

Thank you!

C. Faloutsos
CMU

Large Graph Mining

C. Faloutsos
CMU

Large Graph Mining Data Mining for fun (and profit)

C. Faloutsos
CMU

Outline

- Credit where credit is due
- Technical part Data mining
 - Can it be automated?
 - Research challenges
- Non-technical part: 'Listen'
 - To the data
 - To non-experts

Nominator

• Jian Pei

Endorsers

- Charu C. Aggarwal (IBM Research)
- Ricardo Baeza-Yates (Yahoo! Research)
- Albert-Laszlo Barabasi (Northeastern University)
- Denilson Barbosa (University of Alberta)
- Yixin Chen (Washington University at St. Louis)

- William Cohen (Carnegie Mellon University)
- Diane J. Cook (Washington State University)
- Gautam Das (University of Texas at Arlington)
- Inderjit S. Dhillon (University of Texas at Austin)
- Chris H. Q. Ding (University of Texas at Arlington)

- Petros Drineas (Rensselaer Polytechnic Institute)
- Tina Eliassi-Rad (Lawrence Livermore National Laboratory)
- Greg Ganger (Carnegie Mellon University)
- Minos Garofalakis (Technical University of Crete)
- James Garrett (Carnegie Mellon University)

- Dimitrios Gunopulos (University of Athens)
- Xiaofei He (Zhejiang University)
- Panagiotis G. Ipeirotis (New York University)
- Eamonn Keogh (UCR)
- Hiroyuki Kitagawa (University of Tsukuba)
- Tamara Kolda (Sandia Nat. Labs)

- Flip Korn (AT&T Research)
- Nick Koudas (University of Toronto)
- Hans-Peter Kriegel
- Ravi Kumar (Yahoo! Research)
- Laks Lakshmanan (UBC)
- Jure Leskovec (Stanford University)

- Nikos Mamoulis (Hong Kong University)
- Heikki Manilla (Aalto University,
- Dharmendra S. Modha (IBM Research)
- Mario Nascimento (University of Alberta)
- Jennifer Neville (Purdue University)
- Beng Chin Ooi (National University of Singapore)

- Dimitris Papadias (Hong Kong University of Science and Technology)
- Spiros Papadimitriou (IBM Research)
- Jian Pei (Simon Fraser University)
- Foster Provost (New York University)
- Oliver Schulte (Simon Fraser University)
- Dennis Shasha (New York University)
- Srinivasan Parthasarathy (OSU)

- Jimeng Sun (IBM Research)
- Dacheng Tao (Nanyang University of Technology)
- Yufei Tao (The Chinese University of Hong Kong)
- Evimaria Terzi (Boston University)
- Alex Thomo (University of Victoria)
- Andrew Tomkins (Google Research)

- Caetano Traina (University of Sao Paulo)
- Vassilis Tsotras (University of California, Riverside)
- Alex Tuzhilin (New York University)
- Haixun Wang (Microsoft Research)

KDD'10 C. Faloutsos 14

- Wei Wang (University of North Carolina at Chapel Hill)
- Philip S. Yu (University of Illinois, Chicago)
- Zhongfei Zhang (Binghamton University, State University of New York)

KDD'10 C. Faloutsos 15

KDD committee

- Ramasamy Uthurusamy, Chair
- Robert Grossman (University of Illinois at Chicago)
- Jiawei Han (University of Illinois at Urbana-Champaign)
- Tom Mitchell (Carnegie Mellon University)
- Gregory Piatetsky-Shapiro (KDnuggets)

KDD committee cnt'd

- Raghu Ramakrishnan (Yahoo! Research)
- Sunita Sarawagi (Indian Institute of Technology, Bombay)
- Padhraic Smyth (University of California at Irvine)
- Ramakrishnan Srikant (Google Research)

KDD committee cnt'd

- Xindong Wu (University of Vermont)
- Mohammed J. Zaki (Rensselaer Polytechnic Institute)

KDD'10 C. Faloutsos 18

Family

Parents Nikos & Sophia

• Siblings Michalis*, Petros*, Maria

• Wife Christina#

(*): and co-authors

(#): and research impact evaluator ('grandpa' test - see later...)

Academic 'parents'

• Christodoulakis, Stavros (T.U.C.)

• Sevcik, Ken (U of T)

Roussopoulos, Nick (UMD)

Academic 'children'

Ibrahim Kamel

Flip Korn

• Byoung-Kee Yi

Leejay Wu

• Deepayan Chakrabarti

KDD'10

C. Faloutsos

Academic 'children'

Spiros Papadimitriou

• Jimeng Sun

Hanghang Tong

Academic 'children'

• Lei Li

• Dueng Horng (Polo) Chau

Aditya Prakash

• U Kang

CMU colleagues

- Tom Mitchell
- Garth Gibson
- Greg Ganger
- M. (Satya) Satyanarayanan
- Howard Wactlar
- Jeannette Wing
- ++

Co-authors

• [dblp 7/2010:] All 300 of you

- <u>Agma J. M. Traina</u> (22)
- Caetano Traina Jr. (20)

•

Funding agencies

- NSF (Maria Zemankova, Frank Olken, ++)
- DARPA, LLNL, PITA
- IBM, MS, HP, INTEL, Y!, Google, Symantec, Sony, Fujitsu, ...

KDD'10 C. Faloutsos 26

Outline

- Credit where credit is due
- Technical part Data mining
 - Can it be automated?
 - Research challenges
 - Non-technical part: 'Listen'
 - To the data
 - To non-experts

$$1111...1111 \rightarrow 1^{100}$$
 $1010...1010 \rightarrow (10)^{50}$
 $11.00100100... \rightarrow$

Christos Faloutsos, Vasileios Megalooikonomou: *On data mining, compression, and Kolmogorov complexity*. Data Min. Knowl. Discov. 15(1): 3-20 (2007)


```
1111...1111 \rightarrow 1^{100}
1010...1010 \rightarrow (10)^{50}
11.00100100... \rightarrow 3.14159265... \approx \pi
```

Christos Faloutsos, Vasileios Megalooikonomou: *On data mining, compression, and Kolmogorov complexity*. Data Min. Knowl. Discov. 15(1): 3-20 (2007)

$$1111...1111 \rightarrow 1^{100}$$

 $1010...1010 \rightarrow (10)^{50}$
 $11.00100100... \rightarrow 3.14159265... \approx \pi$

But: how can compression

- do forecasting?
 - spot outliers?
- do classification?

$$1111...1111 \rightarrow 1^{100}$$
 $1010...1010 \rightarrow (10)^{50}$
 $11.00100100... \rightarrow 3.14159265... \approx \pi$

OK – then, isn't compression a solved problem (gzip, LZ)?

KDD'10 C. Faloutsos 31

... compression is undecidable!

Theorem*: for an arbitrary string x, computing its Kolmogorov complexity K(x) is undecidable

EVEN WORSE than NP-hard!

A.N. Kolmogorov

(*) E.g., [T. M. Cover and J. A. Thomas. *Elements of Information Theory*. John Wiley and Sons,1991, section 7.7]

... compression is undecidable!

...which means there will always be better data mining tools/models/patterns to be discovered

- -> job security ©
- -> job satisfaction ©

Let's see some examples of

Let's see some examples of models

C. Faloutsos 35

Let's see some examples of models

KDD'10 C. Faloutsos income 36

Let's see some examples of models

C. Faloutsos 37 **KDD'10**

Let's see some examples of models

38

Let's see some examples of

http://universe-review.ca/R10-35-metabolic.htm

Metabolic

Kleiberg's law

http://universe-review.ca/R10-35-metabolic.htm

Outline

- Credit where credit is due
- Technical part Data mining
 - Can it be automated? NO!
 - Always room for better models
 - Research challenges
- Non-technical part: 'Listen'
 - To the data
 - To non-experts

- Eg.: clustering k-means (or our favorite clustering algo)
- How many clusters are in the Sierpinski triangle?

KDD'10

Always room for better models

K=3 clusters?

K=9 clusters?

Piece-wise flat

KDD'10

• Barnsley's method of IFS (iterated function systems) can easily generate it [Barnsley +Sloan, BYTE, 1988]

ONE, but Self-similar 'cluster'

~100 lines of C code: www.cs.cmu.edu~/christos/www/SRC/ifs.tar

• But, does self-similarity appear in real life?

- the red is true
- origin: Norway
- •but most other coastlines are 'self-similar', too!

How can we find better models?

- Obviously, an art ('undecidable'!)
- Helps if we
 - Listen to domain experts and
 - Listen to the data (next)

Outline

- Credit where credit is due
- Technical part Data mining
 - Can it be automated? NO!
 - Research challenges
 - Listen to the data (the more, the better!)
- Non-technical part: 'Listen'
 - To the data
 - To non-experts

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: ~5Pb of data [Fayyad'07]
- 'M45': 4K proc's, 3Tb RAM, 1.5 Pb disk

KDD'10

Promising research direction: scalability

- challenges
 - Vast amounts of data; storing; cooling (!); ...
- ... and opportunities:
 - DATA: Easier to collect (clickstreams, sensors etc)
 - S/W: Hadoop, hbase, pig, ...: open source
 - H/W: 1Tb disk: ~ US\$ 100

KDD'10

Promising research direction

• The more data, the more subtle patterns we may discover

• Examples of subtle patterns:

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos

Faloutsos, Jure Leskovec: Mobile call graphs:

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos

Faloutsos, Jure Leskovec: Mobile call graphs:

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs:*

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs:*

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs:*

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs:*

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs: beyond power-law and lognormal distributions*. KDD 2008: 596-604

Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, Jure Leskovec: *Mobile call graphs: beyond power-law and lognormal distributions*. KDD 2008: 596-604

So, dPln is the answer?

So, dPln is the answer?

Yes, for the moment...

KDD'10

So, dPln is the answer?

With more data, who knows?!

KDD'10

Outline

- Credit where credit is due
- Technical part Data mining
 - Can it be automated? NO!
 - Research challenges
 - Listen to the data (the more, the better!)
- Non-technical part: 'Listen'
 - To the data

To non-experts

Listen to non-experts

- Explain 'why', to a non-expert ('grandpa')
- (and, even harder, explain 'how' e.g.:
 - Frobenious Perron for irreducible MC

Listen to non-experts

- Explain 'why', to a non-expert ('grandpa')
- (and, even harder, explain 'how' e.g.:
 - Frobenious Perron for irreducible MC -> pageRank -> random surfer

Google

Summary

- Data mining = compression = undecidable = job security ©
- Hence: always room for better models/ patterns
 - Listen to the data (Gb, Tb and Pb of them!)
 - Listen to domain experts (e.g., ¾ Kleiberg's law)
- Listen to non-experts ('explain to grandpa')

KDD'10

Compression, fun, recursion

- The shortest, recursive joke:
- There are 3 types of data miners

Compression, fun, recursion

- The shortest, recursive joke:
- There are 3 types of data miners
 - Those who can count

Compression, fun, recursion

- The shortest, recursive joke:
- There are 3 types of data miners
 - Those who can count
 - And those who can not

Thank you!

For the honor, and for making this wonderful research community

KDD'10