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Summary. We design, implement, and evaluate a practical timing-based approaetett d
virtual machine monitors (VMMs) without relying on VMM implementation detail$ie
algorithms developed in this paper are based on fundamental propefrii@sual machine
monitors rather than easily modified software artifacts. We evaluate puoagh against two
common VMM implementations on machines with and without hardware stifgovirtu-
alization in a number of remote and local experiments. We successfuligglissh between
virtual and real machines in all cases even with incomplete informatiardew the VMM
implementation and hardware configuration of the targeted machine.

1 Introduction

In their seminal work, Popek and Goldberg formally defineel éssential proper-
ties that a program must satisfy to be termed a virtual machionitor: efficiency,
resource control, and equivalence [12]. In this article,exploit thetiming depen-
dency exception to the equivalence property of a VMM to detect the presence of
virtual machine monitor (VMM) without relying on implemeatton details or soft-
ware artifacts.

Virtual machine monitor detection has two direct implicat for botnet re-
mediation: first, it provides defenders with the ability tetect bots which utilize
VMMs for improved stealth (e.g., VM-based rootkits [10, 28]) and second, ex-
ploring VMM detection allows defenders to assess the extemthich intelligent
bots can identify and potentially bias virtualized anayaivironments such as high-
interaction honeypots [9, 22, 26].

Due to the sophisticated nature of modern VMMs and signifizariations be-
tween implementations, implementation-independent VMatedtion is a difficult
open problem. This difficulty is highlighted by the fact thadst related work empha-
sizes implementation-dependent (software-artifacethpsechniques. These tech-
niques have an inherent weakness: implementation-depeddeection techniques
are easy to counter by modifying VMM implementations to masktherwise hide
identifiable software artifacts.
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In contrast to previous work, the detection algorithms tigwed in this paper
are VMM implementation-independent and hardware-depgnd&hile the prac-
ticality of modifying VMM implementations to counter the titude of current
implementation-dependent detection techniques can peteid, modifying the im-
plementation of a VMM is inherently easier than modifying thnderlying hard-
ware, especially since in most cases the required softwadifications are trivial.
Our implementation-independent algorithms do not rely @itware artifacts, mak-
ing them difficult to counter without hardware modificatipagask which is difficult
for organizations who rely on commodity hardware.

The main contribution of this article is the development offegss of implementation-
independent VMM detection algorithms whose execution iceably different
when executed inside a virtual machine versus when exedirtectly on the under-
lying hardware. We describe the design and implementafi@uioalgorithms, their
success detecting a number of VMMs including VMware [23, 81§ Xen VMM [2]
on standard hardware, and the Xen VMM on a machine with haxelassistance for
virtualization.

Virtual Target System Real Target Systel
Kernel @

Virtualization Layer Kernel @
Hardware Hardware

Fig. 1. VMM detection algorithm D on virtual and real target systems

We develop a class of VMM detectors that, when executing arget system
of unknown status (virtual or real) with access to a trustedreal timer, can dis-
tinguish between a virtual and real target system (see Eigr Given the exact
hardware specification and the specific VMM implementatitat tay be present,
detection using timing is straightforward. However, givdhknown and possibly
unknown VMM implementations, and all possible commoditydveare configura-
tions, detecting the presence of a VMM on a platform with utaie configuration
is challenging. Hence, VMM detection spans a spectrum afates, running from
specific (easier to detect) to general (harder to detectjgalwo axes: VMM im-
plementation ranging from known to unknown and hardwardigaration ranging
from known to unknown (see Figure 2). We explore this spaaketéction scenarios
and address the challenges that lie within.

Complete knowledge of a system’s hardware configurationadable in some
scenarios, such as administratively controlled machineiporations. As an ex-
ample, consider the scenario where VM-based rootkits (VIglB#ecome a signifi-
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Fig. 2. Problem space

cant threat in the wild. Anti-virus software makers, motito protect their users
against such threats, could ask users to specify their faed(e.g., Pentium 4 2.0
GHz) upon installation of a VMM detector such as the one dgyad in this pa-

per. Servers run by the anti-virus company could then peradlgt challenge the

users’ systems to execute our hardware-specific VMM detedasigned to elicit

a detectable performance degradation when running in a VMgerformance is

degraded sulfficiently, the anti-virus software companyldbegin a recovery on the
users’ VM-based rootkit infected machines. A challengehia haive model is that
the information provided by the user about their system irighincorrect, incom-

plete, or unavailable.

The techniques described in this paper successfully détecpresence of a
VMM on a target system even with uncertainty about the systexact hardware
configuration and specific VMM implementation. Our approagploits VMM tim-
ing dependencies to elicit measurable VMM overhead, eveahearface of limited
hardware and software configuration information. Uncaties with respect to hard-
ware configuration include CPU microarchitecture, caclehitecture, and clock
speed. Uncertainties with respect to the VMM implementaiizlude optimizations
such as the use of binary rewriting or paravirtualizatioarddvare support for virtu-
alization, such as Intel's VT [8] or AMD’s SVM [5] technologs, further complicate
detection.

In our evaluation, we are able to identify sufficient hardsveonfiguration infor-
mation for target systems and to ultimately distinguistwieen virtual and real ma-
chines. Further, our approach continues to work against \éNft utilize hardware
support for virtualization. Our experiments demonstrageviability of our approach
over a range of uncertainty. As such, the algorithms deesldpthis paper represent
a promising step towards general VMM detection techniques.
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1.1 Context

The best way to understand VMM detection and to understamdefationship be-
tween this paper and past work is to describe the arms raaighVMM detection.
VMM detection is an arms race between detectors (which atéordetect a VMM)
and VMMs (which attempt to evade detection). Below we dégctine stages of the
arms race with each step labeled either current, emergingiure to describe the
chronology of the race.

Current Emerging Future
@ @ @ Failure (E?)Succes; @

ufﬁ Success patd Failure

Fig. 3. VMM detection arms race

D1: Currently, detectors use software implementationedepnt artifacts such as
communication back doors, process names, and perturbatidos of system
components [19].

V1: VMMs evade detection by eliminating the specific artifagsed for detection.
For example, VMMs mask names and values (i.e., location ®iiT, special
processes, communication back doors etc...) or interpospecific instructions
which are used in detection [10].

D2: Detectors search for previously unknown software actd. If found, return to
step V1 otherwise continue.

D3: In the absence of previously unknown software artifadétectors search for
implementation-independent perturbations such as titfting article). If found,
continue, else jump to VE-2.

VE-1: Unable to evade implementation-independent detectiMMs either remain
detectable or violate an assumption of the arms race. Orghp@ssiolation
is that VMMs continue to operate on commodity hardware. ptssible that
hardware support for virtualization will eliminate VMM orleead. We suspect
this to be unlikely for multiple reasons: hardware-supp®rneant to fill holes
in current architecture’s virtualization support and teesthe implementation of
VMMs, it is not designed to optimize or otherwise hide theseirece of a VMM.
We evaluate the results of violating this assumption iniSed.

VE-2: With both implementation-dependent and impleméotaindependent de-
tectors eliminated, VMMs successfully evade detection.

Organization. Section 2 discusses necessary background including tieafor
properties of a VMM. Section 3 sketches a sound approach tt\ddtection. Sec-
tion 4 discusses the algorithm and protocol design for asatdsVMM detection
algorithms. Section 5 describes the implementation of eallet. Section 6 presents
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our experimental results. We present a security analySgation 7 and discuss lim-
itations and possible extensions in Section 8. We coveta@laork in Section 9 and
conclude in Section 10.

2 Background

We follow Popek and Goldberg in defining a virtual machineraeféicient, isolated
duplicate of the underlying hardware [12]. This definitionposes the three prop-
erties that a control program must satisfy to be termed aalithachine monitor:
efficiency, resource control, and equivalence. To expla@sée three properties, we
must first introduce some terminology.

2.1 Instruction Types

We classify the underlying instructions of a machine basedheir behavior. An
instruction isprivileged if it can only be executed in the highest processor privilege
level, and executing it at any other privilege level resints trap to a higher privilege
level. Privileged instructions are characteristics of héerlying hardware and are
invariant over a particular instruction set architectdye instruction issensitiveif it

can interfere with the state of a memory-resident VMM. Artriastion is innocuous

if it is not sensitive.

2.2 Virtual Machine Properties

Informally, theefficiency property dictates that programs run in a virtualized envi-
ronment show no more than minor decreases in speed. Sinoe décrease in speed
is difficult to quantify, a parallel requirement of the eféioicy property is that a sta-
tistically dominant subset of the virtual processor’siinstions be executed directly
by the real processor.

Theresource control property dictates that a VMM maintain complete control
of system resources. This requires that it be impossibleafoarbitrary program
running in a VM on top of a VMM to affect system resources, ,engemory and
peripherals, allocated to a different VM or the VMM itself.

Theequivalence propertydictates that a VMM provide an environment for pro-
grams which is essentially identical to that of the origimechine. Formally, any
programP executing with a VMM resident in memory, with two possibleceg-
tions, must perform in a mannéndistinguishable from the case when the VMM
did not exist andP had the freedom of access to privileged instructions that th
programmer had intended. The two possible exceptions tedhi&valence property
result from resource availability and timing dependencies
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2.3 Exceptions

The resource availability exceptionstates that a particular request for a resource
may not always be satisfied. As a result, a program may be etalflinction in the
same manner as it would if the resource were made availabis.€kception exists
because a VMM shares the underlying hardware and henceroessesources.

Thetiming dependency exceptiorstates that certain instruction sequences in a
program may take longer to execute. Hence, assumptiong #imiength of time
required for the execution of an instruction might lead tooimect results. This ex-
ception results from the possibility of a VMM occasionaliytérvening in certain
instruction sequences.

These exceptions allow for the theoretical possibility efetting a virtual ma-
chine monitor. If these exceptions did not exist, a VMM thatfpctly satisfied the
equivalence property would be impossible to detect. In plaiper, we study how
VMM detectors can be written which exploit these exceptimngnmask virtualized
machines.

3 Approach

We sketch the design of a sound detection algorithm thabégghe timing depen-
dency exception of a VM to distinguish between real and girtonachines.

3.1 Definitions

A VMM detection algorithm is a decision procedure which when given as input a
target machiné/ outputsaccept if M is a virtual machine angeject if M is a real
machine. Let” be a virtual machine. A detection algorithbhis sound if and only

if when D (M) outputsaccept, M is a virtual machine. A detection algorithi is
complete if and only if on inputV, D halts and outputaccept. In order to elimi-
nate any dependence on a particular VMM implementationagiproach described
below is based on an idealization of a control program whatfsBes the required
properties of a VMM with the two previously mentioned exdéeps. We term such

a program arndealized VMM.

3.2 Intuition behind Detection Algorithms

Failure to control the execution of a sensitive instructixecuted in a virtual ma-
chine (VM) can result in a loss of control over system resesir&ince this is a vi-
olation of the resource control property, a VMM must styiatbntrol the execution

of sensitive instructions. The need to completely contystesm resources imposes
stringent requirements on the execution of any instruatibich has the potential to
affect system resources.

Classes of instructions that can potentially affect systsources include sensitive-

privileged instructions, sensitive-unprivileged instions, and innocuous-privileged
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instructions. Innocuous-unprivileged instructions cardivectly executed on the un-
derlying hardware as they pose no risk of state corruptiocootrol modification.

It is the potentially control-modifying instructions thaécessitate the existence of
timing dependencies when a program executes in a VM.

When a VMM interposes on the execution of instructions thataféect system
resources, VMM overhead is encountered. The VMM overheadnoinstruction
is the additional number of cycles required to execute tiséruction in a VMM
versus executing the instruction directly on real hardwire exploit this overhead
to distinguishing between real and virtual machines.

We give an intuition as to why positive VMM overhead is indegent of VMM
implementation. Assume positive VMM overhead does notteXisen, either the
VMM overhead is zero or it is negative. If the VMM overhead isgative, then
the addition of a VMM actually increases the speed of the neathine, clearly
a contradiction. If the VMM overhead is zero and instruci@xecute in a positive
amount of time, then the VMM cannot interpose on instruditlmmaintain resource
control. A program which does not maintain resource congrobt a VMM, hence
we arrive at a contradiction.

In our previous argument, we implicitly assumed that VMMe@&xte without
hardware assistance for virtualization. The recent conitization of hardware sup-
port for virtualization could reduce or in the extreme cdsweiaate VMM overhead.
Previous work has show that even with current generatiodveme support for vir-
tualization, VMMs experience considerable performanceriogad [1]. In addition,
our experimental results confirm these observations. Sirceannot predict how
future hardware might improve virtualization performanites results of this paper
only apply to current architectures.

3.3 VMM Detection Algorithm

We are interested in the class of detection algorithms tkalb# the timing depen-
dency exception to distinguish between real and virtualhimss. We describe this
class of algorithms as follows.

Let Rc be a real machine with configuratiati and let M~ be a virtual or
real machine with identical configurati@n. Let Benchmar k be a program withk:
control-modifying instructions each with VMM overheadExecuteBenchmar k
on R. Store the time required f@enchmar k to complete inR¢ (Benchmark).
ExecuteBenchmar k on M. Store the time required foBenchmar k to com-
plete inM¢(Benchmark). CompareM«(Benchmark) andRe(Benchmark). If
Mc(Benchmark) is greater thaR« (Benchmark) by at least x o, output accept,
else output reject.

4 Algorithm and Protocol Design

We present the design of our detection algorithm and prétoco
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4.1 Algorithm Design

A number of complexities surface while implementing theed&bn algorithm de-
veloped in the previous section. FirstBanchmar k with control modifying in-
structions must be constructed. Second, the execution dineeBenchmar k on
the real machine must be measured. Third, the executiondira®enchmar k on
the target machine must be measured. Each of these entdif®adl complexities,
explanations of which follow.

Designing for Overhead. As we previously argued, because of the inherent prop-
erties of a VMM, the VM should not be able to execute a prograith wontrol-
modifying instructions as fast as the real machine. We deai§enchnar k to
include control modifying instructions empirically det@ned to have an overhead
across implementations and validate our selection agail®iM of unknown im-
plementation. We choose the particular control-modifyimggructions and then tune
their number such that the VMM overhead is remotely (e.goscthe Internet)
noticeable.

Establishing Reference Times. The execution time of 8enchmar k on R, de-
noted Baseline(R¢) is our reference for distinguishing between virtual and rea
machines with hardware configuratiath The performance of our algorithm is di-
rectly related to the accuracy with which we can meagtigeline(R¢). A central
complexity in establishing an accurate reference time v twoestablish this value
for machines of unknown configuration.

Since the execution time ofBenchmar k is dependent on the underlying hard-
ware, clearly we require some knowledge of the hardware gortion to establish
Baseline(R¢). The greater the amount of information we have about thewenel
configuration, the easier it is to distinguish between radl\drtual machines, how-
ever, as we require more configuration information, the nemab scenarios where
our detector may work is reduced.

While our approach is independent of the mechanism used ¢ondiete the con-
figuration of the machine in question, in order to developrash®-end VMM detec-
tion algorithm, we proceed as follows. To start, we assumbave no configuration
information about the machine in question and that we catrnst the machine’s
direct responses to configuration inquiries. Assuming wankthe configuration of
the machine in question greatly limits the scenarios in Wiigr detection algorithm
is applicable. Further, trusting a virtual machine’s direxzsponse to configuration
questions can result in our acceptance of incorrect timingsarements.

We develop a heuristic approach to identify unknown haréwdrich works well
in practice. Our heuristic, which we call hardware discgyeises the existence of
hardware artifacts that “shine through” a VMM. The hardwarifacts we discover
are unique to a particular architecture and allow us to iafportion of the configu-
ration of the machine. This configuration information thélnves for an estimation
of Baseline(R¢). We explain our techniques for hardware discovery and mmti
estimation in the coming sections.

Measuring Execution Times in a VM. Timing the execution of 8enchmar k on
M necessitates the existence of a reliable timing sourckl 1$ a virtual machine,
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the VMM may return timing measurements which do not acciyatearacterize the
execution time [10]. To overcome this complexity, we alldve detector to contact
an external timing source.

To remotely detect VMM overhead, we must develdpeanc hmar k with suffi-
cient VMM overhead to overcome possible measurement neential sources of
noise include variance in network latency, inaccuraciégiing, and variance in ex-
ecution times resulting from caching. To overcome this@oige develop techniques
to configure the amount of VMM overhead to a nearly arbitrastgiet.

4.2 Benchmar k Design

Constructing aBenchmar k requires that we determine which control-modifying
instructions and the correct number of these instructiorexecute. Below we dis-
cuss how @8enchmar k can designed to have a variable amount of VMM overhead
based on the specific instructions used and their number.

Selecting Instructions

To select the correct control-modifying instructions tduce VMM overhead, we
measured the overhead of different sensitive-privilegetructions on several dif-
ferent VMMs. We use sensitive-privileged instructions, cgposed to sensitive-
unprivileged instructions, because sensitive-unpigétkinstructions violate the re-
source control property [14]. The results of these measemnsnare presented in
Section 6.

Number of Instructions

After selecting particular instructions, we need to furthene the VMM overhead
induced aBenchmar k by selecting the number of instructions. There are two pri-
mary factors that affect the VMM overhead oBanchnar k. First, the processor
configuration of a machine, for instance, Intel Pentium 19 @Hz, has a direct ef-
fect on the execution time. Second, different VMM implenaioin techniques have
different levels of overhead. The following analysis expsahow we incorporate
these two factors into our experiments in order to selechtiraber of instructions
inaBenchmar k.

4.3 Measuring and Approximating Execution Times

First, we assume full knowledge of the configuration of thgegmachine. We then
limit the amount of configuration information that is knowmdadevelop an approx-
imation technique for estimating the runtime oBanchmnar k over a class of ma-
chines.
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Fig. 4. Example VMM overhead of 8enchmar k. Without a VMM executing, the instruc-
tions complete rapidly. With a VMM, there is noticeable overhead.

Timing With Complete Configuration Information

For purposes of demonstration, we imagine a scenario wher&now the exact
hardware configuration of the machine which we wish to digtish as real or vir-
tual, and we have access to a local machine of identical amatflign. In this case,
we can execute our detection code on the identically cordajiocal machine and
measure its execution time for use as a baseline for remtgetam.

Given access to the local machine, we can determine thectoruenber of in-
structions to execute by estimating the noise in our expartsiand running a num-
ber of experiments. We executeBanchmar k on the real hardware of the local
machine and under different VMMs, while varying the numbkinetructions. The
results look similar to Figure 4.

This graph is a hypothetical example based on our experaheesults. The
upper lines represent the runtimes oBanchnmar k with a fixed set of control-
modifying instructions under several different VMM implentations. The bottom
line is the execution time on the real hardware. To deterrthieerequired number
of instructions, we first fit equations to all the data poimtsthie graph. We then
use these equations to determine the minimum number ofigi&ins required to
overcome our noise estimate.

VMM, (z) =az
VM Msy(x = asx
Let  Model(Rc) = VMMzEgcg - azx

Real Machine(x) = bx
with @ = min(ay, as, a3) and FastestV M M (z) = ax. Given a noise estimate
of n, the minimum required number of iterationssuch thatFastestV M M (z) —
RealMachine(x) > nisx > 5. Sincen is small in practice and our VMM
overhead is configurable to an almost arbitrary extentctiatpx based on local
experiments presents few difficulties.
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In the above example, which is based on our experimentaltseste haver =
0.125 andb = 0.01. If we assume our experimental noise= 20ms (based on a
network latency variation of 10 ms),Benchmar k must run at least 175 iterations.

Approximate Timing With Incomplete Configuration Informat ion

We now examine the case where we have incomplete configaratiormation for
the target machine. In this case, we determine the correnbauof instructions to
execute based on a number of estimates and experimentssWaew/e have access
to a machine with partial configuration information whichtofees that of the target
machine.

As an example, imagine that the partial configuration infation we have iden-
tifies just the processor type (e.g., Pentium IV). Since #mate machine we are
attempting to distinguish as virtual or real may run at aedéht clock speed than
the machine we are using for our experiments, we need to btdwnduntime a
Benchmar k for different configurations and use these bounds for dietecin ad-
dition, since our baseline execution time will not be as aatas in the full con-
figuration information case, we must design Bemchmar k such that its execution
time is ordered as in Figure 5. Essentially, executifdeachnmar k on the fastest
VMM on the fastest real machine that matches the partial gardtion information
should take longer than executing tBenchnar k directly on the slowest machine
matching the partial configuration information.

architecture range architecture range
—_—— —_——
FR SR FV sV

(@]
8y

Execution time

Fig. 5. The required order of execution times foBanchrmar k for different configurations.
Given some configuration information, FR is the fastest real machRes e slowest real
machine, FV is the fastest real machine running the fastest VMM, anig 8\ slowest real
machine running a VMM.

The approach we develop is to determine the range of procsgseds available
given our partial configuration information and to use theslees to approximate
the execution time under different configurations. Sincedstection code is CPU
bound, it is possible to estimate the runtime oB@anchmar k given only a few
experiments on a single machine and a number of easily dietedrpublic values.

Given the partial configuration information we know, we detime the proces-
sor speed of the fastest machine available and denote tlis\ahile this value in-
creases over time, the configurable nature of the overhé&itkdlby aBenchmar k
makes it possible to compensate for this increase. We démotpeed of the slowest
machine satisfying our partial configuration informatiansa The processor speed
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of the machine we are using for local experiments is dendtedAt the time of
writing this paperF = 3.8GH Z andS = 1.3G H Z for the Pentium IV.

As described above, we experimentally deternfietestV M M (x) = ax and
RealMachine(x) = bx by running a small number of tests on the local machine
M. We then use the ratio of the speed of the local machine to fgbedsof the
slowest possible maching = % to estimate the runtimeBenchmar k on the real
hardware ofS. This gives us a runtime estimate 8of SR = p* Real M achine(z).
Similarly, we use the ratio of the speed of the local machinthé fastest machine,

u = % to estimate the runtime on the fastest virtual machines ghies ust’v =
dxFastestV M M (x). To determine the minimum number of instructions requiced t
overcome our noise estimate, we requife > SR+ n or equivalently > .

Returning to the above example and the Pentium IV, we have 0.125, b =
0.01, M = 2.0; GHz,p = 23, andu = 2. If we assume that our experimental
noisen = 20ms aBenchmar k must run at least 471 iterations, more than twice as
many as in the complete configuration information case.

4.4 Protocol Design

In our scheme, a trusted agent external to the target systewotetl byl interacts
with an instance of a detection algoriththon a target maching/. V' measures the
start and end times @b by either invokingD remotely or receiving a communication
immediately beforeD executes. After execution completéssends/ a notification
of completion.

D contains a specially crafted sequence of instructiongdalieBenchmar k.
TheBenchmar k is designed to elicit externally noticeable differencesxacution
time between virtualized and non-virtualized executiovimmments.D executes on
the target host at the highest privilege level with intetsuprned off.

Upon receiving the notification of completiol, records the time elapsed since
invocation ofD. To determine if the detection algorithmwas executed in a VMM,
V performs a lookup into a precomputed table of baseline dixattimes for the
target host's hardware platform. If the execution time exisethe threshold set for
the slowest real machine of the specified configuration, éinget machine\/ is
considered to be a virtual machine.

5 Implementation

We detect the presence of a VMM based on performance measotgof instruc-
tion sequences, which we execute in a loop called the bermgimydoop. We use
a sequence of instructions inside of a loop rather than aslst line program to
ease experimentation. We iterate the loop containing obntodifying instructions
until we generate enough overhead for detection. Unle$sdstaherwise, our loop
iterates2'” times. We experimentally selected this value.

Shttp://wwv. intel.conl products/processor/ penti unmd
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We implemented ouBenchmar ks as Linux kernel modules. Their instructions
always execute at the same privilege level as the kernd, ng@ich depends on the
hardware architecture and the presence or lack of a VMM. Tasume execution
time locally, we use the dt sc (read time-stamp counter) instruction before and
after the benchmarking loop. To obtain measurements usirexgernal or remote
verifier, a user-level programeasur ed runs on the target system and listens for
a TCP connection from the verifier. When a connection is estaddl,measur ed
immediately tries to open a file that our kernel module addiseé pr oc filesystem.
This results in a call to a function in our module, which imna¢ely suspends the
calling process, disables interrupts, and begins exetofithe benchmarking loop.
When the benchmarking loop finishes, interrupts are re-edabie calling process
gets woken up, and its file-open succeeds. Without evenrrgaiy data from the
file, measur ed sends a packet back across its TCP connection, indicatitigeto
verifier that execution of the benchmarking loop is complete

6 Evaluation

We first describe the VMMs evaluated in our experiments andexperimental

setup, then the actions necessary to ensure timing intefgritour experiments.
Mechanisms that can detect the hardware architecture aflamown remote system
are presented next. Finally, we provide the results of bathlland remote experi-
ments, culminating in successful detection.

6.1 VMM Implementations

We evaluate our approach against two common virtual machm@tor implemen-
tation techniques [15]: full virtualization and paravatization. Both of these tech-
niques are used to virtualize operating system instantiesrréhan processes on one
operating system; however, they differ in their approacadaieving this goal.

In full virtualization, the virtual replica of the underlyg hardware exposed is
functionally identical to the underlying machine. Thisoals operating systems and
applications to run unmodified. Full virtualization is tgplly implemented in one of
two ways: (1) with full support from the underlying hardwaadfording maximum
efficiency; and (2) without full support from the underlyihgrdware, requiring sen-
sitive instructions to be emulated in software.

A popular full system virtualization VMM is VMware Worksiah [23,25], here-
after referred to as simply VMware. VMware runs inside of attaperating system —
as opposed to running on the raw hardware — and exposes aat@o@presentation
of the x86 architecture to guest operating systems. ThisesaMMware to suffer a
performance overhead during the execution of certainlpged instructions, since
they must be emulated in software.

In paravirtualization, the virtual replica of the undenygi hardware exposed is
similar to the underlying machine, but it is not identicahigis done when the under-
lying machine architecture consists of sensitive instomstwhich are not privileged.
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Fig. 6. Experimental machine and network setup

Paravirtualized VMMs have the drawback that operatingesystmust be modified
to run on them; however, they enable efficient virtualizatio be performed even
when hardware support for full virtualization is unavali&ab

Xen is an open-source x86 virtual machine monitor that uaesvirtualization to
achieve high performance [2]. Xen presents a softwarefaterto the guest OS that
is not identical to the actual hardware. Therefore, the tgy@srating system needs to
be modified before it can run on Xen. Paravirtualizationiigaty detectable from
within a guest OS, as certain features of the underlyingvarel will be broken or
missing. Full virtualization on Xen can be accomplishedwaiardware support, e.g.,
Intel Vanderpool Technology (VT) [8] or AMD SVM [5].

6.2 Experimental Setup

We use six machines in our VMM detection experiments. Figusaows these ma-
chines and their network connectivity. Three of the machime identical 2.0 GHz
Intel Pentium IV systems. These systems run vanilla Linudware Workstation,
and paravirtualized Xen 3.0.2, respectively. The fourtichige has hardware exten-
sions to support virtualization (e.g., Intel VT [8] or AMD 3$¥[5]) and runs Xen
3.0.2. The last two machines are used as verifiers in expetimehere timing mea-
surements are made remotely. One of these is on a separatd foln our machines
running VMMSs, separated by one hop through a router, whicltalethe external
verifier. The other is located remotely at another univgraihich we call theemote
verifier. Average ping times to the external and remote \egsfare 0.4 ms and 16 ms,
respectively. All CPU-scaling and power-saving featuresdisabled on the external
and remote verifiers during experiments to prevent the diexguency of the CPU
in the verifier from changing.

In the remainder of the paper, we sometimes refer to a tamgtas “VMware”
or “Xen”, when in fact we mean the guest OS running on VMwareXen. All
experiments run against Xen, with or without HVM supporg eun against an un-
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privileged user domain which is the only other domain rugrbesides the privileged
domain 0.

In our experiments, we execute the benchmarking loop inahreegrivilege level
as the OS kernel. Once the benchmarking loop executes oartet tost, it turns
off interrupts and executes a sequence of instructionsatiiagxperience detectable
performance differences depending on the presence or@beéa VMM. Interrupts
were disabled to improve the accuracy of timing measuresn@nice the sequence
of instructions executes, the VMM detection code re-ermablerrupts and sends a
notice of completion to the verifier.

We must address one more issue before delving into our bear&img loops: the
issue of a heavily loaded target host. We compare the casewtestarget host is not
running a VMM with the case where it is. If there is no VMM, thdisabling inter-
rupts in the benchmarking loop truly disables them. The bararking loop executes
to completion without interruption, rendering the load be target host irrelevant.
If the target system is a guest running on a VMM, interruptsaateast disabled in
that guest VM. Thus, only code executing in other guest VM#hersame VMM can
affect performance. If another heavily loaded guest exsilstsgside the target guest,
the performance of the target guest may be degraded. THrmamnce degradation
only applies on systems running VMMs, and will thimgprove our chances of suc-
cessfully detecting the VMM. All of our experiments are ruitheut any extra load
on the VMMs, hence we evaluate our VMM detection approachéntorst-case of
an unloaded system.

6.3 Timing Integrity

A VMM has total control over instructions executed by the gu@Ses. Thus, we
cannot trust a VMM to return valid answersrtadt sc “in the wild” [10]. Figure 7
compares internal (local) versus external timing measangsfor the exact same ex-
periment run on two variants of HVM Xen. One variant is thend@rd 3.0.2 release.
The variant labeled as “Low-Integrity” in the figure is adtyan unstable develop-
ment release of Xen with a bug in the code which handi#ssc. It is illustrative
here because a party who wishes to thwart local VMM detectiag intentionally
modify their VMM to return such invalid timing measurements

Figure 7(a) shows the internal timing measurements for p td@ sequence of
arithmetic instructions which clears interrupts at theibeing of each loop iteration.
Xen 3.0.2 behaves as expected, with longer instructionesemgs requiring longer to
execute. In contrast, “Low-Integrity” Xen does not show amgrhead whatsoever. In
fact, some of the elapsed times are negative. Figure 7(byshaerun of the same
experiment, except that timing is performed by an extereaifier. Localr dt sc
calls are now unnecessary, and the runtime of the two expetsis nearly identical.

VMware Workstation can be made to demonstrate similar hiehaln fact,
VVMware provides a configuration option for VMs called
nmoni t or _control . virtual _rdt sc [24]. When settd r ue, a virtual counter
in the VMM is used to provide values for guest OS callg tit sc. When set to
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Fig. 7. Timing integrity using internal versus external verifiers

f al se, VMware allows guest OS calls todt sc to access the CPU'’s true times-
tamp counter.

6.4 ldentifying Remote Architectures

Inducing significant overhead in a VMM can result in long iorgs, which we de-
tect by measuring runtime from a separate system. Howevdrout some idea of
the hardware architecture of the remote system in questiam difficult to inter-
pret timing results correctly. In this section, we descaltechnique which is useful
for identifying an unknown remote system as having an Intgitm IV CPU. If
a system is known to be equipped with a Pentium IV, we can batsnelxpected
performance (as demonstrated in Section 4). This bound & wallows for the es-
tablishment of a runtime threshold, above which it is likéiat the target system
is running a VMM. The Netburst Microarchitecture of the Inentium 1V family
includes a trace cache with consistent specifications aatbsurrently-produced
Pentium IV CPUs [3]; our hardware discovery heuristics dietiee presence of the
trace cache. Other relevant characteristics of the PeriNumicroarchitecture in-
clude an out-of-order core and a rapid execution engine.

The trace cache stores instructions in the form of decodmss rather than in
the form of raw bytes which are stored in more conventionstrirction caches [17].
Thesetraces of the dynamic instruction stream permit instructions @& noncon-
tiguous in a traditional cache to appear contiguous. A tiaeesequence of at most
n instructions and at most basic blocks (a sequence of instructions without any
jumps) starting at any point in the dynamic instructionatne An entry in the trace
cache is specified by a starting address and a sequence ofwp-td branch out-
comes, which describe the path followed. This facilitamsaoval of the instruction
decode logic from the main execution loop, enabling theaftdrder core to sched-
ule multiple ops to the rapid execution engine in a single clock cyclehindase
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rdtsc ;; get start time
mov $131072, %edi ;; n = 131072
loop:

xorl % ax, %ax ;; begin special
addl %ebx, %bx ;;instr. seq.

movl %ecx, %ecx
orl % sdx, %edx

;i 1K — 16K instr.
sub $1, %edi tn=n-—1
jnz loop puntiln =0
rdtsc ;; getend time

Fig. 8. Example assembly code used to fill trace cache with register-to-regitemetic
instruction sequences without data hazards. These arithmetic instruedohsdecode to a
singlepop on Intel Pentium IV CPUs.
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Fig. 9. When sequences of register-to-register arithmetic instructions withdathdeards

populate the trace cache of an Intel Pentium 1V, a CF% af attainable. Once an instruction
sequence exceeds the trace cache’s maximum size of 12KB, the €fthég 1. No such

effect is visible on a Pentium M (an architecture without a trace cacheje€yneasured

locally with r dt sc.

of register-to-register arithmetic instructions withal#ta hazards, it is possible to
retire threeuops every clock cycle. Register-to-register x86 arithmatstructions
(e.g.,add, sub,and, or, xor , mov) decode into a singlgop. Thus, itis possible to
attain a Cycles-Per-Instruction (CPI) rate—éofor certain sequences of instructions.
Intel has published the size of the trace cache in the Pertu@PU family —
12K pops. However, the parametets andn, as well as the number gfops into
which x86 instructions decode, have not been published. &fmpned an experi-
ment where we executed loops of 1024 to 16384 arithmeticucisdns devoid of
data hazards on Pentium IV systems running vanilla Linuxd®.6Figure 8 shows
the structure of our benchmarking loop. Figure 9 shows tkalt® of this experi-
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ment when run using thedt sc — read time-stamp counter — instruction to measure
the elapsed CPU cycles locally. On the Pentium 1V, the CF%I imtil the number

of instructions reaches Intel’s published trace cachecippaf 12K p.0ps. We also
ran this experiment locally on a laptop equipped with a Remt! CPU; no unusual
caching effects are observed (note that a CPI of less thanlitagned for the entire
loop).

At this point we know enough about the trace cache in PentMn€CPUs to
construct a loop that has sufficient trace cache overheaé tetectable over the
Internet. As described above, the exact details of how #eetcache generates its
traces are not published. We performed additional expettisriike those of Figure 9
locally and determined that a benchmarking loop composedseiquence of 11264
arithmetic register-to-register instructions fits insttle trace cache, but that a se-
guence of 11328 instructions does not fit. That these figuredeas than 12K is
expected, as there are additional instructions executetatotain loop counters and
jump back to the beginning of the loop. Thus, executing treespiences multiple
times should cause the performance of the larger loop t@isdisproportionately
with respect to its added length.

Since the benchmarking loops contain only innocuous ingtms, VMMs allow
them to execute directly. The exaggerated performancerdiite between the two
loops is largely unaffected by the presence of a VMM. FigWesiows the results
of an experiment designed to demonstrate this effect. Tphehree lines are the
execution time for the smaller sequence (11264 instrustymer loop iteration) on
vanilla Linux, paravirtualized Xen, and VMware Workstatid@ he bottom three lines
show the same with the larger sequence (11328 instructien®gp iteration). The
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middle two lines show the two sequences executed on a PeMinamning vanilla
Linux; this serves to illustrate how minimal the runtimefelience between the loops
is when there is no trace cache involved. The gap betweenxdoeton time of loops
of the smaller sequence and loops of the larger sequencasg&enable making this
overhead identifiable across the Internet.

6.5 Inducing Detectable VMM Overhead

Given the results of the previous section, we have partiafigoration information
about the remote architecture of the target host. For exam@ know the CPU is
a member of the Pentium IV family. As described in Section w& need sufficient
overhead to distinguish between the slowest member of thé f@mily running a
native OS and the fastest member of the CPU family runningeatgdS on a VMM.

Recall that to detect a VMM, we must induce significant perfance overhead.
As described in Section 4, we use sensitive-privilegedicsons which result in
the execution of additional code inside the VMM. While we doImave space to ex-
haustively treat all sensitive instructions, we selectvadad analyze their overhead
on Xen 3.0.2 and VMware Workstation on an Intel Pentium I\eTistructions we
consider arel i (clearinterrupts)ov %r 0, % ax (read processor control reg-
ister 0),mov %r 2, %eax (read processor control register 2), amv %cr 3,
%eax; mov %eax, %r 3 (read and write processor control register 3, which con-
tains the physical address of the base of the page directory)

We next analyze these selected instructions locally on X@2 3vMware Work-
station, and vanilla Linux to understand their behavioc(®a 6.5). Armed with this
knowledge, we construct a remote attack that successfatlcts the presence of a
VMM across the Internet (Section 6.6).

Per-Instruction Overhead

We configured VMware with the configuration setting

nmoni tor _control .virtual rdtsc = fal se to provide guest OSes with
direct access to the CPU’s timestamp counter. ParavizedlKen 3.0.2 allows its

guests to access the time stamp counter by default. Thusaweua local exper-

iments to analyze per-instruction overhead. Our analgsisased on experiments
where a small number of one of the sensitive instructionsuiestion are inserted
in between sequences of register-to-register arithmesicuctions. For each sensi-
tive instruction, we evenly space 1, 2, 4, 8, or 16 instanééisat instruction among

12,256 arithmetic instructions. We selected 12,256 to renthat trace cache effects
would not add noise to our results. We cannot be sure how #oe ttache would

impact a smaller sequence of instructions because the gracstructure of these

sensitive instructions is not published.

Figure 11 shows the results of local performance measursmeigures 11(a),
11(b), and 11(c) yield very similar results. VMware Workgia shows a consistent
minor overhead above vanilla Linux. In contrast, Xen's parfance degrades sig-
nificantly with each additional sensitive instruction. Hawer, for CR3, we read its
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Fig. 11.Local execution times for selected sensitive instructions

current value and then rewrite that value. CR3 contains tysipal address of the
base of the page directory, thus the VMM must interpose oesacio CR3 to uphold
the resource control property. As Figure 11(d) shows, VMwalorkstation incurs
considerable overhead when it handles a write to CR3.

While reading and writing CR3 does not induce the worst ovelen Xen, the
overhead is still significant. In the next section, we show @ use reads and writes
to CR3 to detect a VMM across the Internet.
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consecutively. Without a VMM executing, these instructions complete lsapdth a VMM,
there is sufficient overhead for remote detection via thresholding. Treradtely from an-
other university.

6.6 Successful Detection

We have established that an instruction sequence of reddgraas to CR3 results in
VMM overhead when the target system is running either VMveairéen. We used a
loop containing a sequence of such instructions in our rerdetection experiment.
Although we did not include HVM Xen in our analysis of perdingtion overheads
in the previous section, we include it in this experimentatidate our approach.
Figure 12 shows the results of our experiment, where the tewerifier is lo-
cated at another university. We are able to induce extreimigly overhead; code
which executes in under 2 seconds on a native system takesth@r 20 seconds to
execute when running on either paravirtualized Xen, HVM XamnvMware Work-
station. This is far above the amount of overhead neceseamydrcome network
latencies, allowing us to conclude that our approach to VMitedtion is feasible.

7 Security Analysis

We have shown in the previous sections that it is possibledti code which has
pathological performance on a VMM, while still executindi@éntly on bare hard-
ware. This discrepancy provides an avenue through whichvatetl parties can
detect VMMs. Recall that the execution of a detection atbari has three logical
stages:

Stage 1. For a target machin&., locate a hardware artifact to establish the con-
figurationC of the machine.

Stage 2. Establish a reference tim&aseline(R¢), for distinguishing between
virtual and real machines with hardware configuration
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Stage 3. Develop and execute Benchmar k which when running on top of a
VMM on the fastest available machine for the architecturguestion executes suf-
ficiently slower than th8enchmar k running in a native OS on the slowest available
machine for the architecture in question.

We analyze the security of each stage individually, desajitechniques which
a VMM might deploy to evade or resist detection.

7.1 Stage 1 and 2 Evasion

A VMM can corrupt the results of stages 1 and 2 by masking adkfile hardware
artifacts that are observable through the VMM and simuiptfternative artifacts
from a slower machine. If a VMM were able to successfully dateia slower ma-
chine, the baseline value established in stage 2 would berléinan necessary. This
larger value might allow a VMM to executeBenchmar k without sufficient over-
head to identify its presence.

Consider the case of a VMM running on an Intel Pentium IV. i$ MMM is able
to hide the existence of the trace cache, perhaps by masfijuges an Intel Pentium
3, then as a result of the speed difference between the Rehiand the Pentium
3, a detection attack may complete before the detectiosltbte for the Pentium 3,
even with the overhead of the VMM.

For a VMM to successfully masquerade as a different architeaequires the
following to be true: the configuration of the target machim@&ot known a priori
and the VMM is able to simulate a slower device during stag@ilevstill running at
normal speed during stage 3. To successfully hide all halasifacts, the VMM
would need to be a full system simulator. To execute at nospakd during stage
3, the VMM would have to be able to identify when the deteciode is running
since running a cycle-accurate simulator on its own incetays that are orders of
magnitude larger than the overhead of any modern VMMs, ngaktie simulator
timings off the charts [16].

7.2 Stage 3 Evasion

To describe our assumptions with respect to a VMM’s abildyetvade detection,
we specify two models of VMM behavior: experiential VMMs aptbpositional
VMMs. Our models follow from partitioning the arms race ofcBen 1.1 based on
a VMM's level of omniscience.

Experiential VMM.  An experiential VMM has posteriori knowledge of experien-
tially observed detectors but lacks identifiable informat{i.e. process name, code
signatures, etc.) for all detectors. It may deploy genesaihtermeasures to evade
detection such as virtualizing local timing sources (r@tsc, performance counters,
etc.), but isn’t able to analyze programs to infer their mtéExperiential VMMs
may have a finite list of signatures to identify detectord,ave unable to prevent all
detection attempts.
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Propositional VMM. A propositional VMM has a priori knowledge of detectors
and evades detection by disabling or tampering with deteetitempts either before
or during its execution.

A propositional VMMs is the case where the VMM can identify détection
algorithms and trivially thwart detection. Recent work @rifiable code execution
on untrusted devices assumes a similar model of adversamiaiscience, however
is not useful for VMM detection because it does not work agras uncontrolled
network, such as the Internet [21].

Correctly identifying a detection attack makes it possfblethe VMM to inter-
pose and tamper with the execution of the attack. If the VMldlizes it is under
a detection attack prior to the execution of the benchmagrlaop, it may be able
to prevent the detection attack from executing correcyhpps returning a valid
response in the correct amount of time for a non-virtualizest.

Identifying that a particular code segment is a detectigor@hm may be dif-
ficult. One potential approach is to rely on the unique stmeciof our detectors,
for example, long sequences of the same operations, few BOnaperations, and
control-flow graphs with limited branching. These propstmight provide suffi-
cient invariants to generate signatures that match deteatgorithms.

Even with the unique properties of our benchmarking looprehare a number
of difficulties inherent in evading detection. First, idénation techniques could
introduce false positives which would affect benign apgians, secondly, a single
false negative allows for the detection of the VM.

8 Discussion

We discuss limitations and potential extensions of our @agin.

8.1 VMM Implementation Independence

While commodity VMMs aren’t VMBRs specifically designed tondurt detection,
they are implemented using the same techniques. As distirssection 3, these
techniques necessitate the existence of VMM overheadrdfivere assisted VMMs
become more common, then this overhead may be reduced, Gomwevesults show
that current generation systems provide sufficient ovetli@adetection.

8.2 User-Level Detection

The detectors developed in this paper run at kernel-lewberahan at user-level.
In most scenarios, running a kernel-level detector is aoregse assumption since
the system’s administrator is interested in detecting VMBRdministrators and

users regularly run kernel-level integrity checkers andckers continue to perform
remote root exploits to gain administrator status. Statistechniques may be nec-
essary to overcome the resulting noise that user-levettietewould incur.
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8.3 Local VMM Detection

Rather than identify a target host as virtual or real by usimgxternal source of time,
local VMM detection aims to demonstrate to a user if theitfplan is virtual or real
without a trusted time source. One potential approach ia fietector to observe the
relative inter-leavings of short code sequences whichxaewted concurrently as a
relative timing attack. If code sequences can be develogexsevinter-leavings are
virtualization sensitive, such an approach may be ableimargte the requirement
of a trusted time source.

8.4 Widespread Virtualization

As more and more machines run VMMs, the existence of a VMM texoless of an
anomaly. However, to dismiss VMM detection as useless irfabe of widespread
virtualization is too harsh. Legacy machines without VMMal fikely persist for
many years to come. VMM detection algorithms like the oneglibged in this paper
can help protect these machines against VMBRs when upgy&diiot an option. We
believe that VMM detection will remain useful as long as narualized platforms
exist.

9 Related Work

Most related work either detects VMMs based on implememtatietails, use tech-
nigues which make assumptions that limit their applicahitir relies on the integrity
of values returned from the VMM. In contrast, our detectitgoathm has a higher
degree of independence with respect to the implementafitred/MM on the tar-
get host, uses a hardware discovery heuristic to identéyctinfiguration of remote
devices, and incorporates a remote timing and decision ntal&iminate the need
to trust the VMM.

Delalleau proposed a scheme to detect the existence of a Viviing timing
analysis [4]. The proposed scheme requires a program taifirstts own execution
on a VMM-free machine in a learning phase. Then, when therprognfects a sus-
pect host of known configuration, its execution time is coragaagainst the results
from the learning phase. Because the result of the learrtiageis dependent on
the exact machine configuration and the scheme is not dekignroduce a config-
urable overhead, it is unclear how practical it is to deplagtsa detection algorithm
in practice.

Execution path analysis (EPA) [20] was first proposed in &hra9 by Jan
Rutkowski as an attempt to determine the presence of keooétits by analyzing
the number of certain system calls. Although the main ideeatso apply to detect
VMMs, EPA has several severe drawbacks. The main drawbattlaist requires
significant modification to the system (debug registersudedxception handler)
that could be easily detected and consequently forged byrtderlying VMM.
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Pioneer [21] is a primitive which enables verifiable codecexi®n on remote
machines. As part of the inherent challenge of verifiableecexiecution, Pioneer
needs to determine whether or not it is running inside a VMIKkke §olution in Pio-
neer is to time the runtime of a certain function that alsalsaa the interrupt enable
bit in the EFLAGS register. This function is pushed into tleerlel and is expected to
run with interrupts turned off. However, if it was runningside a VMM, the output
of the EFLAGS register would be different than expectedhdligh promising, Pio-
neer assumes that the external verifier knows the exact haedwnfiguration of the
target host. We eliminate this assumption and rely on harelagifacts to discover
the target host’s hardware configuration. In addition, tf@mmal timing overhead of
the Pioneer checksum function makes remote usage of Pidifeult.

There are a number of previously developed techniques frenbliackhat com-
munity. Redpilf is an example detection algorithm used to detect the VMwianaal
machine monitor. Redpill operates by reading the addregedhterrupt Descriptor
Table (IDT) with theSI DT instruction and checking if it has been moved to certain
locations known to be used by VMware. This algorithm can ts#iy#ooled since it
relies on the VMM to return the correct address of the IDT [Hlinilar to Redpill,
VMware’s Back is a software-dependent detection attack which uses tiséeexie
of a special I/O port, called the VMware backdoor. This I/Gtps specific to the
VMware virtual machine and hence can be used to detect VMware

Holz and Raynal describe some heuristics for detectingyymwte and other sus-
picious environments from within code executing in saidiemment [7]. Dornseif
et al. study mechanisms designed specifically to detect éhelShigh-interaction
honeypot [6]. Unlike these approaches, the detection idtgowe have constructed
are not based upon specific software artifacts.

Vrable et al. touch briefly on non-trivial mechanisms foredging execution
within a VMM [26]. They allude to the fact that although a hgnet may be able to
perfectly virtualize all hardware, an attacker may be abliafer that it is executing
inside a VMM through side channel measurements.

Robin and Irvine analyzed the Intel Pentium’s architectamel ISA [14] and
pointed out problems in implementing a secure VMM on thellR@ntium archi-
tecture. For instance, certain instructions break harewitualization requirements
because they read sensitive registers and/or memory dosate.g., the clock reg-
ister and interrupt registers), but are not privilegedringions. Execution of such
instructions does not raise an exception, and thus alloesttiacker to read sensi-
tive system data. However, the VMM can perform binary tratish when it loads
the process into memory, and change all such instructidnssiystem calls. Alter-
natively, the VMM can expose a paravirtualized version eftinderlying hardware,
which Xen does on the Intel x86 architecture [2].

Remote physical device fingerprinting can be used to deteii¥¥ if the external
verifier can directly interact with two different virtual mlaines running on the same
host [11]. Our approach only requires the existence of alein@l and hence is

“http://invisiblethings.org/redpill.htn
Shttp://chitchat.at.infoseek.co.jp/vmare/
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useful in the case of virtual machine based rootkits [1050Aldefending against
remote physical device fingerprinting is as simple as disglir masking the TCP
option timestamps. HoneyD is an example virtual honeypadtiwhefends against
remote physical device fingerprinting [13].

10 Conclusions

The main contribution of this article is the development adetection algorithm

whose execution differs from the perspective of an extevedfier when a target
host is virtual (versus when it is executed directly on thdartying hardware). Our
detection algorithm is based on the timing dependency ¢ixueproperty of a vir-

tual machine monitor. We presented results where a singlehmearking program
generates sufficient overhead on several different virnahine monitors to be re-
motely detectable across the Internet. Included in ouryaigis a machine with
hardware virtualization support. The success of our deteetigorithm against this
platform demonstrates that hardware support for virtadiln is not sufficient to
prevent VMM detection.
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