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Outline 

•  Credit where credit is due 
•  Technical part – Data mining 

– Can it be automated? 
– Research challenges 

•  Non-technical part: `Listen’ 
– To the data 
– To non-experts 
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Outline 

•  Credit where credit is due 
•  Technical part – Data mining 

– Can it be automated? 
– Research challenges 

•  Non-technical part: `Listen’ 
– To the data 
– To non-experts 
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Data mining = compression & … 
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Christos Faloutsos, Vasileios Megalooikonomou: On data 
mining, compression, and Kolmogorov complexity. Data Min. 
Knowl. Discov. 15(1): 3-20 (2007) 
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Christos Faloutsos, Vasileios Megalooikonomou: On data 
mining, compression, and Kolmogorov complexity. Data Min. 
Knowl. Discov. 15(1): 3-20 (2007) 
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Data mining = compression & … 

KDD'10 C. Faloutsos 30 

But: how can compression 
•  do forecasting? 
•  spot outliers? 

•  do classification? 
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Data mining = compression & … 
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OK – then, isn’t compression a solved problem (gzip, LZ)? 
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… compression is undecidable! 

Theorem*: for an arbitrary string x, computing 
its Kolmogorov complexity K(x) is 
undecidable 

KDD'10 C. Faloutsos 32 
(*) E.g., [T. M. Cover and J. A. Thomas. Elements of 
Information Theory. John Wiley and Sons,1991, section 7.7] 

A.N. Kolmogorov 

EVEN WORSE 
than NP-hard! 
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… compression is undecidable! 

…which means there will always be better data 
mining tools/models/patterns to be discovered 

-> job security   
-> job satisfaction  

KDD'10 C. Faloutsos 33 



CMU SCS 

Let’s see some examples of 
models 
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Response 
to new drug 
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Metabolic 
rate 

3/4 

mass 

Let’s see some examples of 
models 

http://universe-review.ca /R10-35-metabolic.htm 
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Metabolic 
rate 

3/4 

mass 

Kleiberg’s law 

http://universe-review.ca /R10-35-metabolic.htm 
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Outline 

•  Credit where credit is due 
•  Technical part – Data mining 

– Can it be automated? NO! 
•  Always room for better models 

– Research challenges 

•  Non-technical part: `Listen’ 
– To the data 
– To non-experts 
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Always room for better models 

•  Eg.: clustering – k-means (or our favorite 
clustering algo) 

•  How many clusters are in the Sierpinski 
triangle? 
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… 
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Always room for better models 
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Always room for better models 
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K=3 clusters? 
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Always room for better models 
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K=3 clusters? 
K=9 clusters? 
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Always room for better models 
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Piece-wise 
flat 

Mixture 
of (Gaussian) 

clusters 
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Piece-wise 
flat 

Mixture 
of (Gaussian) 

clusters 

¾ Power 
law 

?? 



CMU SCS 

Always room for better models 

KDD'10 C. Faloutsos 48 

Piece-wise 
flat 

Mixture 
of (Gaussian) 

clusters 

¾ Power 
law 

ONE, but 
Self-similar 

‘cluster’ 
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Always room for better models 
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ONE, but 
Self-similar 

‘cluster’ 

•  Barnsley’s method of IFS (iterated function 
systems) can easily generate it [Barnsley
+Sloan, BYTE, 1988] 

~100 lines of C code:  www.cs.cmu.edu~/christos/www/SRC/ifs.tar 
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Always room for better models 
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•  But, does self-similarity appear in real life? 
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Real, self similar dataset 
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Real, self similar dataset 
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Real, self similar dataset 
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•  the red is true 
•  origin: Norway 
• but most other coastlines 
are ‘self-similar’, too! 



CMU SCS 

How can we find better models? 

•  Obviously, an art (‘undecidable’!) 
•  Helps if we 

– Listen to domain experts and 
– Listen to the data (next) 

KDD'10 C. Faloutsos 56 
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Outline 

•  Credit where credit is due 
•  Technical part – Data mining 

– Can it be automated? NO! 
– Research challenges 

•  Listen to the data (the more, the better!) 

•  Non-technical part: `Listen’ 
– To the data 
– To non-experts 
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Scalability 

•   Google: > 450,000 processors in clusters of 
~2000 processors each [Barroso, Dean, Hölzle, 
“Web Search for a Planet: The Google Cluster 
Architecture” IEEE Micro 2003] 

•  Yahoo: ~5Pb of data [Fayyad’07] 
•  ‘M45’: 4K proc’s, 3Tb RAM, 1.5 Pb disk 
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Promising research direction: 
scalability 

•  challenges 
– Vast amounts of data; storing; cooling (!); … 

•  … and opportunities: 
– DATA: Easier to collect (clickstreams, sensors 

etc) 
– S/W: Hadoop, hbase, pig, … : open source 
– H/W: 1Tb disk: ~ US$ 100 
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Promising research direction 

•  The more data, the more subtle patterns we 
may discover  

•  Examples of subtle patterns: 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 

Duration (log scale) 

PDF: fraction 
of customers 

(log scale) 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 

Duration (log scale) 

PDF: fraction 
of customers 

(log scale) 

(mixture of) 
Gaussians 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 

Zipf 
(Pareto, 

Power-law) 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 

lognormal 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 
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More data, more subtle patterns 
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Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos 
Faloutsos, Jure Leskovec: Mobile call graphs: beyond power-law and lognormal 
distributions. KDD 2008: 596-604 

dPln 
(=doubly 

Pareto 
Lognormal) 
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So, dPln is the answer? 
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Yes, for the moment… 
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So, dPln is the answer? 
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With more data, who knows?! 
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Outline 

•  Credit where credit is due 
•  Technical part – Data mining 

– Can it be automated? NO! 
– Research challenges 

•  Listen to the data (the more, the better!) 

•  Non-technical part: ‘Listen’ 
– To the data 
– To non-experts 
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Listen to non-experts 

•  Explain ‘why’, to a non-expert (‘grandpa’) 
•  (and, even harder, explain ‘how’ – e.g.: 

– Frobenious Perron for irreducible MC 
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Listen to non-experts 

•  Explain ‘why’, to a non-expert (‘grandpa’) 
•  (and, even harder, explain ‘how’ – e.g.: 

– Frobenious Perron for irreducible MC -> 
pageRank -> random surfer 
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Summary 
•  Data mining = compression = undecidable = 

job security  
•  Hence: always room for better models/

patterns 

– Listen to the data (Gb, Tb and Pb of them!) 
– Listen to domain experts (e.g., ¾ Kleiberg’s 

law) 
•  Listen to non-experts (‘explain to grandpa’) 
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Compression, fun, recursion 

•  The shortest, recursive joke: 
•  There are 3 types of data miners 
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•  The shortest, recursive joke: 
•  There are 3 types of data miners 

– Those who can count 
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Compression, fun, recursion 

•  The shortest, recursive joke: 
•  There are 3 types of data miners 

– Those who can count 
– And those who can not 
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Thank you! 
For the honor, 
and for making this wonderful  
research community 
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