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Abstract

We introduce a new stochastic process called
the generalised Wishart process (GWP). It
is a collection of positive semi-definite ran-
dom matrices indexed by any arbitrary in-
put variable. We use this process as a prior
over dynamic (e.g. time varying) covariance
matrices 3(t). The GWP captures a diverse
class of covariance dynamics, naturally han-
dles missing data, scales nicely with dimen-
sion, has easily interpretable parameters, and
can use input variables that include covari-
ates other than time. We describe how to
construct the GWP, introduce general proce-
dures for inference and prediction, and show
that it outperforms its main competitor, mul-
tivariate GARCH, even on financial data that
especially suits GARCH.

1 INTRODUCTION

Modelling the dependencies between random variables
is fundamental in machine learning and statistics. Co-
variance matrices provide the simplest measure of
dependency, and therefore much attention has been
placed on modelling covariance matrices. However,
the often implausible assumption of constant variances
and covariances can have a significant impact on sta-
tistical inferences.

In this paper, we are concerned with modelling the dy-
namic covariance matrix X(t) = cov|[y|t] (multivariate
volatility), for high dimensional vector valued obser-
vations y(t). These models are especially important
in econometrics. Brownlees et al. (2009) remark that
“The price of essentially every derivative security is af-
fected by swings in volatility.” Indeed, Robert Engle
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and Clive Granger won the 2003 Nobel prize in eco-
nomics “for methods of analysing economic time series
with time-varying volatility”. The returns on major
equity indices and currency exchanges are thought to
have a time changing variance and zero mean, and
GARCH (Bollerslev, 1986), a generalisation of En-
gle’s ARCH (Engle, 1982), is arguably unsurpassed at
predicting the volatilities of returns on these equity
indices and currency exchanges (Poon and Granger,
2005; Hansen and Lunde, 2005; Brownlees et al., 2009).
Multivariate volatility models can be used to under-
stand the dynamic correlations (or co-movement) be-
tween equity indices, and can make better univariate
predictions than univariate models. A good estimate
of the covariance matrix X(¢) is also necessary for port-
folio management. An optimal portfolio allocation w*
is said to maximise the Sharpe ratio (Sharpe, 1966):

_ w ' r(t) , 0

w ' X(H)w

Portfolio return
Portfolio risk

where 7(t) are expected returns for each asset and 3(t)
is the predicted covariance matrix for these returns.
One may also wish to maximise the portfolio return
w ' r(t) for a fixed level of risk: /wTX(t)w = . Mul-
tivariate volatility models are also used to understand
contagion: the transmission of a financial shock from
one entity to another (Bae et al., 2003). And generally
— in econometrics, machine learning, climate science,
or otherwise — it is useful to know input dependent un-
certainty, and the dynamic correlations between mul-
tiple entities.

Despite their importance, existing multivariate volatil-
ity models suffer from tractability issues and a lack
of generality. For example, multivariate GARCH
(MGARCH) has a number of free parameters that
scales with dimension to the fourth power, and in-
terpretation and estimation of these parameters is
difficult to impossible (Silvennoinen and Terésvirta,
2009; Gouriéroux, 1997), given the constraint that
Y(t) must be positive definite at all points in time.



Thus MGARCH, and alternative multivariate stochas-
tic volatility models, are generally limited to studying
processes with fewer than 5 components (Gouriéroux
et al., 2009). Recent efforts have led to simpler but
less general models, which make assumptions such as
constant correlations (Bollerslev, 1990).

We hope to unite machine learning and economet-
rics in an effort to solve these problems. We intro-
duce a stochastic process, the generalised Wishart pro-
cess (GWP), which we use as a prior over covari-
ance matrices X(¢) at all times ¢t. We call it the gen-
eralised Wishart process, since it is a generalisation
of the first Wishart process defined by Bru (1991).!
To great acclaim, Bru’s Wishart process has recently
been used (Gouriéroux et al., 2009) in multivariate
stochastic volatility models (Philipov and Glickman,
2006; Harvey et al., 1994). This prior work is lim-
ited for several reasons: 1) it cannot scale to greater
than 5 x 5 covariance matrices, 2) it assumes the in-
put variable is a scalar, 3) it is restricted to using
an Ornstein-Uhlenbeck (Brownian motion) covariance
structure (which means (¢t + a) and X(t — a) are in-
dependent given 3(t), and complex interdependencies
cannot be captured), 4) it is autoregressive, and 5)
there are no general learning and inference procedures.
The generalised Wishart process (GWP) addresses all
of these issues. Specifically, in our GWP formulation,

e Estimation of ¥(t) is tractable in at least 200 di-
mensions, even without a factor representation.

e The input variable can come from any arbitrary
index set X, just as easily as it can represent time.
This allows one to condition on covariates like in-
terest rates.

e One can easily handle missing data.

e One can easily specify a vast range of co-
variance structures (periodic, smooth, Ornstein-
Uhlenbeck, ... ).

e We develop Bayesian inference procedures to
make predictions, and to learn distributions over
any relevant parameters. Aspects of the covari-
ance structure are learned from data, rather than
being a fixed property of the model.

Overall, the GWP is versatile and simple. It does
not require any free parameters, and any optional pa-
rameters are easy to interpret. For this reason, it
also scales well with dimension. Yet, the GWP pro-
vides an especially general description of multivariate
volatility — more so than the most general MGARCH

'Our model is also related to Gelfand et al. (2004)’s
coregionalisation model, which we discuss in section 5.

specifications. In the next section, we review Gaus-
sian processes (GPs), which are used to construct the
GWP we use in this paper. In the following sec-
tions we then review the Wishart distribution, present
a GWP construction (which we use as a prior over
3(t) for all t), introduce procedures to sample from
the posterior over X(t), review the main competitor,
MGARCH, and present experiments comparing the
GWP to MGARCH on simulated and financial data.
These experiments include a 5 dimensional data set,
based on returns for NASDAQ, FTSE, NIKKEI, TSE,
and the Dow Jones Composite, and a set of returns
for 3 foreign currency exchanges. We also have a 200
dimensional experiment to show how the GWP can be
used to study high dimensional problems.

Also, although it is not the focus of this paper, we
show in the inference section how the GWP can be
used as part of a new GP based regression model that
accounts for changing correlations. In other words, it
can be used to predict the mean p(t) together with
the covariance matrix X(t) of a multivariate process.
Alternative GP based multivariate regression models
for p(t), which account for fixed correlations, were re-
cently introduced by Bonilla et al. (2008), Teh et al.
(2005), and Boyle and Frean (2004). We develop this
extension, and many others, in a forthcoming paper.

2 GAUSSIAN PROCESSES

We briefly review Gaussian processes, since the gener-
alised Wishart process is constructed from GPs. For
more detail, see Rasmussen and Williams (2006).

A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian dis-
tribution. Using a Gaussian process, we can define a
distribution over functions u(x):

u(z) ~ GP(m(z), k(z, ), (2)

where z is an arbitrary (potentially vector valued) in-
put variable, and the mean m(z) and kernel function
k(x,2’) are respectively defined as

m(x) = Elu(z)], 3)
k(xz,2") = cov(u(z),u(z")). (4)

This means that any collection of function values has
a joint Gaussian distribution:

(u(xl),u(xg),...,u(xN))T NN(/"aK)v (5)

where the N x N covariance matrix K has entries
K;; = k(x;,z;), and the mean p has entries p; =
m(x;). The properties of these functions (smoothness,
periodicity, etc.) are determined by the kernel func-
tion. The squared exponential kernel is popular:

k(x,2') = exp(—0.5||z — 2'||*/1?). (6)



Functions drawn from a Gaussian process with this
kernel function are smooth, and can display long range
trends. The length-scale hyperparameter | is easy to
interpret: it determines how much the function values
u(z) and u(z + a) depend on one another, for some
constant a.

Autoregressive processes such as
u(t +1) = u(t) + (), (7)
e(t) ~ N(0,1), (8)

are widely used in time series modelling and are a par-
ticularly simple special case of Gaussian processes.

3 WISHART DISTRIBUTION

The Wishart distribution defines a probability density
function over positive definite matrices .S:

|S‘(V—D—1)/2
2VD/2|V‘V/21—‘D(Z//2)

P(SIV,v) = exp(-u(VS)),

(9)
where V is a D x D positive definite scale matrix, and
v > D is the number of degrees of freedom. This
distribution has mean vV and mode (D —v — 1)V for
v>D+1. I'p(+) is the multivariate gamma function:

D
Tp(v/2) =aPP-DAT]T(/2+ (1-4)/2). (10)

j=1

The Wishart distribution is a multivariate generalisa-
tion of the Gamma distribution when v is real valued,
and the chi-square (x?) distribution when v is inte-
ger valued. The sum of squares of univariate Gaussian
random variables is chi-squared distributed. Likewise,
the sum of outer products of multivariate Gaussian
random variables is Wishart distributed:

S:ZuiuijD(V,V), (11)
1=1

where the u; are i.i.d. N'(0,V) D-dimensional random
variables, and Wp (V, v) is a Wishart distribution with
D x D scale matrix V, and v degrees of freedom. S
is a D x D positive definite matrix. If D =V =1
then W is a chi-square distribution with v degrees of
freedom. S~! has the inverse Wishart distribution,
WBl (V=1 v), which is a conjugate prior for covariance
matrices of zero mean Gaussian distributions.

4 A GENERALISED WISHART
PROCESS CONSTRUCTION

We saw that the Wishart distribution is constructed
from multivariate Gaussian distributions. Essentially,

by replacing these Gaussian distributions with Gaus-
sian processes, we define a process with Wishart
marginals — an example of a generalised Wishart pro-
It is a collection of positive semi-definite ran-
dom matrices indexed by any arbitrary (potentially
high dimensional) variable . For clarity, we assume
that time is the input variable, even though it takes
no more effort to use a vector-valued variable = from
any arbitrary set. Everything still applies if we re-
place t with . In an upcoming journal submission
(Wilson and Ghahramani, 2011b), we introduce sev-
eral new constructions, some of which do not have
Wishart marginals.

CESS.

Suppose we have vD independent Gaussian process
functions, w;q(t) ~ GP(0,k), where i = 1,...,v and
d = 1,...,D. This means cov(u;q(t),uyq(t")) =
k(t, t’)éiifédd/, and (uid(t1), uid(tg), ... ,uid(tN))T ~
N (0, K), where §;; is the Kronecker delta, and K is an
N x N covariance matrix with elements K;; = k(t;,t;).
Let @;(t) = (ui1(t),...,u;p(t))", and let L be the
lower Cholesky decomposition of a D x D scale matrix
V, such that LLT = V. Then at each ¢ the covariance
matrix % (¢) has a Wishart marginal distribution,

S() = 3" L (il (0L ~Wo(V,e),  (12)

subject to the constraint that the kernel function
k(t,t) = 1.

We can understand (12) as follows. Each element of
the vector ;(t) is a univariate Gaussian with zero
mean and variance k(¢,t) = 1. Since these elements
are uncorrelated, ;(t) ~ N (0, ). Therefore Lu;(t) ~
N(0,V), since E[La;(t)a;(t)"LT) = LILT = LLT =
V. We are summing the outer products of A(0,V)
random variables, and there are v terms in the sum, so
by definition this has a Wishart distribution Wp(V, v).
It was not a restriction to assume k(¢,t) = 1, since any
scaling of k can be absorbed into L. In a forthcoming
journal paper (Wilson and Ghahramani, 2011b), we
use the following formal and general definition, for a
GWP indexed by a variable z in an arbitrary set X

Definition 4.1. A Generalised Wishart Process is a
collection of positive semi-definite random matrices in-
dexed by r € X and constructed from outer products
of points from collections of stochastic processes like in
(12). If the random matrices have 1) Wishart marginal
distributions, meaning that X(x) ~ Wp,(V,v) at every
x € X, and 2) dependence on x as defined by a kernel
k(x,2'), then we write

S(z) ~ GWP(V,v, k(z,2")). (13)

The GWP notation of Definition 4.1 is just like the no-
tation for a Wishart distribution, but includes a kernel
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Figure 1: A draw from a generalised Wishart process
(GWP). Each ellipse is a 2 X 2 covariance matrix indexed
by time, which increases from left to right. The rotation
indicates the correlation between the two variables, and
the major and minor axes scale with the eigenvalues of the
matrix. Like a draw from a Gaussian process is a collection
of function values indexed by time, a draw from a GWP is
a collection of matrices indexed by time.

which controls the dynamics of how X(t) varies with
t. This pleasingly compartmentalises the GWP, since
there is separation between the shape parameters and
temporal (or spatial) dynamics parameters. We show
an example of these dynamics in Figure 1 with a draw
from a GWP.

Using this construction, we can also define a gener-
alised inverse Wishart process (GIWP). If X(t) ~
GWP, then inversion at each value of ¢t defines a draw
R(t) = X(t)~! from the GIWP. The conjugacy of the
GIWP with a Gaussian likelihood could be useful when
doing Bayesian inference.

We can further extend this construction by replacing
the Gaussian processes with copula processes (Wil
son and Ghahramani, 2010). For example, as part
of Bayesian inference we could learn a mapping that
would transform the Gaussian processes u;q to Gaus-
sian copula processes with marginals that better suit
the covariance structure of our data set. In a forthcom-
ing journal paper (Wilson and Ghahramani, 2011b),
we elaborate on such a construction, which allows the
marginals to be Wishart distributed with real valued
degrees of freedom v. In this journal paper we also
introduce efficient representations, and “heavy-tailed”
representations.

The formulation we outlined in this section is differ-
ent from other multivariate volatility models in that
one can specify a kernel function k(t,t') that controls
how X(t) varies with ¢ — for example, k(t,t") could be
periodic — and ¢ need not be time: it can be an arbi-
trary input variable, including covariates like interest
rates, and does not need to be represented on an evenly
spaced grid. In the next section we introduce, for the
first time, general inference procedures for making pre-

dictions when using a Wishart process prior, allowing
1) the model to scale to hundreds of dimensions with-
out a factor representation, and 2) for aspects of the
covariance structure to be learned from data. These
are based on recently developed Markov chain Monte
Carlo techniques (Murray et al., 2010). We also intro-
duce a new method for doing multivariate GP based
regression with dynamic correlations.

5 BAYESIAN INFERENCE

Assume we have a generalised Wishart process prior
on a dynamic D x D covariance matrix:

S(t) ~ GWP(V, v, k) . (14)

We want to sample from the posterior X(t) given a D-
dimensional data set D = {y(t,) : n = 1,...,N}.
We explain how to do this for a general likelihood
function, p(D|%(t)), by finding the posterior distri-
butions over the parameters in the model, given the
data D. These parameters are: a vector of all rel-
evant GP function values u, the hyperparameters of
the GP kernel function 6, the degrees of freedom v,
and L, the lower cholesky decomposition of the scale
matrix V (LLT = V). The graphical model in Figure
1s (of supplementary material 2) shows all the relevant
parameters and conditional dependence relationships.
The free parameters L and 6 have clear interpreta-
tions: L gives a prior on the expectation of X(t) for all
t, and @ describes how this structure changes with time
— how much past data, for instance, one would need to
make an accurate forecast. The degrees of freedom v
control how concentrated our prior is around our ex-
pected value of 3(t); the smaller v, the more broad our
prior is on 3(t). Learning the values of these parame-
ters provides useful information. In the supplementary
material, we show explicitly how the kernel function k
controls the autocovariances for entries of X(¢) at dif-
ferent times.

We can sample from these posterior distributions us-
ing Gibbs sampling (Geman and Geman, 1984), a
Markov chain Monte Carlo algorithm where initialis-
ing {u, 80, L,v} and then sampling in cycles from

p(u|0, L,v,D) x p(D|u, L,v)p(u|f), (15)
p(6lu, L, v, D) « p(u|@)p(0), (16)
p(L|0,u,v,D) x p(D|u, L,v)p(L), (17)
p(v|6,u, L, D) x p(D|u, L,v)p(v), (18)

will converge to samples from p(u, 8, L, v|D). We will
successively describe how to sample from the poste-
rior distributions (15), (16), (17), and (18). In our

http://mlg.eng.cam.ac.uk/andrew /gwpsupp.pdf



discussion we assume there are N data points (one
at each time step or input), and D dimensions. We
then explain how to make predictions of X(t,) at some
test input t,. Finally, we discuss a potential likelihood
function, and how the GWP could also be used as part
of a new GP based model for multivariate regression
with outputs that have changing correlations.

5.1 SAMPLING THE GP FUNCTIONS

In this section we describe how to sample from the
posterior distribution (15) over the Gaussian process
function values u. We order the entries of u by fix-
ing the degrees of freedom and dimension, and run-
ning the time steps from n = 1,..., N. We then in-
crement dimensions, and finally, degrees of freedom.
So w is a vector of length NDv. As before, let K
be an N x N covariance matrix, formed by evaluat-
ing the kernel function at all pairs of training inputs.
Then the prior p(u|@) is a Gaussian distribution with
NDv x NDv block diagonal covariance matrix Kp,
formed using Dv of the K matrices; if the hyperpa-
rameters of the kernel function change depending on
dimension or degrees of freedom, then these K matri-
ces will be different from one another. In short,

p(u|0) = N(0,Kp). (19)

With this prior, and the likelihood formulated in terms
of the other parameters, we can sample from the poste-
rior (15). Sampling from this posterior is difficult, be-
cause the Gaussian process function values are highly
correlated by the Kp matrix. We use Elliptical Slice
Sampling (Murray et al., 2010): it has no free param-
eters, jointly updates every element of u, and was es-
pecially designed to sample from posteriors with cor-
related Gaussian priors. We found it effective.

5.2 SAMPLING OTHER PARAMETERS

We can similarly obtain distributions over the other
parameters. The priors we use will depend on the
data we are modelling. We placed a vague lognor-
mal prior on @ and sampled from the posterior (16)
using axis aligned slice sampling if 8 was one dimen-
sional, and Metropolis Hastings otherwise. We also
used Metropolis Hastings to sample from (17), with a
spherical Gaussian prior on the elements of L. To sam-
ple (18), one can use reversible jump MCMC (Green,
1995; Robert and Casella, 2004). But in our experi-
ments we set ¥ = D+ 1, letting the prior be as flexible
as possible, and focus on other aspects of our model.
In an upcoming journal paper (Wilson and Ghahra-
mani, 2011b), we introduce a GWP construction with
real valued degrees of freedom, where it is easy to sam-
ple from p(v|D). Although learning L is not expensive,

one might simply wish to set it by taking the empir-
ical covariance of any data not used for predictions,
dividing by the degrees of freedom, and then taking
the lower cholesky decomposition.

5.3 MAKING PREDICTIONS

Once we have learned the parameters {u, 0, L, v}, we
can find a distribution over X(t.) at a test input t..
To do this, we must infer the distribution over u, — all
the relevant GP function values at t,:

Uy = [uu(t*), . ,ulD(t*),ugl(t*), . ,ng(t*), (20)

cotp1 () - up(t)] T
Consider the joint distribution over u and w,:

Kg AT
1] [
A I,

U

). (21)

Supposing that u, and w respectively have p and ¢
elements, then A is a p X ¢ matrix of covariances be-
tween the GP function values u, and u at all pairs of
the training and test inputs: A;; = ki (ts, tmod(N+1,5))
if14(i—1)N <j <iN, and 0 otherwise. The kernel
function k; may differ from row to row, if it changes
depending on the degree of freedom or dimension; for
instance, we could have a different length-scale for each
new dimension. I, is a p X p identity matrix represent-
ing the prior independence between the GP function
values in u,. Conditioning on u, we find

usu ~ N(AKg'u, I, — AK5'AT). (22)

We can then construct X(t.) using equation (12) and
the elements of u.,.

5.4 LIKELTHOOD FUNCTION

So far we have avoided making the likelihood explicit;
the inference procedure we described will work with a
variety of likelihoods parametrized through a matrix
3(t), such as the multivariate ¢ distribution. However,
assuming for simplicity that each of the variables y(t,,)
has a Gaussian distribution,

y(t) ~ N(u(t), (1)), (23)
then the likelihood is

N
p(Plu(t), (1) = [T p(y(ta)ln(tn), £(tn))

N
I 1272(tn) 712 exp[—
n=1



— p(tn).

We can learn a distribution over p(t), in addition to
Y(t). One possible specification would be to let pu(t)
be a separate vector of Gaussian processes:

where w(t,) = y(t,)

p(t) =ty (t) - (25)

We discuss this further in an upcoming paper where
we develop a multivariate Gaussian process regres-
sion model which accounts for dynamic correlations
between the outputs.

Alternative models, which account for fixed correla-
tions, have recently been introduced by Bonilla et al.
(2008), Teh et al. (2005), and Boyle and Frean (2004).
Rather than use a GP based regression as in (25),
Gelfand et al. (2004) combine a spatial Wishart pro-
cess with a parametric linear regression on the mean,
to make correlated mean predictions in a 2D spatial
setting. There are some important differences in our
methodology: 1) the correlation structure is a fixed
property of their model (e.g. they do not learn the pa-
rameters of a kernel function and so the autocorrela-
tions are not learned from data), 2) they are not inter-
ested in developing a model of multivariate volatility;
they do not explicitly evaluate or provide a means to
forecast dynamic correlations, 3) the prior expectation
E[X(¢)] at each ¢ is diagonal (which is not what we ex-
pect when applying a multivariate volatility model),
4) the regression on p(x) is linear, 5) the observations
must be on a regularly spaced grid (no missing observa-
tions), and perhaps most importantly, 6) the inference
relies solely on Metropolis Hastings with Gaussian pro-
posals, which is not tractable for p > 3, and will not
mix efficiently as the strong GP prior correlations are
not accounted for (Murray et al., 2010). In this paper
we focus on making predictions of X(t), setting p = 0.
In an upcoming paper we develop and implement a
multivariate GP regression model which accounts for
dynamic correlations between the outputs, like we have
briefly described in this section.

5.5 COMPUTATIONAL COMPLEXITY

Our method is mainly limited by taking the cholesky
decomposition of the block diagonal Kp, a NDv x
NDv matrix. However, chol(blkdiag(A, B,...)) =
blkdiag(chol(A), chol(B),...). So in the case with
equal length-scales for each dimension, we only need
to take the cholesky of an N x N matrix K, an O(N?3)
operation, independent of dimension! In the more
general case with D different length-scales, it is an
O(DN?) operation. The total “training” complexity
therefore amounts to one O(N?3) or one O(DN?) oper-
ation. Sampling then requires likelihood evaluations,
which cost O(NvD?) operations. Thus we could in

principle go to about 1000 dimensions, assuming v
is O(D), and for instance, a couple years worth of
financial training data, which is typical for GARCH
(Brownlees et al., 2009). In practice, MCMC may be
infeasible for very high D, but we have found Elliptical
Slice Sampling incredibly robust. Overall, this is im-
pressive scaling — without further assumptions in our
model, we can go well beyond 5 dimensions with full
generality. In the supplementary material we have a
200 dimensional experiment as an empirical accomp-
inament to this discussion.

6 MULTIVARIATE GARCH

We compare predictions of ¥(¢) made by the gener-
alised Wishart process to those made by multivari-
ate GARCH (MGARCH), since GARCH (Bollerslev,
1986) is extremely popular and arguably unsurpassed
at predicting the volatility of returns on equity indices
and currency exchanges (Poon and Granger, 2005;
Hansen and Lunde, 2005; Brownlees et al., 2009).

Consider a zero mean D dimensional vector stochastic
process y(t) with a time changing covariance matrix
Y(t) as in (23). In the general MGARCH framework,

y(t) = 2(1)*n(1), (26)

where 7(t) is an i.i.d. vector white noise process with
E[n(t)n(t)T] = I, and X(t) is the covariance matrix of
y(t) conditioned on all information up until time ¢ — 1.

The first and most general MGARCH model, the VEC
model of Bollerslev et al. (1988), specifies ¥ as

q P
vech(X;) = ao—l—z Aivech(yt_iy;_i)—&—z Bjvech(X;_;).
i=1 j=1

(27)
A; and Bj are D(D +1)/2 x D(D + 1)/2 matrices of
parameters, and ag is a D(D + 1)/2 x 1 vector of pa-
rameters.®> The vech operator stacks the columns of
the lower triangular part of a D x D matrix into a vec-
tor of length D(D + 1)/2. For example, vech(X) =
(211, 221, ey ZDla 222, ey EDQ, ey EDD)T. This
model is general, but difficult to use. There are
(p+q)(D(D+1)/2)?>+ D(D +1)/2 parameters! These
parameters are hard to interpret, and there are no
conditions under which ¥; is positive definite for all
t. Gouriéroux (1997) discusses the challenging (and
sometimes impossible) problem of keeping ¥; positive
definite. Training is done by a constrained maximum
likelihood, where the log likelihood is given by

N

1 _
log(2m) — 5 > llog S +y/, T ], (28)
t=1

ND

L=

3We use %(t) and ¥; interchangeably.



supposing that n; ~ AN(0,I), and that there are N
training points.

Subsequent efforts have led to simpler but less gen-
eral models. We can let A; and B; be diagonal ma-
trices. This model has notably fewer (though still
(p + ¢+ 1)D(D + 1)/2) parameters, and there are
conditions under which >; is positive definite for all
t (Engle et al., 1994). But now there are no interac-
tions between the different conditional variances and
covariances. A popular variant assumes constant cor-
relations between the D components of y, and only
lets the marginal variances — the diagonal entries of
Y(t) — vary (Bollerslev, 1990).

We compare to the ‘full’ BEKK variant of Engle and
Kroner (1995), as implemented by Kevin Shepphard
in the UCSD GARCH Toolbox.* We chose BEKK
because it is the most general MGARCH variant in
widespread use. We use the first order model:

Y =CC" + ATy, 1yl JA+B"%, 1B, (29)

where A, B and C are D x D matrices of parameters. C'
is lower triangular to ensure that ¥; is positive definite
during maximum likelihood training. For a full review
of MGARCH, see Silvennoinen and Terasvirta (2009).

7 EXPERIMENTS

In our experiments, we predict the covariance matrix
for multivariate observations y(t) as 3(t) = E[S(¢)|D].
These experiments closely follow Brownlees et al.
(2009), a rigorous empirical comparison of GARCH
models. We use a Gaussian likelihood, as in (24), ex-
cept with a zero mean function. We make historical
predictions, and one step ahead forecasts. Historical
predictions are made at observed time points, or be-
tween these points. The one step ahead forecasts are
predictions of (¢4 1) taking into account all observa-
tions until time ¢. Historical predictions can be used,
for example, to understand the nature of covariances
between equity indices during a past financial crisis.

To make these predictions we learn distributions over
the GWP parameters through the Gibbs sampling pro-
cedure outlined in section 5. The kernel functions
we use are solely parametrized by a one dimensional
length-scale [, which indicates how dependent X(¢) and
3(t + a) are on one another. We place a lognormal
prior on the length-scale, and sample from the poste-
rior with axis-aligned slice sampling.

For each experiment, we choose a kernel function we
want to use with the GWP. We then compare to a
GWP that uses an Ornstein-Uhlenbeck (OU) kernel

*http:/ /www.kevinsheppard.com/wiki/UCSD_GARCH

function, k(t,t') = exp(—|t — t'|/l). Even though we
are still taking advantage of the inference procedures
in the GWP formulation, we refer to this variant of
GWP as a simple Wishart process (WP), since the
classic Bru (1991) construction is like a special case of
a generalised Wishart process restricted to using a one
dimensional GP with an OU covariance structure.

To assess predictions we use the Mean Squared Er-
ror (MSE) between the predicted and true covariance
matrices, which is always safe since we never observe
the true X (¢). When the truth is not known, we use
the proxy S;;(t) = vi(t)y;(t), to harmonize with the
econometrics literature. g; is the i*" component of the
multivariate observation y(¢). This is intuitive because
Ely; (t)y;(t)] = 2;;(t), assuming y(t) has a zero mean.
In a thorough empirical study, Brownlees et al. (2009)
use the univariate analogue of this proxy. We do not
use likelihood for assessing historical predictions, since
that is a training error (for MGARCH), but we do use
log likelihood (L) for forecasts.

We begin by generating a 2 x 2 time varying covariance
matrix ¥,(¢) with periodic components, and simulat-
ing data at 291 time steps from a Gaussian:

y(t) ~ N(0,Zp(1)) . (30)

Periodicity is especially common to financial and cli-
mate data, where daily trends repeat themselves. For
example, the intraday volatility on equity indices and
currency exchanges has a periodic covariance struc-
ture. Andersen and Bollerslev (1997) discuss the lack
of — and critical need for — models that account for
this periodicity. In the GWP formulation, we can eas-
ily account for this by using a periodic kernel func-
tion, whereas in previous Wishart process volatility
models, we are stuck with an OU covariance struc-
ture. We reconstruct X,(t) using the kernel k(¢,t') =
exp(—2sin((t—1t')?)/I?). We reconstructed the histori-
cal ¥, at all 291 data points, and after having learned
the parameters for each of the models from the first
200 data points, made one step forecasts for the last
91 points. Table 1 and Figure 2 show the results. We
call this data set PERIODIC. The GWP outperforms
the competition on all error measures. It identifies the
periodicity and underlying smoothness of ¥, that nei-
ther the WP nor MGARCH accurately discern: both
are too erratic. MGARCH is especially poor at learn-
ing the time changing covariance in this data set.

For our next experiment, we predict X(t) for the re-
turns on three currency exchanges — the Canadian to
US Dollar, the Euro to USD, and the USD to the Great
Britain Pound — in the period 15/7/2008-15/2/2010;
this encompasses the recent financial crisis and so is of

particular interest to economists.” We call this data

5We define a return as ry = log(Pi+1/P:), where P; is
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Figure 2: Reconstructing the historical ¥,(¢t) for the
PERIODIC data set. We show the truth (green), and GWP
(blue), WP (dashed magenta), and MGARCH (thin red)
predictions. a) and b) are the marginal variances (diagonal
elements of ¥,(t)), and c) is the covariance.

set EXCHANGE. We use the proxy S;;(t) = vi(t)y;(t).
With the GWP, we use the squared exponential ker-
nel k(t,t') = exp(—0.5(t — t')?/1?). We make 200 one
step ahead forecasts, having learned the parameters
for each of the models on the previous 200 data points.
We also make 200 historical predictions for the same
data points as the forecasts. Results are in Table 1.

Unfortunately, we cannot properly assess predictions
on natural data, because we do not know the true
3(t). For example, whether we use MSE with a proxy,
or likelihood, historical predictions would be assessed
with the same data used for training. In consideration
of this problem, we generated a time varying covari-
ance matrix i(t) based on the empirical time vary-
ing covariance of the daily returns on five equity in-
dices - NASDAQ, FTSE, TSE, NIKKEI, and the Dow
Jones Composite — over the period from 15/2/1990-
15/2/2010. We then generated a return series by sam-
pling from a multivariate Gaussian at each time step
using %(t). As seen in Figure 2s (supplementary),
the generated return series behaves like equity index
returns. This method is not faultless; for example,
we assume that the returns are normally distributed.
However, the models we compare between also make
this assumption, and so no model is given an unfair ad-
vantage. And there is a critical benefit: we compare
predictions with the true underlying 3(t).

the price on day t¢.

Table 1: Error for predicting multivariate volatility.

MSE Historical MSE Forecast L Forecast
PERIODIC:
GWP 0.0210 0.0295 —257
WP 0.115 0.760 —286
MGARCH 0.228 0.488 —270
EXCHANGE:
GWP 3.88x107° 4.80 x 107° 2020
WP 3.88 x 10~° 6.98 x 107° 1950
MGARCH 3.96 x 107° 4.94 x 107° 2050
EQUITY:
GWP 2.80 X 1072 5.84 x 10~° 2930
WP 3.96 x 107° 8.92 x 107° 1710
MGARCH 6.68 x 107° 29.4 x 107° 2760

To make forecasts and historical predictions on this
data set (EQUITY), we used a GWP with a squared ex-
ponential kernel, k(¢,t') = exp(—0.5(t — t')2/1%). We
follow the same procedure as before and make 200 fore-
casts and historical predictions; results are in Table 1.

Both the EXCHANGE and EQUITY data sets are especially
suited to GARCH (Poon and Granger, 2005; Hansen
and Lunde, 2005; Brownlees et al., 2009; McCullough
and Renfro, 1998; Brooks et al., 2001). However, the
generalised Wishart process outperforms GARCH on
both of these data sets. Based on our experiments,
there is evidence that the GWP is particularly good
at capturing the co-variances (off-diagonal elements of
¥(t)) as compared to GARCH. The GWP also out-
performs the WP, which has a fixed OU covariance
structure, even though in our experiments the WP
takes advantage of the new inference procedures we
have derived. Thus the difference in performance is
likely because the GWP is capable of capturing com-
plex interdependencies, whereas the WP is not.

8 DISCUSSION

We introduced a stochastic process — the generalised
Wishart process (GWP) — which we used to model
time-varying covariance matrices X(t). In the future,
the GWP could be applied to study how > depends on
covariates like interest rates, in addition to time. In
a forthcoming journal paper we introduce several new
GWP constructions, with benefits in expressivity and
efficiency (Wilson and Ghahramani, 2011b).

We hope to unify efforts in machine learning and
econometrics to inspire new multivariate volatility
models that are simultaneously general, easy to inter-
pret, and tractable in high dimensions.
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