, X ⊂ V, 1 ≤ s ≤ T (4.20)

In the primal LP, constraint 4.13 ensures that every demand point is served on
time. Constraint 4.14 ensures that whenever a client v is served on day s, there is a
path from the depot to v on day s.

4.5.2 A Primal-dual Approach

For the dual LP, variable bv
t(v) represents the budget amount that demand point

(v, t(v)) has available to pay for visits to serve it. Variable βv,X
s,t(v) represents the

amount that (v, t(v)) contributes towards building a tree crossing X to get served
on day s. However, since the βv,X

s,t(v) variables are not part of objective function in

the dual LP, we cannot directly use βv,X
s,t(v) to pay for visits. Instead, βv,X

s,t(v) represent
copies of the total budget bv

t(v), one copy for each s. The general framework is to raise
the budgets of demands as long as all constraints in the dual LP are able to hold. The
final values of the budgets are determined by the tightening of dual constraints that
they are involved in.

First, we describe the intuition of the algorithm. At the beginning of the algo-
rithm, all budgets bv

t(v) and visit-specific payments βv,X
s,t(v) are to start at 0. We in-

troduce a continuous parameter τ that slides through time from T to 1 at a con-
stant rate. The position of τ within the time horizon will determine what value
to raise the budgets and visit-specific payments. Whenever τ passes through an
integral time t (i.e. τ < t), it “wakes up” the budgets bv

t(v) of demands (v, t(v)) oc-
curring on day t(v) = t. Those bv

t(v) shall increase at the same rate that Hv
τ,t(v) is
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FIGURE 4.5: At each value of τ and s, we define a PCST instance
whose penalty at each client is the holding cost to store the product
there from day τ to day s. A solution to the PCST instance determines
the subset of clients to visit on day τ. After this procedure is repeated
for every value of τ and s, we know exactly which clients are visited

that day.

increasing as τ is sliding towards 1, i.e., we keep bv
t(v) at exactly the same value as

Hv
τ,t(v). The definition of Hv

τ,t for non-integral τ is interpolated linearly, i.e., define
Hv

τ,t = (1− τ + bτc)Hv
bτc,t + (τ − bτc)Hv

dτe,t.
Observe that keeping bv

t(v) = Hv
τ,t(v) ensures that each demand (v, t(v)) can at

least pay for the holding cost from time τ to t(v). To maintain feasibility to the
dual constraints, we also raise βv,X

s,t(v) as needed to keep constraint 4.17 satisfied.
That means for each demand (v, t(v)) and each s ∈ (τ, t(v)], we raise the value
of ∑X3v,X 63r βv,X

s,t(v) to at least Hv
τ,t(v) − Hv

s,t(v). For each value of τ and s, we create a
PCST instance whose penalty at v is assigned to Hv

τ,t(v) − Hv
s,t(v) and solve it using

the primal dual algorithm of Goemans and Williamson [55]. The value to raise each
βv,X

s,t(v) will be determined by the dual values of the PCST instance set by primal dual
algorithm [55]. We defer the details of the exact values to set them to the proof of
feasibility for Theorem 4.5.1.

Next, we give the necessary definitions to state the algorithm formally. Initially,
all the dual variables are unfrozen. During the running of the algorithm, we set the
value of the dual variables as τ goes to 1. By freezing a dual variable we mean that
the value of that particular variable will not change from then on. A vertex v ∈ D is
a frozen vertex if and only if bv

t(v) is frozen. In the algorithm, we shall serve a vertex
whenever it becomes frozen. Let F denote the set of the all frozen vertices since the
beginning of the algorithm until the current moment, i.e. since when τ = T till when
τ = t where t is the current location of the sweep line.

The algorithm assigns a service time l(v) to each frozen vertex v; the details of
the assignment to v will be explained later. This assignment would be in such a way
that: 1 ≤ l(v) ≤ t(v) ≤ T, and for any v ∈ F , we have bv

t(v) = Hv
l(v),t(v).

Finally, define the set of active vertices at time s to be A(s) = {v : v ∈ D, s ≤ t(v)}
for all s ∈ [1, T].

Now, we are ready to give the algorithm formally in Algorithm 8. For the sake
of intuition, we give a continuous description of the algorithm which can be easily
modified to be a discrete and polynomial time algorithm. Figure 4.5 provides a
visualization of the algorithm.
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Algorithm 8 Primal Dual

1: Initialize F ← ∅ and ∀1 ≤ s ≤ T, A(s)← {v : v ∈ D, s ≤ t(v)}.
2: for τ ← T towards 1 do
3: for s← dτe to T do
4: Make an instance of the prize-collecting Steiner tree problem by assigning

a penalty πv to each vertex v ∈ A(s) as follows
5: for all v ∈ A(s) do
6: if v /∈ F then
7: πv = Hv

τ,t(v) − Hv
s,t(v)

8: else
9: πv = 0

10: end if
11: end for
12: Solve the prize-collecting Steiner tree instance using the classical primal

dual algorithm [55] and let X be the subset of A(s) getting connected to the root
r in the solution

13: if X 6⊂ F then
14: For all v ∈ X\F let l(v) = τ and bv

t(v) = Hv
l(v),t(v), and visit v at time

dl(v)e (the values to set βv,X
s,t(v) will be provided in the proof of Theorem 4.5.1)

15: F ← F ∪ X
16: Freeze the unfrozen vertices in X
17: end if
18: end for
19: end for
20: For all v 6∈ F let bv

t(v) = Hv
1,t(v) and visit V \ F on day 1.

21: Output the IRP schedule specified by the service times for each demand point.
22: Output the dual variables bv

t(v).
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Observe that at the end, all clients will have been frozen and served at some
point.

4.5.3 Defining a Feasible Dual

Next, we show that there is a feasible dual solution b, β satisfying the assignment
of values for bv

t from the algorithm. For the analysis, we shall refer to an particular
iteration in the algorithm by the value of τ and s at that point.

Theorem 4.5.1. During any moment (τ, s) of the algorithm, for the setting bv
t(v) = Hv

τ,t(v),
there is an assignment of β so that b, β is feasible to the dual.

Proof. Assume that we are in iteration (τ, s) of the algorithm. Let yS be the values
of the dual variables corresponding to the primal dual solution for PCST in this
iteration. Note that yS depends on (τ, s), but we omit further subscripting by (τ, s)
for simplicity of notation. We will distribute the dual value yS among the client-
specific dual variables βv,S

s,t(v) with the goal of satisfying constraint 4.17.

Define the potential of client v to be p(v) := πv −∑S3v,S 63r βv,S
s,t(v). Initialize β = 0.

As yS grows, assign βv,S
s,t(v) =

yS
|{v∈S:p(v)>0}| . Next, we show that this setting of β along

with the setting bv
t(v) = Hv

τ,t(v) of the algorithm constitutes a feasible dual solution to
IRP.

First, we can easily verify constraint 4.18. For a given e ∈ E, s ≤ T, we have

∑
v∈V,X3v,X 63r,δ(X)3e

βv,X
s,t(v) ≤ ∑

X:δ(X)3e,X 63r
∑

v∈X
βv,X

s,t(v)

≤ ∑
X:δ(X)3e,X 63r

yX by definition of β

≤we by the dual constraints for PCST.

Second, we show that ∑X3v,X 63r βv,X
s,t(v) ≥ Hv

τ,t(v) − Hv
s,t(v) for all v ∈ V and s ≤

t(v), which would imply constraint 4.17. Fix v and s. Consider the moment just
before bv

t(v) froze, which means the previous PCST solution did not span v. By the
primal dual algorithm of Goemans and Williamson, v was in some set X such that
π(X) = ∑S:S⊂X yS. Then

π(X) = ∑
S:S⊂X

yS

= ∑
S∈X

∑
v∈S

βv,S
s,t(v)

≤∑
S 63r

∑
v∈S∩X

βv,S
s,t(v)

= ∑
v∈X

∑
S3v,S 63r

βv,S
s,t(v)

≤ ∑
v∈X

πv since only those v whose potential are positive grow their βv,S
s,t(v)

=π(X).

So all inequalities must be equalities, which means that ∑X3v,X 63r βv,X
s,t(v) = πv =

Hv
τ,t(v) − Hv

s,t(v). Hence constraint 4.18 holds.
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4.5.4 Implementation

Here, we provide a simpler implementation of Algorithm 8, which does not re-
quire setting dual values and eliminates the loop over s from← dτe to T. In Algo-
rithm 8, the purpose of the loop over s is to help determine feasible dual values to
set for the variables βv,X

s,t(v) to prove Theorem 4.5.1. However, for purposes of obtain-
ing the same primal solution, we do not need to create and solve the PCST instance
per s value. For a fixed τ, no matter which value s takes, the vertices spanned by
the PCST solution all become assigned to the service day τ. Also, for each demand
day t(v), there is some round when s takes value t(v), so that the penalty assigned
to v is at its highest possible value Hv

τ,t(v). If v gets assigned to be served on day τ

by any s, it would certainly be part of the PCST solution to the instance having the
highest penalty Hv

τ,t(v) − Hv
t(v),t(v). So instead of collecting the visits on day τ sepa-

rately through different values of s, we could solve one PCST instance to determine
the visit set for day τ by setting penalty Hv

τ,t(v) for v to collect all visits that could
possibly have been induced by the largest s. Similarly, the raising of dual values
bv

t(v) in Algorithm 8 was included to help prove Theorem 4.5.1 and is not needed
to determine the primal solution. One last detail we modify is the solution method
for PCSTs. Algorithm 8 solved PCSTs using [55] so that the dual values of PCST
from [55] could be used to determine the dual values to set βv,X

s,t(v), again to prove
feasibility. However, for faster solving time, we solve PCSTs using [LLLS18] instead
since we only need to recover the primal solution at the end regardless of the dual
values. Further, our implementation is a simplification of the original algorithm that
discretizes τ to take only integer values from T to 1. This allows us to use the fast
PCST solver of Leitner et al. [LLLS18] in a self-contained manner rather than hav-
ing the breakpoints of τ depend on the dual solution for PCST. However, as noted
above, the simplification only finds a primal solution for IRP. The dual values are
no longer valid after restricting the breakpoints of τ to only integers. Algorithm 9
describes the aforementioned heuristic exactly as implemented.

In addition to the pure Primal Dual heuristic, we test Prioritized local search
initialized with the solution from the Primal Dual heuristic, which we call Pruned
Primal Dual.

4.6 Benchmark MIP Formulation

In this section, we describe a compact MIP formulation of the IRP, that we use
with modern solvers to establish the benchmark for comparing our solutions. Our
exact MIP formulation for IRP is of size O(N2T) + O(NT2). When the problem
instances get larger, we are however only able to generate lower bounds for the
value of a solution even using state-of-the-art solvers such as Gurobi Version 7.

As before, xv
s,t will be the variable indicating whether to serve (v, t) on day s.

Define a related variable Xv
s indicating whether v is visited on day s. Let zuw

s be the
variable indicating whether to use an arc uw on day s. Let huw

s be the continuous
variable representing the amount of total flow through arc uw on day s coming from
the depot.

Intuitively, the purpose of huw
s is to enable expressing connectivity in a polyno-

mial number of constraints, in contrast with using a non-compact set of exponen-
tially many cut-covering constraints. In Figure 4.6, we provide an example of how
the values of huw

s are set in a feasible solution. Then IRP is modeled by the following
MIP.
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Algorithm 9 Primal Only Implementation

1: Initialize F ← ∅ and ∀1 ≤ s ≤ T, A(s)← {v : v ∈ D, s ≤ t(v)}.
2: for τ ← T to 1 do
3: Make an instance of the prize-collecting Steiner tree problem by assigning a

penalty πv to each vertex v ∈ A(τ) as follows
4: for all v ∈ A(τ) do
5: if v /∈ F then
6: πv = Hv

τ,t(v)
7: else
8: πv = 0
9: end if

10: end for
11: Solve the prize-collecting Steiner tree instance using the solver [LLLS18] and

let X be the subset of A(τ) getting connected to the root r in the solution
12: if X 6⊂ F then
13: For all v ∈ X\F , visit v at time τ
14: F ← F ∪ X
15: Freeze the unfrozen vertices in X
16: end if
17: end for
18: For all v 6∈ F , visit V \ F on day 1.
19: Output the IRP schedule specified by the service times for each demand point.

min ∑
u∈V

∑
w 6=u∈V

T

∑
s=1

cuwzuw
s + ∑

(v,t)∈D

t

∑
s=1

Hv
s,tx

v
s,t

s.t. zuw
s + zwu

s ≤ 1 ∀u ∈ V, w > u, s ≤ T (4.21)
t

∑
s=1

xv
s,t = 1 ∀v ∈ V, t ≤ T (4.22)

Xv
s ≥ xv

s,t ∀v ∈ V, t ≤ T, s ≤ t (4.23)

∑
w 6=v

zvw
s = Xv

s ∀v ∈ V \ {r}, s ≤ T (4.24)

∑
w 6=v

zwv
s = Xv

s ∀v ∈ V \ {r}, s ≤ T (4.25)

∑
w 6=r

zrw
s ≤ 1 ∀s ≤ T (4.26)

∑
w 6=r

zwr
s ≤ 1 ∀s ≤ T (4.27)

∑
w 6=u

hwu
s − ∑

w 6=u
huw

s =

{
Xu

s , u 6= r

∑a 6=r−Xa
s , u = r

∀u ∈ V, s ≤ T (4.28)

huw
s ≤ (N − 1)zuw

s ∀u ∈ V, w 6= u, s ≤ T (4.29)
Xv

s , xv
s,t, zuw

s ∈ {0, 1} ∀v ∈ V, u ∈ V, w 6= u ∈ V, t ≤ T, s ≤ T
(4.30)

huw
s ≥ 0 ∀u ∈ V, w 6= u, s ≤ T (4.31)
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FIGURE 4.6: For a fixed day s, suppose that nodes 1, . . . , l are visited
by a cycle in a feasible solution to IRP. To determine the appropriate
values to set huw

s variables, note that each visited node contributes
one unit of flow along the path from from r to itself. Then the flow
through an arc uw would be the total number of all the paths between
r and visited nodes that have uw in the path. The labels along the
arcs indicate the values that huw

s would take per arc uw. Values of the
remaining variables would be set in the obvious ways: zuw

s = 1 if and
only if arc uw is in the cycle, Xv

s = 1 if and only if v ∈ {1, . . . , l},
xv

st = 1 if and only if day s is the latest day before or on day t having
a visit to v.

Constraint 4.21 ensures that each edge is used at most once. Constraint 4.22 guar-
antees that all demands are satisfied on time. Constraint 4.23 ensures that whenever
a demand is served on a specified day, there must be a visit to the client on that day.
Constraints 4.24 and 4.25 guarantee that if a vertex is visited, then some in-arc and
some out-arc incident to it must be traversed. Constraints 4.26 and 4.27 limit the
number of cycles to 1.

We needed a separate case for the fractional degree at r because the depot could
be served by itself on day s while not building any arcs on day s, which means that
∑w 6=r zrw

s and ∑w 6=r zwr
s could potentially be 0 even when Xr

s = 1. Constraint 4.28
ensures that the net in-flow into any u 6= r corresponds to whether u is visited on
that day, and the net in-flow into r corresponds to the negative of the number of
vertices visited (i.e., out-flow of one per node). Constraint 4.29 requires that on each
day, an arc must be built if there is flow through it from the depot, and the flow
allowed is bounded by the maximum possible number of visited nodes.

Solving this MIP directly within MIPGap of 10% was not practical past instances
of size 140 (nodes) by 6 (days) and 50 by 14. We use the lower bound found at 10%
MIPGap to compare with the costs from our heuristics.

4.7 Computational Results

Before summarizing the results, we define the necessary parameters involved in
the tests instances. To remain consistent with the problem notation, we still use N
for the number of clients and T for the number of days. A new parameter H is the
amount that the holding cost part of the objective function is multiplied to generate
instances with different trade-offs between routing cost and holding cost. Thus a
larger H is oriented towards a solution that pays more attention in optimizing hold-
ing versus the routing costs. To measure the quality of our solutions, we examine
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the ratio between the cost of a heuristic solution and the lower bound on the optimal
cost found by Gurobi solving the MIP. We call this ratio the gap between the respec-
tive costs. We implemented all the heuristics we described earlier, to compare them
against the lower bounds from the benchmark MIP model described above.

1. Local search with DELETE (Algorithm 1).

2. Local search with ADD (Algorithm 2).

3. Prioritized Local Search (Section 4.3.3).

4. Greedy (Section 4.4.3).

5. Pruned Greedy - this is the prioritized local search algorithm applied to an
initial solution obtained by Greedy.

6. Primal Dual (Section 4.5.4).

7. Pruned Primal Dual - this is the prioritized local search algorithm applied to
an initial solution obtained by Primal Dual.

Here is a summary of the performance of the various methods we implemented
(details of the data generation model are in the next section).

1. The heuristics achieving the best gap and solving time are the prioritized local
search and the local search with ADD steps, shown in Figure 4.7.

2. Greedy has the largest gaps among all heuristics according to Figures 4.7, 4.8,
and 4.9 because picking low density sets to cover demands does not directly
help lower the final cost of the IRP solution. Greedy also incurs the longest
solving time due the computationally expensive nature of picking low density
sets.

3. The prioritized local search starting with greedy or primal dual solutions had
worse gaps than simply starting with the solution after local search with ADDs
according to Figures 4.7, 4.8, and 4.9. The worse performance could be caused
by greedy and primal dual being closer to locally optimal but still somewhat
far from the lower bound.

4. From Figure 4.7, as H increases, greedy’s gap decreases dramatically because
low H values incentivize greedy to pick large sets to start with, which leaves
no room to cover demands optimally. The larger H becomes, the more oppor-
tunities arise for the sets to be more fine tuned. Primal dual and the three local
search heuristics have gaps that initially increase up to some H value within
[2, 3], then decrease thereafter. This pattern occurs because mid-range H val-
ues create instances with more balanced trade-offs between routing cost and
holding cost, which correspond to higher difficulty to solve.

5. As T increases, primal dual’s gap worsens according to Figure 4.9 because
primal dual tends to build denser visits than needed because the backwards
sweep construction of visit sets cannot account for potentially early visits serv-
ing late deadlines.

The rest of this section explains these points in more detail.
The heuristics were implemented in C++ on an Intel Xeon processor X5680, 3.33

GHz machine with 8 GB RAM. A copy of the code and data used to conduct the
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experiments will soon be available on github. Since solving the MIP was the major
bottleneck in completing the experiments, we allowed multiple threads for the MIP
to speed up the solving time. The MIP was solved by Gurobi Version 7 on default
settings using 8 threads. Each heuristic uses 1 thread. We report the run times di-
rectly without accounting for number of threads. Next, we describe how the test
instances were generated. Recall that we defined the actual versions of the heuris-
tics implemented in their corresponding sections. We then show their performance
in cost and runtime relative to each of the three varying parameters.

4.7.1 Data Generation Model

We follow the same generation model of the largest instances tested in Archetti
et al. [8], except that our model has no capacity constraints at vehicles and store
locations. To find how the heuristics perform on different types of instances, we
choose three parameters N, T, and H to vary (one at at time). For each setting of
parameter values, we generate 100 test instances.

• Time horizon T = 6, 8, . . . , 18

• Number of clients N = 110, 120, . . . , 160

• Demands dv
t randomly generated as an integer in the interval [10, 100]

• Unit holding cost hv randomly generated real number in the interval [0.01, 0.05]

• Transportation cost cuv =
√
(Xu − Xv)2 + (Yu −Yv)2, with each coordinate of

(Xu, Yu) randomly generated as an integer in [0, 500]

We have an additional parameter H = .01, 0.51, . . . , 6.01 which we use as the scal-
ing factor for the holding cost to generate a wide variety of instances. Our objective
function relative to H is r(S) + H × h(S), where r(S) is the routing cost and h(S) is
the holding cost of a solution S.

4.7.2 Performance Evaluation

For each heuristic, we plot two values as H, N, or T varies: the gap and running
time. Recall that the gap is the ratio between the heuristic’s solution cost and the
lower bound found for the optimal cost of the MIP model. Henceforth, all gap or
running time values mentioned refer to the average values over the 100 instances
per choice of parameter values.
Varying H

Here, N and T are fixed to 100 and 6, respectively. The holding cost scale H varies
from 0.01 to 6.01 at increments of 0.5. Results that require lower bound from the MIP
go up to only H = 4.51 due to high running times of the MIP and the large number
of instances per parameter value. We compare the performance of the three local
search heuristics, pure greedy, greedy with pruning, pure primal dual, and primal
dual with pruning.

First, we state the results for the gap.

• Greedy has decreasing gaps as H increases, starting at 2.33 when H = 0.01 to
1.53 when H = 4.51.
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• Pruned greedy drastically improves upon greedy due to the additional prun-
ing by prioritized local search and has the largest gap of 1.11 at H = 3.01. As
mentioned before, the mid-range values of H correspond to harder instances
because the trade-off between the routing cost and holding cost is in the mid-
dle.

• Primal dual has its largest gap of 1.19 at H = 2.51.

• Pruned primal dual’s gaps increase as H increases, starting from 1.01 at H =
0.01 to 1.11 at H = 4.51. It might be the case that the gap would eventually ta-
per off at a larger value of H, but we do not have the lower bounds to compare
with due to the large solving times of the MIP.

• For DELETE local search, the gap is largest at 1.1 for H at 2.51 and 3.01.

• For ADD and prioritized local searches, the gap is at most 1.05 for all values
of H. The values of H for which they have their highest gaps occur at 2.01 and
2.51. Since ADD and DELETE-ADD are richer operations in their use of the
PCST solutions, we expect them to reach close to optimality. The prioritized
local search and local search with ADDs have similar gaps because the solution
from ADD is already nearly optimal and there is little room to improve the cost.

In summary, the heuristics in order of lowest to highest gaps are local search with
ADDs, prioritized local search, local search with DELETEs, pruned greedy, pruned
primal dual, primal dual, and greedy.

Next, we examine the running time of each heuristic.

• The MIP requires over 47 seconds to solve for H = 0.01 and over 768 seconds
at H = 4.51.

• Greedy and pruned greedy take the longest to solve among the heuristics.
Their solving times start at more than 19 seconds when H = 0.01 and increase
to over 24 seconds at H = 6.01.

• Pruned primal dual requires no more than 3 seconds for all values of H.

• Each of the three local searches (prioritized, ADD, DELETE) take less than 1
second on average for instances with any value of H.

• Primal dual also takes under 1 second throughout all instances.

To summarize, the heuristics in order running times from the fastest to slowest are
local search with DELETE-ADDs, primal dual, local search with ADDs, Prioritized
local search, pruned primal dual, greedy and pruned greedy.

Local search with ADDs prevails as the strongest of the heuristics with a gap of
at most 1.05 throughout and runtime of less than 1 second at H = 4.51, which is
nearly three orders of magnitude faster than the MIP at H = 4.51.
Varying N

Here, T and H are fixed to 6 and 2.6, respectively. The number of clients N varies
from 110 to 160 at increments of 10. Due to limited computation time, results which
require MIP values are restricted to N ≤ 140.

First, we provide the gaps for each heuristic. The gap values of the heuristics did
not form any particular patterns with respect to N.

• Among all methods, greedy has the highest gap of 1.57 to 1.58.
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FIGURE 4.7: Delete, Add, and Prioritized each correspond to the
local search that DELETEs, ADDs, and all operations, respectively.
The gaps and running times for Delete, Add, Prioritized local search,
Greedy, Pruned Greedy, Primal Dual, and Pruned Primal Dual are
shown in blue, red, green, purple, light blue, orange, and dark blue,

respectively.
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• Pruned greedy improves the gap to 1.1 up to 1.11.

• Primal dual’s gap is within 1.16 to 1.18.

• Pruned primal dual improves to 1.08 up to 1.09.

• Local search with DELETEs has slightly higher gap than pruned primal dual,
from 1.09 to 1.1.

• Local search with ADDs and prioritized local search both have gaps of 1.04.

The heuristics in order from lowest to highest gap are local search with ADDs and
prioritized local search, pruned primal dual, local search with DELETEs, pruned
greedy, primal dual, and greedy.

Second, we provide the running times of the MIP and all heuristics. Generally,
the solving times increase as N increases.

• The MIP incurs the highest running time, starting at over 658 seconds for N =
110 to over 2837 seconds at N = 140.

• Greedy and pruned greedy running time starts around 27 seconds for N = 110
and increases up to 62 seconds for N = 160.

• Pruned primal dual takes no more than 6 seconds for all values of N.

• Prioritized local search stays under 4 seconds throughout.

• Local search with ADDs takes under 3 seconds on all instances.

• Primal dual and local search with DELETEs both take at most 2 seconds
throughout.

The methods in order from lowest to highest running time are local search with
DELETEs, primal dual, local search with ADDs, prioritized local search, pruned
primal dual, greedy, and pruned greedy.

Again, local search with ADDs is the best heuristic, having a gap of at most 1.04
throughout and running time of 2.01 seconds at N = 140, which is also three orders
of magnitude faster than the MIP at the same value of N.
Varying T

Here, N and H are fixed to 50 and 2.6, respectively. The number of days T varies
from 6 to 18 in increments of 2. Results that involve MIP values are available only
up to T = 14 due to the MIP’s high computation time.

First, we provide the results for the gap.

• As before, greedy has the highest gap among all heuristics, from 1.7 to 1.8
across the tested values of T. The gap decreases slightly as T increases because
longer time horizon allows greedy more room to pick good sets that serve
farther into the future.

• Pruned greedy has the opposite pattern as greedy. Its gap starts at 1.04 when
T = 6 and increases to 1.11 when T = 14 because larger time horizon makes
the instance harder for the prioritized local search used to prune greedy.

• Primal dual’s gap ranges from 1.14 to 1.2, also increasing as T increases.

• Pruned primal gap improves the gap to 1.05 at T = 6 up to 1.15 at T = 14.
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FIGURE 4.8: The gaps and running times for Delete, Add, Prioritized
local search, Greedy, Pruned Greedy, Primal Dual, and Pruned Primal
Dual are shown in blue, red, green, purple, light blue, orange, and

dark blue, respectively.
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• Local search with DELETEs’ gap does not exhibit any trend with respect to T.
The gap ranges from 1.03 to 1.09.

• Local search with ADDs and prioritized local search both have gaps starting
from 1.03 at T = 6 to 1.08 at T = 14.

In order from lowest to highest gap, the heuristics are local search with ADDs and
prioritized local search, local search with DELETEs, pruned primal dual, pruned
greedy, primal dual, and greedy.

Second, we show the solving times. As expected, the solving times all increase
as T increases.

• MIP solves in over 10 seconds for T = 6 and increases to over 1481 seconds at
T = 14.

• Greedy and pruned greedy take around 6 seconds at T = 6, increasing to 30
seconds at T = 18.

• Pruned primal dual requires less than 3 seconds on all instances.

• Primal dual, prioritized local search, and local search with ADDs take under 2
seconds throughout.

• Local search with DELETEs take under 1 second throughout.

The methods in increasing order of solving time are local search with DELETEs, local
search with ADDs, prioritized local search, primal dual, pruned primal dual, greedy,
and pruned greedy.

As expected, local search with ADDs has the best gap of at most 1.08 through
all test instances and a solving time of less than 1 second for T = 14, which is three
orders of magnitude faster than the MIP at T = 14.

4.7.3 Conclusions

In this chapter, we introduced new local search, greedy, and primal dual heuris-
tics that exploit the PCST as intermediate steps towards obtaining near-optimal so-
lutions for IRP. We used the PCST subroutine to design very large neighborhood
search methods, as well as to find low density sets to serve for the solution in Greedy
and good primal visits for the solution for a primal-dual method. We proved a per-
formance guarantee for Greedy and showed how the PCST method provides the
needed properties of the solutions in these heuristics. Thus a main contribution of
our work has been to extend the theoretical insights from the work of [49] in using
the PCST problem as an effective tool to solve IRP. Among the different heuristics we
experimented with, the local search with ADDs performed the best. For 140 by 6 in-
stances, it was able to reach within 1.04 factor of optimal cost with a speedup of three
orders of magnitude compared to solving the MIP using Gurobi. Similarly, for 50 by
14 instances, it reaches 1.08 factor of optimal cost with similar speedups. Gener-
ally, primal dual and greedy were less effective than the local search based methods
because their better starting solution structure affords less flexibility in the later pri-
oritized local search pruning phase. In all instance sets, greedy had the highest gap
and the longest running time. An interesting research direction for future work is to
extend the PCST-based approaches to the more general case of IRP with vehicle and
inventory capacities.
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FIGURE 4.9: The gaps and running times for Delete, Add, Prioritized
local search, Greedy, Pruned Greedy, Primal Dual, and Pruned Primal
Dual are shown in blue, red, green, purple, light blue, orange, and

dark blue, respectively.
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Chapter 5

Deadline Inventory Routing
Problem

5.1 Introduction

The Deadline Inventory Routing Problem (Deadline IRP) is a new variant of the
classical IRP [25]. In the classical single-depot IRP [23, 29, 25, 26], a set of client de-
mand locations in a metric containing the depot is given, and for a planning horizon
of T days, a daily demand at each client location is specified. The goal is to come
up with vehicle routing schedules in each of the T days to stock the client demands
before they materialize. However, early stocking at a location incurs a location- and
duration-specific inventory holding cost that are also specified. If we assume the
daily replenishing vehicle has infinite capacity, the distance traveled by the vehicle
in a daily route translates to a routing cost. The goal of IRP is to find daily vehi-
cle schedules for the T days that deliver enough supply at each location to meet all
daily demands and minimizes the sum of inventory holding costs for units supplied
ahead of their demand and the daily routing costs of the vehicle, over the T days.

The Deadline IRP (DIRP) replaces the daily client demands with a deadline for
revisit. In other words, if the vehicle visits a location v at time t, this results in
a requirement that the next visit of the vehicle to this location must occur by the
time the resources delivered at v are depleted - this sets up a deadline for the next
visit which is t + Dv where Dv denotes the depletion time. The routing costs are
unchanged from the classical IRP formulation. One example of where this alternate
formulation appears is in the replenishment of automatic teller machines (ATMs)
with cash [4]: based on the currency demand at each location and the service
requirements of the bank, each visit automatically triggers a deadline for the next
visit.

Problem Definition. Formally, the Deadline Inventory Routing Problem is given as
input the following.

• a set V of vertices/clients on a metric c that defines the routing costs,

• a root node r ∈ V from which an uncapacitated supply vehicle starts,

• a discrete time horizon {1, 2, . . . , T} over which the clients require service, and

• a length Dv of time called the depletion time for each client v that indicates how
long the clients will last from the previous visit before its supplies run out.

The objective of deadline IRP is to minimize the vehicle routing cost while supplying
the clients within their deadlines over the time horizon. We assume that the daily
vehicle route is a tour that starts and ends in the root. We relax this to be a Steiner



68 Chapter 5. Deadline Inventory Routing Problem

tree connecting the root to the clients visited that day with a loss of a factor of 2 in
the approximation guarantee in the sequel1. Note again that the deadlines are visit
dependent.

5.2 Related Work

As mentioned before, our problem can be seen as a special case of the INVEN-
TORY ROUTING PROBLEM (IRP) [34]. Here, clients (vertices) have their own storage
with a certain capacity and for each day a demand is specified. The clients pay hold-
ing cost over their inventory. However, omitting inventory cost, we can interpret our
problem as such an inventory routing problem in which the demand at any given
location is the same every day.

Another closely related problem is the PERIODIC LATENCY PROBLEM [35], which
features the recurring visits requirement of DIRP. We are given recurrence length qi
for each client i and travel distances between clients. Client i is considered served if
it is visited every qi time units. The server does not return to the depot at the end of
each time unit (e.g. day), but keeps moving continuously between clients at uniform
speed. Another difference between PERIODIC LATENCY PROBLEM and DIRP is the
objective function. Coene et al. [35] study two versions of the problem: one that
maximizes the number of served clients by one server, and one that minimizes the
number of servers needed to serve all clients. They resolve the complexity of these
problems on lines, circles, stars, trees, and general metrics.

A more restrictive problem than DIRP, but with a compact input size is known
under the guise of PINWHEEL SCHEDULING. It has been introduced to model the
scheduling of a ground station to receive information from a set of satellites without
data loss. In terms of our problem no more than one vertex can be replenished per
day and all distances to the depot are the same; the interesting question here is if
there exists a feasible schedule for replenishing the vertices. Formally, a set of jobs
{1, ..., n} with periods p1, ..., pn is given, and the question is whether there exists a
schedule σ : N → {1, .., n} such that j ∈ ⋃t+pj

k=t+1 σk, ∀t ≥ 0 and ∀j. Note that
the compact representation of time in Pinwheel Scheduling makes its complexity
incomparable to that of our problem.

PINWHEEL SCHEDULING was introduced by Holte et al. [59], who showed that
it is contained in PSPACE. The problem is in NP if the schedule σ is restricted to one
in which for each job the time between two consecutive executions remains constant
throughout the schedule. In particular this holds for instances with density ρ =

∑j 1/pj = 1 [59]. They also observed that the problem is easily solvable when ρ ≤ 1
and the periods are harmonic, i.e. pi is a divisor of pj or vice versa for all i and j. As
a corollary, every instance with ρ ≤ 1

2 is feasible.
Chan and Chin [31] improved the latter result by giving an algorithm that pro-

duces a feasible schedule for PINWHEEL SCHEDULING whenever ρ ≤ 2
3 . In [30],

they improved this factor to 7
10 . Later, Fishburn and Lagarias [47] showed that every

instance with ρ ≤ 3
4 has a feasible schedule. All these papers work towards the con-

jecture that there is a feasible schedule if ρ ≤ 5
6 . That this bound is tight can be seen

by the instance with p1 = 2, p2 = 3 and p3 = M, with M large. This instance cannot
be scheduled, but has a density of 5

6 +
1
M .

1This relaxation of the tour to be a tree is purely for the sake of simplification of the approximation
algorithms for finding such a route - the algorithms are better understood for trees rather than tours.
Moreover, we can convert trees to tours in the end with a further loss of factor of 2 in metrics using an
Euler walk on the tree.
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The complexity of PINWHEEL SCHEDULING has been open since it was intro-
duced. It was only recently shown by Jacobs and Longo [60] that there is no pseu-
dopolynomial time algorithm solving the problem unless SAT has an exact algo-
rithm running in expected time nO(log n log log n), implying for example that the ran-
domized exponential time hypothesis fails to hold [24, 36]. Since the latter is un-
likely, one could conclude that PINWHEEL SCHEDULING is not solvable in pseu-
dopolynomial time. It remains open whether the problem is PSPACE-complete.

Similar to PINWHEEL SCHEDULING, the k-SERVER PERIODIC MAINTENANCE

PROBLEM [72, 15, 42] has n jobs, each with a specified periodicity and a process-
ing time. Each server may serve at most one job per time unit. However, job i is
required to be served exactly every mi days apart rather than within every mi days.
The case k = 1, cj = 1 for all j is analogous to PINWHEEL SCHEDULING, except for
the exact periodicity constraint. For any k ≥ 1, Mok et al. [72] have shown it is
NP-complete in the strong sense. For the special case when mi are multiples of each
other or when there are at most 2 different periodicities, they have shown it is in P.

Other related problems with a compact input representation include real-time
scheduling of sporadic tasks [14, 20], where we are given a set of recurrent tasks. On
a single machine, EDF (Earliest Deadline First) is optimal. However, we remark that
the complexity of deciding whether a given set of tasks is feasible has been open for
a long time and only recently proved showing that it is coNP-hard to decide whether
a task system is feasible on a single processor even if the utilization is bounded [43].

Another related problem is the BAMBOO GARDEN TRIMMING PROBLEM intro-
duced by Gasieniec et al. [51]. There are n bamboos, each having a given growth
rate, which may be viewed as inducing a periodicity. On each day, a robot may trim
at most one bamboo back to height 0. The goal is to minimize the maximum height
of the bamboos. Gasieniec et al. provide a 4-approximation for the general case and
a 2-approximation for balanced growth rates.

The full paper including results for DIRP on special metrics appeared in the pro-
ceedings of the 13th Latin American Symposium [21].

5.3 Approximation Algorithms

In this section, we study the design of near-optimal periodic solutions for DIRP.
First we show that the periods can be restricted to be of the same order of magnitude
as the maximum client deadline, and all deadlines can be assumed to be powers of
two with a constant factor loss in optimality. Next, we prove a logarithmic approx-
imation algorithm by using the ideas of increasing and synchronized solutions that
we define and approximate.

We reduce arbitrary Deadline Inventory Routing Problems to those whose de-
pletion times are powers of 2 losing only a constant factor.

Lemma 5.3.1. Let Π be a Deadline Inventory Routing Problem instance. For a client v,
denote its depletion time by Tv. For any time t, let r(t) be the largest power of 2 not exceeding
t. Let Π′ be the Deadline Inventory Routing Problem instance having the same vertex set as
Π, but depletion time r(Tv) for each v ∈ V. Let OPT and OPT′ be the minimum cost of Π
and Π′. Then any solution feasible for Π′ is feasible for Π, and OPT′ ≤ 4OPT.

Proof. Feasibility for Π′ implies feasibility for Π by r(Tv) ≤ Tv for all v. To show that
OPT′ ≤ 4OPT, we show that any solution S of Π can be converted to a solution S′

of Π′ such that c(S′) ≤ 4c(S). Given a solution S to Π, let Ŝ be the solution such that
for each t, copy the tree of S at time t to time d t

2e in addition to the original tree at
time t.
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We claim that Ŝ is feasible to the first half subinstance of Π′. To show this, observe
no Ŝ visit between tk and tk+1 implies no S visit between 2tk and 2tk+1. If tk+1 − tk ≥
r(Tv), then 2tk+1 − 2tk ≥ 2d Tv

2 e ≥ Tv, which would imply that S was not feasible to
Π. So Ŝ must be feasible to at least the first half subinstance of Π′. By construction,
c(Ŝ) ≤ 2c(S).

Let S′ be the solution that copies the trees of Ŝ in the first half of the instance to
the second half and retains the same first half as Ŝ. Then S′ is feasible to the entire
instance Π′, and c(S′) ≤ 2c(Ŝ) ≤ 4c(S).

Consider a powers of 2 instance of the Deadline Inventory Routing Problem in
which depletion times span from 20 to 2L. Denote by V2j the set of vertices who
have depletion time 2j; so V = V1 ∪ · · · ∪ V2L . Define a synchronized solution to
be one which, for each l ≤ L, visits exactly V1 ∪ · · · ∪ V2l on day 2l . Given a tree
T covering some subset of V, we say that T is non-decreasing with respect to the
Deadline Inventory Routing Problem instance if for each v ∈ V(T), v ∈ V2j implies
that the r-v path in T contains only vertices from V2l for l ≤ j.

Proposition 5.3.2. Given a solution S to a powers of 2 instance of Deadline Inventory
Routing Problem, if the tree in S for each day is non-decreasing, then there is a synchronized
solution S′ of cost at most c(S).

Proof. We shall use each edge of S at most once to build the trees for S′. First, we
know that for each j ≤ L, every vertex of V2j occurs at least once per time window
of length 2j − 1 in S. So S has paths that reach all of V2j for each window of the form
[k2j + 1, (k + 1)2j]. We will use this to build paths for each j that reach V2j on all days
that are multiples of 2j.

In the base case, we build paths between r and v for all v ∈ V20 once for each
day by using exactly the same V20-reaching paths in S. For the remaining vertices,
we build the synchronized solution inductively. Starting from j = 1 to L, for each
k within 0 to 2L−j − 1, take the union of all paths of S occurring between V2j−1 and
V2j within days [k2j + 1, (k + 1)2j] and place the edge union at time (k + 1)2j. Note
that we already have paths from r to V2j−1 per day of the form l2j−1 from the earlier
rounds. So the current round has guaranteed to reach V2j per day of the form l2j. At
the end, we have a solution that visits each V2j on all days that are multiples of 2j

and uses each edge of S only once.

Now, we show that arbitrary trees can be approximated by nondecreasing trees
within logarithmic factor. To do so, we use a tree pairing lemma of Klein and
Ravi’s [64] that will help us construct the appropriate nondecreasing trees. We in-
clude the proof for completeness.

Lemma 5.3.3. [64] Given any tree T and an even subset S of its vertices, there is a pairing
of vertices covering S such that the tree-path induced by the pairs are edge-disjoint.

Proof. Let T be a tree on vertex set V and S ⊂ V. For a pairing P, let φ(P) be the
total length of the paths induced by the pairs in P. We will show that a pairing P∗

minimizing φ(P∗) has all edge-disjoint pair-induced paths. Suppose there are pairs
{u1, v1} and {u2, v2} that share some edge {a, b}. WLOG, assume that u1 and u2
are closer to a than b and v1 and v2 are closer to b than a. Then repairing the four
vertices to {u1, u2} and {v1, v2} reduces the total length of the paths. So a pairing
minimizing the total length cannot have any pairs that overlap.

Using the tree pairing lemma 5.3.3, we will construct nondecreasing trees to ap-
proximate arbitrary trees. First we define the notations needed for the algorithm.
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For v ∈ V, let l(v) be the label of the class v belongs to, i.e. Vl(v) 3 v. A nonde-
creasing arc a({u, v}) of {u, v} is the arc between u and v that points from the vertex
of lower label to the vertex of higher label (ties are broken arbitrarily). The vertex
of lower (higher) label between u and v is denoted by L({u, v}) (H({u, v})). We
denote by U the unpaired vertices and A the arcs of the nondecreasing tree being
constructed.

1: Initialize U ← V and A← ∅.
2: while |U| > 0 do:
3: Find an edge-disjoint pairing P of a largest even subset of U.
4: for {u, v} ∈ P do:
5: A← A ∪ a({u, v}).
6: U ← U \ H({u, v}).
7: end for
8: end while

Proposition 5.3.4. Given an arbitrary tree T of cost c(T) with respect to vertex sets
V0, . . . , VL, there is a nondecreasing tree of cost at most dlog2 nec(T).

Proof. Consider an instance of DIRP. Let T be a tree. We will construct a nonde-
creasing tree T′ by iteratively pairing off the vertices and directing each pair in a
nondecreasing manner.

In the algorithm, we apply the pairing procedure dlog2 ne times to get a nonde-
creasing tree of the desired cost. In each round, we pair a largest subset of V such
that the pairs induce edge disjoint paths in T. Then we direct each pair {u, v} from
the vertex of lower label to the vertex of higher label according to the labeling l and
delete the vertex of higher label from consideration. These arcs are added to the
arc set of T′. We can think of each pair as a connected component represented by
the vertex of the lower label. In the end, T′ is finalized when no unpaired vertices
remain. Note that picking the vertex of minimum label as the representative per
connected component ensures that the final tree is indeed an out-arborescence from
the vertex of smallest label.

In each round, we used each edge of T at most once since all pair-induced paths
were edge-disjoint. Let κ(t) be the number of vertices at the beginning of round t.
Since each round paired off either all vertices or all but vertex, we have κ(t) = dκ(t−
1)/2e. So the total number of rounds is dlog2 ne. Hence c(T′) ≤ dlog2 nec(T).

Theorem 5.3.5. There is a O(log n)-approximation for the Deadline Inventory Routing
Problem.

Proof. Given an DIRP instance, OPT denote the cost of an optimal solution. Let ρST
be the best known approximation ratio for Steiner tree. We will construct a synchro-
nized solution to DIRP that has cost at most O(log n)OPT. Note that the subset of
clients to visit per day is completely determined in any synchronized solution. So
optimal synchronized solutions may be approximated within ρST factor. As ρST is
constant, it suffices to show that optimal synchronized solutions to DIRP are within
O(log n) factor from OPT.

By proposition 5.3.4, there is a nondecreasing solution S′ to DIRP of cost at most
dlog2 neOPT. By Proposition 5.3.2 on each tree of S′, there is a synchronized solution
Ŝ to DIRP of cost c(S′). So an optimal synchronized solution to DIRP has cost at most
c(Ŝ) ≤ c(S′) ≤ dlog2 neOPT.

However, the above method cannot be improved. There is a class of instances
for which the cost of optimal solutions is logarithmic factor away from the cost of
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optimal monotone solutions. The class of examples is due to a co-author, Thomas
Bosman.

Proposition 5.3.6. There exists a class of instances in which there is a logarithmic optimal-
ity gap between the optimal and the optimal non-decreasing solution.

Consider the following sequence of sequences (a0, a1, . . .) where a0 = (1) and
ai+1 is generated by alternatingly taking an element from ai and then from the se-
quence bi = (2i + 1, 2i + 2, . . . , 2i+1). For example:

• a0 = 1

• a1 = 1, 2

• a2 = 1, 3, 2, 4

• a3 = 1, 5, 3, 6, 2, 7, 4, 8

• · · ·
Then define the (unweighted) graph Gi as the path graph with 2i vertices, where

the jth vertex has depletion time 2ai
j−1. See Figure 5.1 for an example.

FIGURE 5.1: Illustration of G2, (depletion times in circles)

1 4 2 8

The minimum spanning tree in Gi costs 2i− 1. It is easy to check that the decreas-
ing spanning tree produced by Lemma 5.3.3 costs i2i−1. Moreover, since the solution
produced attaches every vertex to a nearest vertex with lower depletion time, it must
be optimal.

To show tightness of our main theorem, we will define another class of graphs
Hi for i ≥ 1 that are constructed from {Gi}. The idea is to make τj copies of each
terminal j, and then connect them in a regular way, for example like in Figure 5.2.

FIGURE 5.2: Illustration of H2

τi = 1 τi = 4 τi = 2 τi = 8

Formally Hi is constructed as follows. For simplicity of description, we assume
that Gi is planarly embedded from left to right, and we assume that we keep a planar
embedding of Hi during construction.

We first copy node 1 to Hi. Now we work from left to right, starting from the
second node. When we are at node j, we put τj copies of j vertically above each
other and to the right of the copies of j− 1 in Hi. Then we connect them to the copies
of j− 1 in Hi such that the graph remains planar and all copies of j− 1 have the same
degree, and all copies of j have the same degree. This can be done in only one way.
Furthermore we identify vertex 1 with the depot.
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Proposition 5.3.7. The instance induced by Hi has a logarithmic optimality gap between
the optimal and the optimal non-decreasing solution.

Proof. There exists an obvious solution that visits exactly one client of each turnover
time per day, that costs 2(2i − 1).

Now suppose we impose non-decreasing constraints. In this case we need to use
(on average) at least one edge pointing from a client with a lower depletion time to
one with a higher depletion time per day. But from our reasoning on the decreasing
minimum spanning tree in Gi, we find that the cheapest set of edges that contains
at least one edge pointing from a client with depletion time 2i to one with lower
depletion time for all i, costs at least i2i−1. Therefore the optimal solution under
non-decreasing constraints is at least a logarithmic factor more expensive than the
optimal solution.

Next, we show an O(log T)-approximation rounding an LP formulation of DIRP,
where we may assume T = maxv∈V Dv. Note that T is incomparable with n, thus
making this result potentially interesting in relation to Theorem 5.3.5. We first give
the LP for DIRP.

min ∑
uv∈A

T

∑
s=1

cuvyuv
s

s.t. ∑
s∈[k,k+Dv−1]

xv
s ≥ 1 ∀v ∈ V, k ≤ T − Dv (5.1)

∑
uw∈δ+(X)

yuw
s ≥ xv

s ∀v ∈ V, s ≤ T, X ⊂ V s.t. X 63 v, X 3 r (5.2)

xv
s ≥ 0 ∀v ∈ V, s ≤ T (5.3)

yuw
s ≥ 0 ∀uw ∈ A, s ≤ T. (5.4)

Variable xv
s indicates whether client v is visited on day s. Variable yuw

s indicates
whether arc uw is used on day s. The first constraint ensures that each client is visited
within its depletion time over the time horizon. The second constraint ensures that
if client v is visited on day s, then the tree built on day s must reach v.

Theorem 5.3.8. There is an O(log T)-approximation for the Deadline Inventory Routing
Problem.

Proof. Let (x, y) be an optimal solution to the LP for DIRP. For each set Vi, we will
obtain trees that cover Vi every 2i days with cost at most c · y. Doing so separately
per Vi will eventually incur a factor of O(log T).

To obtain the desired trees per i ≤ L, we round Steiner trees on the LP values per
time interval of length 2i. Specifically, for each 0 ≤ i ≤ L, 0 ≤ l ≤ 2L−i− 1, v ∈ V, a ∈
A, define the aggregate LP values xv

li,(l+1)i := ∑(l+1)2i

s=l2i+1 xv
s and ya

li,(l+1)i := ∑(l+1)2i

s=l2i+1 ya
s .

For each i and l, we know that xv
li,(l+1)i ≥ 1 for all v ∈ Vi by constraint (5.1). By

aggregating constraint (5.2), we have ∑a∈δ+(X) ya
li,(l+1)i ≥ xv

li,(l+1)i ≥ 1 for all v ∈
Vi, X ⊂ V such that X 63 v, X 3 r. In particular, the variables ya

li,(l+1)i satisfy the
Steiner tree LP with terminal set Vi. Since the Steiner tree LP has integrality gap at
most 2, there is an integral Steiner tree covering Vi of cost at most 2 ∑a∈A caya

li,(l+1)i.

Add the approximate Steiner tree on day l2i to our solution. Doing so for each l ∈
[0, 2L−i − 1] will ensure that each interval of length 2i has a tree that covers Vi with
at most twice the cost of the LP solution. Furthermore, the arcs in all of the trees
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covering Vi throughout the whole time horizon can be paid for by just one copy of y
since ya

li,(l+1)i charges distinct portions of y for each l.
To cover Vi for all 0 ≤ i ≤ L, we will use at most L + 1 copies of y. Since

L = dlog Te, the final solution has cost at most (dlog Te+ 1)OPT.

5.4 Conclusion

We provided an O(log n)-approximation and an O(log T)-approximation for
Deadline IRP on general metrics. For the O(log n)-approximation, we showed a
class of instances such that the method cannot be improved. The full paper [21]
from our collaborations with coauthors also resolve special cases of Deadline IRP,
i.e., on paths and trees. In addition, we study Deadline IRP with a Min Max objec-
tive, where the goal is to minimize the cost of the largest route among the routes
per day. For Min Max Deadline IRP on general metrics, we also gave logarithmic
approximations with respect to n and T, respectively. It remains open to design ap-
proximation algorithms with better guarantees for either versions of the Deadline
IRP, especially constant factors.
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Chapter 6

Inventory Routing Problem with
Facility Location

We study Inventory Routing with Facility Location assuming that facility to
client connections directly use the edge between them and call this variant Star In-
ventory Routing Problem with Facility Location. The Star Inventory Routing Problem
with Facility Location (SIRPFL) is inventory routing with the extra choice to build de-
pots at a subset of the locations for additional costs before the first day, which then
can be used to route deliveries throughout the entire time horizon. Formally, we are
given a graph G with edge weights we, a time horizon 1, . . . , T, a set D of demand
points (v, t) with dv

t units of demand due by day t, facility costs fv for vertex v, hold-
ing costs hv

s,t per unit of demand delivered on day s serving (v, t). The objective is
to open a set F ∈ V of facilities that can be used throughout the entire time horizon,
determine the set of demands to serve per day, and connect any visited clients to
opened facilities per day so that the total cost from facility openings, client-facility
connections, and storage costs for early deliveries is minimized.

6.1 Related Work

A related problem is the Tree IRPFL, which has the same requirements except
that the connected components are trees instead of stars. Tree IRPFL allows saving
connection costs by connecting clients through various other clients who are con-
nected to an opened facility. Single-day variants of Tree IRPFL have been studied
extensively. Some of the approximation ratios depend on the best known ratios of
other related problems. We use ρΠ to denote the best existing approximation ratio for
problem Π. For uncapacitated single-day Tree IRPFL, Goemans and Williamson [55]
provide a (2− 1

|V|−1 )-approximation. If clients are given in groups such that only
one client per group needs to be served, Glicksman and Penn [53] generalize the
previous result to (2− 1

|V|−1 )L-approximation, where L is the largest size of a group.
For the capacitated single-day case of Tree IRPFL, Harks et al. [58] provide a

4.38-approximation. They also give constant approximations for the prize collecting
variant and the cross-docking variant. For the group version of the problem, Harks
and König show a 4.38L-approximation. Ravi and Sinha [79] give a (ρST + ρUFL)-
approximation for a generalization of the capacitated single-day Tree IRPFL called
Capacitated-Cable Facility Location (CCFL). ST stands for Steiner Tree and UFL
stands for Uncapacitated Facility Location. In CCFL, the amount of demand de-
livered through each edge must be supported by building enough copies of cables
on the edge. They give a bicriteria (ρk−MEDIAN + 2)-approximation opening 2k de-
pots for the k-median version of the CCFL, which allows k depots to be located at no
cost.
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6.2 Inventory Access Problem

The Inventory Access Problem (IAP) is the single client case of the Inventory Rout-
ing Problem. The only decision needed is to determine on each day whether to visit
the client and how much supply to drop off. In SIRPFL, if we know where to build
the facilities, then the best way to connect clients would be to the closest opened fa-
cility. So once facility openings are determined, the remaining problem decomposes
into solving IAP for every client.

6.2.1 Uncapacitated IAP

Uncapacitated IAP is the simplest special case of SIRPFL. This can be solved by
an efficient dynamic program as follows. Let C(t, l) be the minimum cost to satisfy
all demands within the instance containing only demands up from day 1 to day t
such that l is the last day of service within day t in the optimal solution for this
restricted instance. To obtain the recurrence for C(t+ 1, l), observe that we must pay
routing cost wrv for the trip on day l and storage cost ∑t+1

s=l+1 hl,sds for all demands
occurring after day l since l is the latest visit before their due date (i.e. serving them
on day l minimizes the holding cost required to satisfy those demands). Then the
remaining cost is determined by the cost to serve an instance up to day l− 1 with last
service day k ≤ l − 1, minimized over the choices k. Hence the following recurrence
solves Uncapacitated IAP:

C(t + 1, l) =

{
mink≤l−1 C(l − 1, k) + ∑t+1

s=l+1 hl,sds + wrv, l 6= t + 1
mink≤t C(t, k) + wrv, l = t + 1

6.2.2 Capacitated Unsplittable IAP

To model more realistic scenarios, we now impose a capacity U on the supply
vehicle. The vehicle may make multiple trips in one day to meet the required de-
mands. Also, we assume that demands are unsplittable, i.e., each demand is within
capacity and must be completely delivered in one trip.

We show that Capacitated Unsplittable IAP is weakly NP-hard by reducing from
Number Partitioning.

Definition In Number Partitioning, we are given a set S of positive integers and wish
to determine whether there is a subset X ⊂ S such that ∑a∈X a = ∑b∈S\X b.

Theorem 6.2.1. Number Partitioning ≤P Capacitated Unsplittable IAP.

Proof. Let S be the set in a given instance of the Number Partitioning problem. We
will create an instance I of Capacitated Unsplittable IAP as follows. For each a ∈ S,
create a demand point on day ta with a units of demand. Set all holding costs to 0.
This means that serving all demands on the single day arg mina ta forms a valid opti-
mal solution. Set the capacity of the vehicle to U := ∑a∈S a

2 . Let the distance between
the depot and the client be any positive number wrv. We will show that there is a
solution of cost at most 2wrv to I if and only if S has a valid number partitioning.

First, we prove the forward direction. Assume that there is a solution to I of
cost at most 2wrv. Since the total demand is 2U, any solution must cost at least
2wrv. Furthermore, the only way to obtain cost exactly 2wrv is to drop off exactly
U = ∑a∈S a

2 units of demand per trip in two trips total. Let X be the set of numbers
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corresponding to the demands in the first trip. By definition of the trips, we have
∑a∈X a = U = ∑b∈S\X b.

Second, we prove the backward direction. Assume that there is a number par-
titioning X ⊂ S. Then serving X and S \ X each in a trip on day 1 forms a feasible
solution since ∑a∈X a = U = ∑b∈S\X b. The cost of each trip is wrv, which yields a
total cost of 2wrv.

6.2.3 Capacitated Splittable IAP

Here, we consider Capacitated Splittable IAP, in which a single demand is allowed
to be served in parts over multiple days. Let W be the distance between the depot
and the client. Denote by hs,t the holding cost to store one unit of demand from s to
deadline t. The demand with deadline t is denoted by dt. As before, U denotes the
capacity of the vehicle. We model Capacitated Splittable IAP by the following LP
relaxation.

min ∑
s≤T

Wys+ ∑
t∈D

∑
s≤t

hs,tdtxs,t

s.t. ∑
s≤t

xs,t ≥ 1 ∀t ∈ D (6.1)

ys ≥
T

∑
t=s

xs,tdt

U
∀s ≤ T (6.2)

ys ≥ xs,t ∀t ≤ T, s ≤ t (6.3)
xs,t ≥ 0∀t ∈ D, (6.4)

The variable ys indicates the number of trips on day s. Variable xs,t indicates the
fraction of dt to deliver on day s. Constraint 6.1 requires that each demand becomes
entirely delivered by the due date (possibly split over multiple days). Constraint 6.2
ensures that the total demand that day s serves do not exceed the total capacity
among all trips on day s. Constraint 6.3 ensures that there is a trip whenever some
delivery is made on day s.

Let (x, y) be an optimal LP solution. For convenience of the analysis, let r(x, y) =
∑s≤T Wys and h(x, y) = ∑t∈D ∑s≤t hs,tdtxs,t. We will use the LP values xs,t to deter-
mine when to visit the client and which demands to drop per visit. For each t ∈ D,
let st be the latest day for which ∑t

s=st
xs,t ≥ 1

2 . Denote by tL the latest day among
all demand days. We will keep track of the visit set S along with an anchor set A
consisting of demand days that caused the creation of new visits.

For the analysis, denote by Ts the set of all demand days t such that t was satisfied
by s in Algorithm 10.

Proposition 6.2.2. The holding cost of the solution from Algorithm 10 is at most 2h(x, y).

Proof. 1. Assume that t ∈ A. Then t was served on day st, i.e., incurs holding cost
hst,tdt. To pay for the holding cost, we use the following part of the LP

st

∑
s=1

hs,tdtxs,t ≥ hst,tdt

st

∑
s=1

xs,t

≥ hst,tdt

2
.

2. Assume that t /∈ A. Let s̃ be the latest day in S such that s̃ ≤ t. Then the
holding cost incurred by the demand on day t is hs̃,tdt. By definition of the
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Algorithm 10 Visit Rule for Capacitated Splittable IAP

1: Initialize A← {tL}.
2: Initialize S← {stL}.
3: for unsatisfied demand day t ≥ stl do
4: satisfy t by dropping off dt on day stL .
5: end for
6: while there is any unsatisfied demand do
7: Denote by t the unsatisfied demand day with the latest st
8: A← A ∪ {t}.
9: S← S ∪ {t}.

10: Satisfy t by dropping off dt on day st.
11: for unsatisfied demand day t̂ ≥ st̂ do
12: satisfy t̂ by dropping off dt̂ on day st.
13: end for
14: end while
15: Output the visit set S.

chosen visit days S, t was not chosen as anchor because st was earlier than s̃.
So we pay for the holding cost using

s̃

∑
s=1

hs,tdtxs,t ≥
st

∑
s=1

hs,tdtxs,t by st ≤ s̃

≥ hst,tdt

2

≥ hs̃,tdt

2
by monotonicity of holding costs.

Proposition 6.2.3. The routing cost of the solution from Algorithm 10 is at most 3r(x, y).

Proof. For each visit day st̃ ∈ S, the number of trips made is
⌈

∑t∈Tst̃
dt

U

⌉
≤

∑t∈Tst̃
dt

U + 1.

So the total number of trips made is at most ∑t̃∈A

(
∑t∈Tst̃

dt

U + 1
)
≤
(

∑t̃∈A
∑t∈Tst̃

dt

U

)
+

|A|. We will use 3 copies of ∑T
s=1 ys to pay for the routing cost–1 copy to pay for

the first term and 2 copies to pay for the second term. The total LP budget for the
number of trips is

T

∑
s=1

ys ≥
∑T

s=1 ∑T
t=s xs,tdt

U
by constraint 6.2

≥ ∑T
t=1 ∑t

s=1 xs,tdt

U

≥
T

∑
t=1

dt

U

≥ ∑
t̃∈A

∑t∈Tst̃
dt

U
.
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So we can pay for the first term using one copy of the LP budget from all the y
variables.

To pay for the second term, we will use constraint 6.3 instead so that we can use
disjoint intervals of y for different anchors. In particular, for anchor t̃, we will charge

2
t̃

∑
s=st̃

ys ≥
t̃

∑
s=st̃

xs,t

≥ 2 · 1
2

by definition of st̃

= 1.

By the construction of A, for any t1, t2 ∈ A, we have [st1 , t1] ∩ [st2 , t2] = ∅. So the
payment for different anchors use disjoint portions of y. Hence the second term can
be payed for within 2 copies of the budget provided by y.

Since all costs are bounded within 3 times the optimal cost, we have the following
Corollary.

Corollary 6.2.4. Algorithm 10 is a 3-approximation.

6.3 Uncapacitated SIRPFL

In this section, we give a constant approximation for Uncapacitated SIRPFL.
First, we state the LP formulation for Uncapacitated SIRPFL. Let zv indicate whether
a facility at v is opened, yuv

s indicate whether edge uv is built on day s, yuv
st indicate

whether to deliver the demand of (v, t) on day s from facility u, and xv
s,t indicate

whether demand point (v, t) is served on day s. Then Uncapacitated SIRPFL has the
following LP relaxation.

min ∑
v∈V

fvzv+ ∑
s≤T

∑
e∈E

weye
s+ ∑

(v,t)∈D
∑
s≤t

Hv
s,tx

v
s,t

s.t. ∑
s≤t

xv
s,t ≥ 1 ∀(v, t) ∈ D (6.5)

∑
u∈V

yuv
st ≥ xv

s,t ∀(v, t) ∈ D, s ≤ t (6.6)

zu ≥
T

∑
s=1

yuv
st ∀(v, t) ∈ D, u ∈ V (6.7)

yuv
s ≥ yuv

st ∀(v, t) ∈ D, u ∈ V, s ≤ t (6.8)
zu ≥yuv

s ∀u, v ∈ V, s ≤ T (6.9)

∑
u∈V

t2

∑
s=s′

yuv
st2
≥ ∑

u∈V

t2

∑
s=s′

yuv
st1
∀v ∈ V, t2 > t1 ≥ s′ (6.10)

zu, ye
r, ya

l,mxv
s,t ≥ 0 ∀u, v ∈ V, e, a ∈ E, r, m, t ≤ T, l ≤ m, s ≤ t. (6.11)

Constraint 6.5 requires that every demand point is served by its deadline. Con-
straint 6.6 enforces that v gets connected to some facility on day s if (v, t) is served on
day s. Constraint 6.7 ensures that facility u is opened to the extent that u is assigned
to any demand point over the time horizon. Observe that this lower bound for zu is
valid for any optimal solution since any demand point (v, t) only needs to connect
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to some facility on at most one day – the day that the demand at (v, t) is served. Any
extra connectivity would cause the solution to incur higher cost than necessary. So
optimal solutions satisfy constraint 6.7. Constraint 6.8 ensures that whenever (v, t)
is served on day s from u, an edge between u and v must be built on day s. Con-
straint 6.9 ensures that whenever some client v is connected to u on some day s, a
facility must e built at u. Constraint 6.10 is valid for optimal solutions since for any
v, if there is a service to (v, t1) within [s′, t1] and t1 < t2, then the service to t2 is either
on the same day or later, i.e., there must be a service to (v, t2) within [s′, t2].

Using the above LP formulation, we provide an LP rounding algorithm. Before
stating the algorithm, we define the necessary notation. First, let (x, y, z) be an opti-
mal LP solution. Let f (x, y, z), r(x, y, z), and h(x, y, z) denote the facility cost, routing
cost, and holding cost of (x, y, z) respectively. Define sv,t to be the latest day s∗ such
that ∑u∈V ∑t

s=s∗ yuv
st ≥ 1

2 . Ideally, we would like to use sv,t to bound the holding cost
incurred when serving (v, t) on day sv,t. However, to avoid high routing costs, not
all demands will get to be served by the desired sv,t. Instead, for each client v, an
appropriately chosen subset of {sv,t : t ≤ T}will be selected to be the days that have
service to v. To determine facility openings and client-facility connections, the idea
is to pick balls that gather enough density of zu values so that the cheapest facility
within it can be paid for by the facility cost part of the LP objective. To be able to
bound the routing cost, we would like to pick the radii of the balls based on the
amount of yuv

s values available from the LP solution. However, yuv
s by itself does not

give a good enough lower bound for zu. So we will assign disjoint portions of yuv
s to

yuv
st for different ts and ultimately use yuv

st to bound the facility cost. Then the disjoint
portions of yuv

s will be used to pay for the routing cost. With these goals in mind, we
now formally define the visit days and the radius for each client.

Fix a client v. The set Av of demand days t that v gets visited on their sv,t will be
assigned based on collecting enough yuv

st over u and s. We call the days in Av anchors
of v. Denote by tLv the latest day that has positive demand at v. We use Sv to keep
track of the service days for the anchors.

Algorithm 11 Visits for v

1: Initialize Av ← {tLv}.
2: Initialize Sv ← {sv,tLv

}.
3: Denote by t̃ the earliest anchor in Av.
4: while there is a positive demand at v on some before t̃ do
5: Denote by t the latest day before t̃ with positive demand at (v, t).
6: if t ≥ sv,t̃ then
7: Serve (v, t) on day sv,t̃.
8: else
9: Update Av ← Av ∪ {t}.

10: Update Sv ← Sv ∪ {sv,t}.
11: Update t̃← t.
12: end if
13: end while
14: Output the visit set Sv for v.

Define Wv,t = ∑u∈V ∑t
s=sv,t

wuvyuv
st . Let Wv = mint∈Av wv,t. Finally, define Bv =

{u ∈ V : wuv ≤ 4Wv}, which is a ball of radius 4Wv centered at v. For ball Bv, let
Fv = arg minq∈Bv fq. Simply, Fv is a location in Bv with the lowest facility cost. Now
we are ready to state the algorithm for opening facilities in Algorithm 12.
Denote by Bv1 , . . . , Bvl the balls picked into B by Algorithm 12.
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Algorithm 12 12-approximation for Uncapacitated SIRPFL

1: B ← ∅
2: while there is any ball Bv disjoint from all balls in B do
3: Add to B the ball Bvi of smallest radius
4: end while
5: Within each ball Bvi , open a facility at Fvi .
6: Assign each client v to the closest opened facility u(v).
7: For each v, serve it on all days in Av by building an edge from facility u(v) to v

per day s ∈ Av.

Proposition 6.3.1. The holding cost of the solution from the algorithm is at most 2h(x, y, z).

Proof. For each demand point (v, t), we will charge a disjoint part of twice the x
values in the LP solution to pay for the holding cost. In particular, to pay for the
holding cost incurred by (v, t), we charge ∑

sv,t
s=1 Hv

s,tx
v
s,t part of the LP solution. We

consider two cases: t ∈ Av and t /∈ Av.

1. In this case, assume that t ∈ Av. Then (v, t) is served on day sv,t, and incurs
a holding cost of Hv

sv,t,t. By definition of sv,t, we have ∑u∈V ∑t
s=sv,t+1 yuv

st < 1
2 .

Then

sv,t

∑
s=1

xv
s,t ≥ 1−

t

∑
s=sv,t+1

xv
s,t

≥ 1−
t

∑
s=sv,t+1

∑
u∈V

yuv
st

> 1− 1
2

=
1
2

So our budget of ∑
sv,t
s=1 Hv

s,tx
v
s,t is at least Hv

sv,t,t ∑
sv,t
s=1 xv

s,t ≥
Hv

sv,t ,t

2 .

2. In this case, assume that t /∈ Av. Let t̃ be the earliest anchor after t. Since t
is not an anchor, [sv,t, t] must have overlapped [sv,t̃, t̃]. So sv,t̃ ≤ t. So (v, t)
is served on sv,t̃. By constraint 6.10, we have sv,t ≤ sv,t̃. By monotonicity
of holding cost, the holding cost incurred by serving (v, t) on sv,t̃ is at most
Hv

sv,t,t ≤ 2 ∑
sv,t
s=1 Hv

s,tx
v
s,t.

Proposition 6.3.2. The routing cost of the solution from the algorithm is at most
12r(x, y, z).

Proof. In a similar manner, we will charge a disjoint portion of 12 times the y values
in the LP solution to pay for the routing cost. Note that only anchors cause new visit
days to be created in the algorithm. So consider a demand point (v, t) such that t is
an anchor for v.
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1. First, consider the case that v ∈ {v1, . . . , vl}. Then the routing cost to connect
(v, t) to the nearest opened facility is

WFv,v ≤ 4Wv

≤ 4Wv,t by definition of Wv

≤ 4 ∑
u∈V

t

∑
s=sv,t

wuvyuv
s by constraint 6.8.

Since it is within 4 times the LP budget, the desired claim holds.

2. Now, assume that v /∈ {v1, . . . , vl}. Then Bv overlaps Bv′ for some v′ of smaller
radius than Bv (otherwise Bv would have been chosen into B instead of the
larger balls that overlap Bv). Then the edge built to serve (v, t) connects Fv′ to
v. So the routing cost to serve (v, t) is

WFv′ ,v ≤Wv,v′ + Wv′,Fv′

≤ 2 · 4Wv + 4Wv since radius of Bv is at least radius of Bv′

≤ 12Wv

≤ 12Wv,t

≤ 12 ∑
u∈V

t

∑
s=sv,t

wuvyuv
s by constraint 6.8.

Observe that for every v and any two anchors t1, t2 for v, we have [sv,t1 , t1] ∩
[sv,t2 , t2] = ∅ by the construction of anchors. So each yuv

s is charged at most once
among all demands whose deadline correspond to anchors.

Before bounding the facility costs, we show a Lemma that will help prove the
desired bound.

Lemma 6.3.3. For all i ∈ {1, . . . , l}, we have ∑v∈Bvi
zv ≥ 1

4 .
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Proof. Suppose there is some i ∈ {1, . . . , l} such that ∑u∈Bvi
zu < 1

4 . Let t̂ =

arg mint Wvi ,t. Then

Wvi = Wv,t̂

= ∑
u∈V

t̂

∑
s=sv,t̂

wuvyuv
st̂

≥ ∑
u/∈Bvi

t̂

∑
s=sv,t̂

wuvyuv
st̂

≥ 4Wv ∑
u/∈Bvi

t̂

∑
s=sv,t̂

yuv
st̂ by u /∈ Bvi

≥ 4Wv( ∑
u∈V

t̂

∑
s=sv,t̂

yuv
st̂ − ∑

u∈Bvi

t̂

∑
s=sv,t̂

yuv
st̂ )

≥ 4Wv(
1
2
− ∑

u∈Bvi

t̂

∑
s=sv,t̂

yuv
st̂ ) by definition of sv,t

≥ 4Wv(
1
2
− ∑

u∈Bvi

zu) by constraint 6.7

> Wv by the supposition that ∑
u∈Bvi

zu <
1
4

, which leads to a contradiction.

Proposition 6.3.4. The facility cost of the algorithm’s solution is at most 4 f (x, y, z).

Proof. We will charge four times the z values of the LP solution to pay for the facil-
ities opened by the algorithm. Since the balls picked by Algorithm 12 are disjoint,
we can pay for each facility opened using the LP value in its ball. Consider ball Bvi

picked by the algorithm and its cheapest facility Fvi . Then the cost of opening Fvi is
at most fv for all v ∈ Bvi . So the facility cost for Fvi is

fFvi
≤ 4 ∑

v∈Bvi

zv fFvi

≤ 4 ∑
v∈Bvi

zv fv.

The first inequality follows from Lemma 6.3.3. The second inequality is due to Fvi

being the cheapest facility in the ball.

Corollary 6.3.5. Algorithm 12 is a 12-approximation for Uncapacitated SIRPFL.

6.4 Conclusion

We studied the Uncapacitated, Capacitated Unsplittable, and Capacitated Split-
table variants of IAP and provided a polynomial time algorithm, an NP-hardness
proof, and a 3-approximation, respectively. For the Uncapacitated SIRPFL, we gave
a 12-approximation by integrating rounding ideas for Facility Location and disjoint
intervals charging scheme from our 3-approximation for Capacitated Splittable IAP.
It remains open whether Capacitated Splittable IAP is NP-hard. It would also be
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interesting to obtain a constant approximation for Capacitated Unsplittable IAP. Fi-
nally, are there constant approximations for Capacitated Unsplittable SIRPFL and
Capacitated Splittable SIRPFL?
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Chapter 7

Conclusion

We studied ranking problems and three types of routing problems involving
scheduling deliveries. In the following, we summarize the results and open prob-
lems from each chapter.
Ranking In Chapter 2, we defined a new set of ranking problems motivated by or-
dering large sets of participants and tasks. We provided polynomial time algorithms
for all except for the Unconstrained k-near Chain Editing problem, for which we
showed NP-hardness and gave an O(kn) additive approximation. It still remains
open to obtain any approximation for the (both sides unconstrained) Chain Editing.
Also, is there a constant approximation for the (both sides unconstrained) Chain
Addition problem? Finally, is there an o(kn)-approximation for the Unconstrained
k-near Chain Editing problem?
Inventory Routing Problem Chapter 3 provided constant approximations for IRP
on line metrics. First, we proved a 5-approximation by rounding the LP. Second, we
showed a 26-approximation by appropriately pruning a primal dual method that
extends the wavelength idea of Levi et al. [67]. The primal dual phase by itself
produced solutions that could be super-constant factor far from the optimal solution.
In order to obtain a solution within constant factor of optimal cost, we sparsified
the visits and extended carefully chosen visits based on a partitioning of the line at
powers of 2 distances from the depot. The main open question is to improve the
O( log T

log log T )-approximation for IRP on arbitrary metrics. As an intermediate step, it
would also be interesting to obtain constant approximations for IRP on grids and
planar graphs.

Chapter 4 studied IRP on general metrics from a computational perspective. In-
spired by the Prize-Collecting Steiner Tree (PCST) reduction for periodic IRP [49],
we designed three heuristics that all use PCST (in different ways) as an intermediate
problem to ultimately find good IRP solutions. The local search heuristics reduced
large neighborhood searches to PCST problems. The greedy heuristic found sets to
cover demands by creating PCSTs with penalties that simulate holding costs of the
demands to be covered. The primal dual heuristic solved PCSTs to determine the
set of clients to visit at breakpoints of the dual growth. We tested the heuristics on
instances generated at the same parameter settings as the benchmark instances of
Archetti et al. [8]. The best heuristic among them was the local search with ADD
operations, which solved within 1.08 factor of the optimal cost at three orders of
magnitude the speed of Gurobi. Since previous computational literature have fo-
cused on the capacitated case of IRP, rather than the uncapacitated version studied
here, a natural question is to design heuristics that perform as competitively on the
Capacitated IRP.
Deadline Inventory Routing Problem In Chapter 5, we introduced the Deadline
Inventory Routing Problem, which only has routing costs, but whose optimal solu-
tions require carefully aggregating visits satisfying depletion times to minimize the
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total routing cost over time. We gave a log(n)-approximation by first finding solu-
tions whose trees per day are nondecreasing and then showing that arbitrary trees
can be converted to nondecreasing trees losing at most a log(n) factor. On the other
hand, we provide a class of instances on which optimal solutions are log(n) times
cheaper than nondecreasing solutions. Since the number of days T is incomparable
to the number of clients n, we also proved a log(T)-approximation by LP rounding.
In the published version [21] of this Chapter with co-authors, the Min Max objec-
tive was considered, i.e. minimize the cost of the largest route among all the days.
The results for the Min Max version are also logarithmic approximations for general
metrics. Natural open questions are to obtain better than logarithmic factors for both
minimizing the total cost and minimizing the highest cost, respectively.
Inventory Routing Problem with Facility Location Finally, Chapter 6 integrates the
Inventory Routing Problem with Facility Location, which introduces the extra choice
of where to open facilities in the beginning and which client-facility connections to
make per day. First, we studied the special case that only one depot and one client
are present, which we called the Inventory Access Problem (IAP). For the Unca-
pacitated IAP, we provided a simple dynamic program. For the Capacitated Un-
splittable IAP, we gave an NP-hardness reduction from Number Partition. For the
Capacitated Splittable IAP, we proved a 3-approximation by rounding the LP. For
the more general Star Inventory Routing Problem with Facility Location, we gave a
12-approximation by combining rounding ideas from Facility Location and the vis-
itation ideas from our 3-approximation for Capacitated Splittable IAP. It is open to
determine whether Capacitated Splittable IAP is NP-hard. Despite the capacity con-
straints’ similarity to Knapsack, the allowance of splitting up demands fractionally
potentially differentiates it from Knapsack. Another interesting direction would be
to approximate the Capacitate Unsplittable IAP, which requires more delicate coor-
dination of packing demands into trips to make the best use of the capacity. Finally,
constant approximations for the Capacitated Splittable SIRPFL and Capacitated Un-
splittable SIRPFL remain open.
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