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Summary. We design, implement, and evaluate a practical timing-based approach to detect
virtual machine monitors (VMMs) without relying on VMM implementation details. The
algorithms developed in this paper are based on fundamental propertiesof virtual machine
monitors rather than easily modified software artifacts. We evaluate our approach against two
common VMM implementations on machines with and without hardware support for virtu-
alization in a number of remote and local experiments. We successfully distinguish between
virtual and real machines in all cases even with incomplete information regarding the VMM
implementation and hardware configuration of the targeted machine.

1 Introduction

In their seminal work, Popek and Goldberg formally defined the essential proper-
ties that a program must satisfy to be termed a virtual machine monitor: efficiency,
resource control, and equivalence [12]. In this article, weexploit thetiming depen-
dency exception to the equivalence property of a VMM to detect the presence ofa
virtual machine monitor (VMM) without relying on implementation details or soft-
ware artifacts.

Virtual machine monitor detection has two direct implications for botnet re-
mediation: first, it provides defenders with the ability to detect bots which utilize
VMMs for improved stealth (e.g., VM-based rootkits [10, 18,27]) and second, ex-
ploring VMM detection allows defenders to assess the extentto which intelligent
bots can identify and potentially bias virtualized analysis environments such as high-
interaction honeypots [9,22,26].

Due to the sophisticated nature of modern VMMs and significant variations be-
tween implementations, implementation-independent VMM detection is a difficult
open problem. This difficulty is highlighted by the fact thatmost related work empha-
sizes implementation-dependent (software-artifact-based) techniques. These tech-
niques have an inherent weakness: implementation-dependent detection techniques
are easy to counter by modifying VMM implementations to maskor otherwise hide
identifiable software artifacts.
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In contrast to previous work, the detection algorithms developed in this paper
are VMM implementation-independent and hardware-dependent. While the prac-
ticality of modifying VMM implementations to counter the multitude of current
implementation-dependent detection techniques can be disputed, modifying the im-
plementation of a VMM is inherently easier than modifying the underlying hard-
ware, especially since in most cases the required software modifications are trivial.
Our implementation-independent algorithms do not rely on software artifacts, mak-
ing them difficult to counter without hardware modifications, a task which is difficult
for organizations who rely on commodity hardware.

The main contribution of this article is the development of aclass of implementation-
independent VMM detection algorithms whose execution is noticeably different
when executed inside a virtual machine versus when executeddirectly on the under-
lying hardware. We describe the design and implementation of our algorithms, their
success detecting a number of VMMs including VMware [23,25], the Xen VMM [2]
on standard hardware, and the Xen VMM on a machine with hardware assistance for
virtualization.

Virtualization Layer
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Hardware

Kernel

Hardware

D

D

Virtual Target System Real Target System

Fig. 1.VMM detection algorithm D on virtual and real target systems

We develop a class of VMM detectors that, when executing on a target system
of unknown status (virtual or real) with access to a trusted external timer, can dis-
tinguish between a virtual and real target system (see Figure 1). Given the exact
hardware specification and the specific VMM implementation that may be present,
detection using timing is straightforward. However, givenall known and possibly
unknown VMM implementations, and all possible commodity hardware configura-
tions, detecting the presence of a VMM on a platform with uncertain configuration
is challenging. Hence, VMM detection spans a spectrum of scenarios, running from
specific (easier to detect) to general (harder to detect) along two axes: VMM im-
plementation ranging from known to unknown and hardware configuration ranging
from known to unknown (see Figure 2). We explore this space ofdetection scenarios
and address the challenges that lie within.

Complete knowledge of a system’s hardware configuration is available in some
scenarios, such as administratively controlled machines in corporations. As an ex-
ample, consider the scenario where VM-based rootkits (VMBRs) become a signifi-



Towards Sound Detection of Virtual Machines 3

K
n
o
w

le
d
g
e
 o

f 
V

M
M

 I
m

p
le

m
e
n
ta

ti
o
n

Knowledge of Hardware

less
 diffi

cu
lt t

o detect

more
 diffi

cu
lt t

o detect

more less

m
o
re

le
s
s

alpha beta

delta gamma

Fig. 2.Problem space

cant threat in the wild. Anti-virus software makers, motivated to protect their users
against such threats, could ask users to specify their hardware (e.g., Pentium 4 2.0
GHz) upon installation of a VMM detector such as the one developed in this pa-
per. Servers run by the anti-virus company could then periodically challenge the
users’ systems to execute our hardware-specific VMM detector, designed to elicit
a detectable performance degradation when running in a VMM.If performance is
degraded sufficiently, the anti-virus software company could begin a recovery on the
users’ VM-based rootkit infected machines. A challenge in this naive model is that
the information provided by the user about their system might be incorrect, incom-
plete, or unavailable.

The techniques described in this paper successfully detectthe presence of a
VMM on a target system even with uncertainty about the system’s exact hardware
configuration and specific VMM implementation. Our approachexploits VMM tim-
ing dependencies to elicit measurable VMM overhead, even inthe face of limited
hardware and software configuration information. Uncertainties with respect to hard-
ware configuration include CPU microarchitecture, cache architecture, and clock
speed. Uncertainties with respect to the VMM implementation include optimizations
such as the use of binary rewriting or paravirtualization. Hardware support for virtu-
alization, such as Intel’s VT [8] or AMD’s SVM [5] technologies, further complicate
detection.

In our evaluation, we are able to identify sufficient hardware configuration infor-
mation for target systems and to ultimately distinguish between virtual and real ma-
chines. Further, our approach continues to work against VMMs that utilize hardware
support for virtualization. Our experiments demonstrate the viability of our approach
over a range of uncertainty. As such, the algorithms developed in this paper represent
a promising step towards general VMM detection techniques.
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1.1 Context

The best way to understand VMM detection and to understand the relationship be-
tween this paper and past work is to describe the arms race which is VMM detection.
VMM detection is an arms race between detectors (which attempt to detect a VMM)
and VMMs (which attempt to evade detection). Below we describe the stages of the
arms race with each step labeled either current, emerging, or future to describe the
chronology of the race.

D1 V1 D2 D3 VE−1

VE−2
Success

Failure

Failure

Success

FutureEmergingCurrent

Fig. 3. VMM detection arms race

D1: Currently, detectors use software implementation-dependent artifacts such as
communication back doors, process names, and perturbed locations of system
components [19].

V1: VMMs evade detection by eliminating the specific artifacts used for detection.
For example, VMMs mask names and values (i.e., location of the IDT, special
processes, communication back doors etc...) or interpose on specific instructions
which are used in detection [10].

D2: Detectors search for previously unknown software artifacts. If found, return to
step V1 otherwise continue.

D3: In the absence of previously unknown software artifacts, detectors search for
implementation-independent perturbations such as timing(this article). If found,
continue, else jump to VE-2.

VE-1: Unable to evade implementation-independent detection, VMMs either remain
detectable or violate an assumption of the arms race. One possible violation
is that VMMs continue to operate on commodity hardware. It’spossible that
hardware support for virtualization will eliminate VMM overhead. We suspect
this to be unlikely for multiple reasons: hardware-supportis meant to fill holes
in current architecture’s virtualization support and to ease the implementation of
VMMs, it is not designed to optimize or otherwise hide the presence of a VMM.
We evaluate the results of violating this assumption in Section 6.

VE-2: With both implementation-dependent and implementation-independent de-
tectors eliminated, VMMs successfully evade detection.

Organization. Section 2 discusses necessary background including the formal
properties of a VMM. Section 3 sketches a sound approach to VMM detection. Sec-
tion 4 discusses the algorithm and protocol design for a class of VMM detection
algorithms. Section 5 describes the implementation of a detector. Section 6 presents
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our experimental results. We present a security analysis inSection 7 and discuss lim-
itations and possible extensions in Section 8. We cover related work in Section 9 and
conclude in Section 10.

2 Background

We follow Popek and Goldberg in defining a virtual machine as an efficient, isolated
duplicate of the underlying hardware [12]. This definition imposes the three prop-
erties that a control program must satisfy to be termed a virtual machine monitor:
efficiency, resource control, and equivalence. To explain these three properties, we
must first introduce some terminology.

2.1 Instruction Types

We classify the underlying instructions of a machine based on their behavior. An
instruction isprivileged if it can only be executed in the highest processor privilege
level, and executing it at any other privilege level resultsin a trap to a higher privilege
level. Privileged instructions are characteristics of theunderlying hardware and are
invariant over a particular instruction set architecture.An instruction issensitiveif it
can interfere with the state of a memory-resident VMM. An instruction is innocuous
if it is not sensitive.

2.2 Virtual Machine Properties

Informally, theefficiency property dictates that programs run in a virtualized envi-
ronment show no more than minor decreases in speed. Since minor decrease in speed
is difficult to quantify, a parallel requirement of the efficiency property is that a sta-
tistically dominant subset of the virtual processor’s instructions be executed directly
by the real processor.

Theresource control property dictates that a VMM maintain complete control
of system resources. This requires that it be impossible foran arbitrary program
running in a VM on top of a VMM to affect system resources, e.g., memory and
peripherals, allocated to a different VM or the VMM itself.

Theequivalence propertydictates that a VMM provide an environment for pro-
grams which is essentially identical to that of the originalmachine. Formally, any
programP executing with a VMM resident in memory, with two possible excep-
tions, must perform in a mannerindistinguishable from the case when the VMM
did not exist andP had the freedom of access to privileged instructions that the
programmer had intended. The two possible exceptions to theequivalence property
result from resource availability and timing dependencies.
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2.3 Exceptions

The resource availability exceptionstates that a particular request for a resource
may not always be satisfied. As a result, a program may be unable to function in the
same manner as it would if the resource were made available. This exception exists
because a VMM shares the underlying hardware and hence consumes resources.

The timing dependency exceptionstates that certain instruction sequences in a
program may take longer to execute. Hence, assumptions about the length of time
required for the execution of an instruction might lead to incorrect results. This ex-
ception results from the possibility of a VMM occasionally intervening in certain
instruction sequences.

These exceptions allow for the theoretical possibility of detecting a virtual ma-
chine monitor. If these exceptions did not exist, a VMM that perfectly satisfied the
equivalence property would be impossible to detect. In thispaper, we study how
VMM detectors can be written which exploit these exceptionsto unmask virtualized
machines.

3 Approach

We sketch the design of a sound detection algorithm that exploits the timing depen-
dency exception of a VM to distinguish between real and virtual machines.

3.1 Definitions

A VMM detection algorithm is a decision procedure which when given as input a
target machineM outputsaccept if M is a virtual machine andreject if M is a real
machine. LetV be a virtual machine. A detection algorithmD is sound if and only
if when D(M) outputsaccept, M is a virtual machine. A detection algorithmD is
complete if and only if on inputV , D halts and outputsaccept. In order to elimi-
nate any dependence on a particular VMM implementation, theapproach described
below is based on an idealization of a control program which satisfies the required
properties of a VMM with the two previously mentioned exceptions. We term such
a program anidealized VMM.

3.2 Intuition behind Detection Algorithms

Failure to control the execution of a sensitive instructionexecuted in a virtual ma-
chine (VM) can result in a loss of control over system resources. Since this is a vi-
olation of the resource control property, a VMM must strictly control the execution
of sensitive instructions. The need to completely control system resources imposes
stringent requirements on the execution of any instructionwhich has the potential to
affect system resources.

Classes of instructions that can potentially affect systemresources include sensitive-
privileged instructions, sensitive-unprivileged instructions, and innocuous-privileged
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instructions. Innocuous-unprivileged instructions can be directly executed on the un-
derlying hardware as they pose no risk of state corruption orcontrol modification.
It is the potentially control-modifying instructions thatnecessitate the existence of
timing dependencies when a program executes in a VM.

When a VMM interposes on the execution of instructions that can affect system
resources, VMM overhead is encountered. The VMM overhead ofan instruction
is the additional number of cycles required to execute the instruction in a VMM
versus executing the instruction directly on real hardware. We exploit this overhead
to distinguishing between real and virtual machines.

We give an intuition as to why positive VMM overhead is independent of VMM
implementation. Assume positive VMM overhead does not exist. Then, either the
VMM overhead is zero or it is negative. If the VMM overhead is negative, then
the addition of a VMM actually increases the speed of the realmachine, clearly
a contradiction. If the VMM overhead is zero and instructions execute in a positive
amount of time, then the VMM cannot interpose on instructions to maintain resource
control. A program which does not maintain resource controlis not a VMM, hence
we arrive at a contradiction.

In our previous argument, we implicitly assumed that VMMs execute without
hardware assistance for virtualization. The recent commoditization of hardware sup-
port for virtualization could reduce or in the extreme case eliminate VMM overhead.
Previous work has show that even with current generation hardware support for vir-
tualization, VMMs experience considerable performance overhead [1]. In addition,
our experimental results confirm these observations. Sincewe cannot predict how
future hardware might improve virtualization performance; the results of this paper
only apply to current architectures.

3.3 VMM Detection Algorithm

We are interested in the class of detection algorithms that exploit the timing depen-
dency exception to distinguish between real and virtual machines. We describe this
class of algorithms as follows.

Let RC be a real machine with configurationC and letMC be a virtual or
real machine with identical configurationC. Let Benchmark be a program withk
control-modifying instructions each with VMM overheado. ExecuteBenchmark
on R. Store the time required forBenchmark to complete inRC(Benchmark).
ExecuteBenchmark on M . Store the time required forBenchmark to com-
plete inMC(Benchmark). CompareMC(Benchmark) andRC(Benchmark). If
MC(Benchmark) is greater thanRC(Benchmark) by at leastk ∗o, output accept,
else output reject.

4 Algorithm and Protocol Design

We present the design of our detection algorithm and protocol.
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4.1 Algorithm Design

A number of complexities surface while implementing the detection algorithm de-
veloped in the previous section. First, aBenchmark with control modifying in-
structions must be constructed. Second, the execution timeof a Benchmark on
the real machine must be measured. Third, the execution timeof aBenchmark on
the target machine must be measured. Each of these entails additional complexities,
explanations of which follow.
Designing for Overhead. As we previously argued, because of the inherent prop-
erties of a VMM, the VM should not be able to execute a program with control-
modifying instructions as fast as the real machine. We design a Benchmark to
include control modifying instructions empirically determined to have an overhead
across implementations and validate our selection againsta VMM of unknown im-
plementation. We choose the particular control-modifyinginstructions and then tune
their number such that the VMM overhead is remotely (e.g., across the Internet)
noticeable.
Establishing Reference Times. The execution time of aBenchmark onRC , de-
notedBaseline(RC) is our reference for distinguishing between virtual and real
machines with hardware configurationC. The performance of our algorithm is di-
rectly related to the accuracy with which we can measureBaseline(RC). A central
complexity in establishing an accurate reference time is how to establish this value
for machines of unknown configuration.

Since the execution time of aBenchmark is dependent on the underlying hard-
ware, clearly we require some knowledge of the hardware configuration to establish
Baseline(RC). The greater the amount of information we have about the hardware
configuration, the easier it is to distinguish between real and virtual machines, how-
ever, as we require more configuration information, the number of scenarios where
our detector may work is reduced.

While our approach is independent of the mechanism used to determine the con-
figuration of the machine in question, in order to develop an end-to-end VMM detec-
tion algorithm, we proceed as follows. To start, we assume wehave no configuration
information about the machine in question and that we cannottrust the machine’s
direct responses to configuration inquiries. Assuming we know the configuration of
the machine in question greatly limits the scenarios in which our detection algorithm
is applicable. Further, trusting a virtual machine’s direct response to configuration
questions can result in our acceptance of incorrect timing measurements.

We develop a heuristic approach to identify unknown hardware which works well
in practice. Our heuristic, which we call hardware discovery, uses the existence of
hardware artifacts that “shine through” a VMM. The hardwareartifacts we discover
are unique to a particular architecture and allow us to infera portion of the configu-
ration of the machine. This configuration information then allows for an estimation
of Baseline(RC). We explain our techniques for hardware discovery and runtime
estimation in the coming sections.
Measuring Execution Times in a VM. Timing the execution of aBenchmark on
M necessitates the existence of a reliable timing source. IfM is a virtual machine,
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the VMM may return timing measurements which do not accurately characterize the
execution time [10]. To overcome this complexity, we allow the detector to contact
an external timing source.

To remotely detect VMM overhead, we must develop aBenchmark with suffi-
cient VMM overhead to overcome possible measurement noise.Potential sources of
noise include variance in network latency, inaccuracies intiming, and variance in ex-
ecution times resulting from caching. To overcome this noise, we develop techniques
to configure the amount of VMM overhead to a nearly arbitrary extent.

4.2 Benchmark Design

Constructing aBenchmark requires that we determine which control-modifying
instructions and the correct number of these instructions to execute. Below we dis-
cuss how aBenchmark can designed to have a variable amount of VMM overhead
based on the specific instructions used and their number.

Selecting Instructions

To select the correct control-modifying instructions to induce VMM overhead, we
measured the overhead of different sensitive-privileged instructions on several dif-
ferent VMMs. We use sensitive-privileged instructions, asopposed to sensitive-
unprivileged instructions, because sensitive-unprivileged instructions violate the re-
source control property [14]. The results of these measurements are presented in
Section 6.

Number of Instructions

After selecting particular instructions, we need to further tune the VMM overhead
induced aBenchmark by selecting the number of instructions. There are two pri-
mary factors that affect the VMM overhead of aBenchmark. First, the processor
configuration of a machine, for instance, Intel Pentium IV 2.0 GHz, has a direct ef-
fect on the execution time. Second, different VMM implementation techniques have
different levels of overhead. The following analysis explains how we incorporate
these two factors into our experiments in order to select thenumber of instructions
in aBenchmark.

4.3 Measuring and Approximating Execution Times

First, we assume full knowledge of the configuration of the target machine. We then
limit the amount of configuration information that is known and develop an approx-
imation technique for estimating the runtime of aBenchmark over a class of ma-
chines.
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Fig. 4. Example VMM overhead of aBenchmark. Without a VMM executing, the instruc-
tions complete rapidly. With a VMM, there is noticeable overhead.

Timing With Complete Configuration Information

For purposes of demonstration, we imagine a scenario where we know the exact
hardware configuration of the machine which we wish to distinguish as real or vir-
tual, and we have access to a local machine of identical configuration. In this case,
we can execute our detection code on the identically configured local machine and
measure its execution time for use as a baseline for remote detection.

Given access to the local machine, we can determine the correct number of in-
structions to execute by estimating the noise in our experiments and running a num-
ber of experiments. We execute aBenchmark on the real hardware of the local
machine and under different VMMs, while varying the number of instructions. The
results look similar to Figure 4.

This graph is a hypothetical example based on our experimental results. The
upper lines represent the runtimes of aBenchmark with a fixed set of control-
modifying instructions under several different VMM implementations. The bottom
line is the execution time on the real hardware. To determinethe required number
of instructions, we first fit equations to all the data points in the graph. We then
use these equations to determine the minimum number of instructions required to
overcome our noise estimate.

Let Model(RC) =















V MM1(x) = a1x

V MM2(x) = a2x

V MM3(x) = a3x

RealMachine(x) = bx















with a = min(a1, a2, a3) andFastestV MM(x) = ax. Given a noise estimate
of n, the minimum required number of iterationsx such thatFastestV MM(x) −
RealMachine(x) > n is x > n

a−b
. Sincen is small in practice and our VMM

overhead is configurable to an almost arbitrary extent, selecting x based on local
experiments presents few difficulties.
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In the above example, which is based on our experimental results, we havea =
0.125 andb = 0.01. If we assume our experimental noisen = 20ms (based on a
network latency variation of 10 ms), aBenchmark must run at least 175 iterations.

Approximate Timing With Incomplete Configuration Informat ion

We now examine the case where we have incomplete configuration information for
the target machine. In this case, we determine the correct number of instructions to
execute based on a number of estimates and experiments. We assume we have access
to a machine with partial configuration information which matches that of the target
machine.

As an example, imagine that the partial configuration information we have iden-
tifies just the processor type (e.g., Pentium IV). Since the remote machine we are
attempting to distinguish as virtual or real may run at a different clock speed than
the machine we are using for our experiments, we need to boundthe runtime a
Benchmark for different configurations and use these bounds for detection. In ad-
dition, since our baseline execution time will not be as accurate as in the full con-
figuration information case, we must design theBenchmark such that its execution
time is ordered as in Figure 5. Essentially, executing aBenchmark on the fastest
VMM on the fastest real machine that matches the partial configuration information
should take longer than executing theBenchmark directly on the slowest machine
matching the partial configuration information.

FR FV SVSR

architecture range architecture range

O
Execution time

Fig. 5. The required order of execution times for aBenchmark for different configurations.
Given some configuration information, FR is the fastest real machine, SR is the slowest real
machine, FV is the fastest real machine running the fastest VMM, and SVis the slowest real
machine running a VMM.

The approach we develop is to determine the range of processor speeds available
given our partial configuration information and to use thesevalues to approximate
the execution time under different configurations. Since our detection code is CPU
bound, it is possible to estimate the runtime of aBenchmark given only a few
experiments on a single machine and a number of easily determined public values.

Given the partial configuration information we know, we determine the proces-
sor speed of the fastest machine available and denote this asF . While this value in-
creases over time, the configurable nature of the overhead elicited by aBenchmark
makes it possible to compensate for this increase. We denotethe speed of the slowest
machine satisfying our partial configuration information as S. The processor speed
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of the machine we are using for local experiments is denotedM . At the time of
writing this paper,F = 3.8GHZ andS = 1.3GHZ for the Pentium IV3.

As described above, we experimentally determineFastestV MM(x) = ax and
RealMachine(x) = bx by running a small number of tests on the local machine
M . We then use the ratio of the speed of the local machine to the speed of the
slowest possible machine,p = M

S
, to estimate the runtime aBenchmark on the real

hardware ofS. This gives us a runtime estimate onS of SR = p∗RealMachine(x).
Similarly, we use the ratio of the speed of the local machine to the fastest machine,
u = M

F
, to estimate the runtime on the fastest virtual machine. This gives usFV =

d∗FastestV MM(x). To determine the minimum number of instructions required to
overcome our noise estimate, we requireFV > SR+n or equivalently,x > n

au−bp
.

Returning to the above example and the Pentium IV, we havea = 0.125, b =
0.01, M = 2.0; GHz, p = 2.0

1.3
, andu = 2.0

3.8
. If we assume that our experimental

noisen = 20ms aBenchmark must run at least 471 iterations, more than twice as
many as in the complete configuration information case.

4.4 Protocol Design

In our scheme, a trusted agent external to the target system denoted byV interacts
with an instance of a detection algorithmD on a target machineM . V measures the
start and end times ofD by either invokingD remotely or receiving a communication
immediately beforeD executes. After execution completes,D sendsV a notification
of completion.

D contains a specially crafted sequence of instructions called theBenchmark.
TheBenchmark is designed to elicit externally noticeable differences inexecution
time between virtualized and non-virtualized execution environments.D executes on
the target host at the highest privilege level with interrupts turned off.

Upon receiving the notification of completion,V records the time elapsed since
invocation ofD. To determine if the detection algorithmD was executed in a VMM,
V performs a lookup into a precomputed table of baseline execution times for the
target host’s hardware platform. If the execution time exceeds the threshold set for
the slowest real machine of the specified configuration, the target machineM is
considered to be a virtual machine.

5 Implementation

We detect the presence of a VMM based on performance measurements of instruc-
tion sequences, which we execute in a loop called the benchmarking loop. We use
a sequence of instructions inside of a loop rather than as a straight line program to
ease experimentation. We iterate the loop containing control-modifying instructions
until we generate enough overhead for detection. Unless stated otherwise, our loop
iterates217 times. We experimentally selected this value.

3 http://www.intel.com/products/processor/pentium4
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We implemented ourBenchmarks as Linux kernel modules. Their instructions
always execute at the same privilege level as the kernel itself, which depends on the
hardware architecture and the presence or lack of a VMM. To measure execution
time locally, we use therdtsc (read time-stamp counter) instruction before and
after the benchmarking loop. To obtain measurements using an external or remote
verifier, a user-level programmeasured runs on the target system and listens for
a TCP connection from the verifier. When a connection is established,measured
immediately tries to open a file that our kernel module adds tothe/proc filesystem.
This results in a call to a function in our module, which immediately suspends the
calling process, disables interrupts, and begins execution of the benchmarking loop.
When the benchmarking loop finishes, interrupts are re-enabled, the calling process
gets woken up, and its file-open succeeds. Without even reading any data from the
file, measured sends a packet back across its TCP connection, indicating tothe
verifier that execution of the benchmarking loop is complete.

6 Evaluation

We first describe the VMMs evaluated in our experiments and our experimental
setup, then the actions necessary to ensure timing integrity for our experiments.
Mechanisms that can detect the hardware architecture of an unknown remote system
are presented next. Finally, we provide the results of both local and remote experi-
ments, culminating in successful detection.

6.1 VMM Implementations

We evaluate our approach against two common virtual machinemonitor implemen-
tation techniques [15]: full virtualization and paravirtualization. Both of these tech-
niques are used to virtualize operating system instances rather than processes on one
operating system; however, they differ in their approach toachieving this goal.

In full virtualization, the virtual replica of the underlying hardware exposed is
functionally identical to the underlying machine. This allows operating systems and
applications to run unmodified. Full virtualization is typically implemented in one of
two ways: (1) with full support from the underlying hardware, affording maximum
efficiency; and (2) without full support from the underlyinghardware, requiring sen-
sitive instructions to be emulated in software.

A popular full system virtualization VMM is VMware Workstation [23,25], here-
after referred to as simply VMware. VMware runs inside of a host operating system –
as opposed to running on the raw hardware – and exposes an accurate representation
of the x86 architecture to guest operating systems. This causes VMware to suffer a
performance overhead during the execution of certain privileged instructions, since
they must be emulated in software.

In paravirtualization, the virtual replica of the underlying hardware exposed is
similar to the underlying machine, but it is not identical. This is done when the under-
lying machine architecture consists of sensitive instructions which are not privileged.
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Fig. 6.Experimental machine and network setup

Paravirtualized VMMs have the drawback that operating systems must be modified
to run on them; however, they enable efficient virtualization to be performed even
when hardware support for full virtualization is unavailable.

Xen is an open-source x86 virtual machine monitor that uses paravirtualization to
achieve high performance [2]. Xen presents a software interface to the guest OS that
is not identical to the actual hardware. Therefore, the guest operating system needs to
be modified before it can run on Xen. Paravirtualization is trivially detectable from
within a guest OS, as certain features of the underlying hardware will be broken or
missing. Full virtualization on Xen can be accomplished with hardware support, e.g.,
Intel Vanderpool Technology (VT) [8] or AMD SVM [5].

6.2 Experimental Setup

We use six machines in our VMM detection experiments. Figure6 shows these ma-
chines and their network connectivity. Three of the machines are identical 2.0 GHz
Intel Pentium IV systems. These systems run vanilla Linux, VMware Workstation,
and paravirtualized Xen 3.0.2, respectively. The fourth machine has hardware exten-
sions to support virtualization (e.g., Intel VT [8] or AMD SVM [5]) and runs Xen
3.0.2. The last two machines are used as verifiers in experiments where timing mea-
surements are made remotely. One of these is on a separate subnet from our machines
running VMMs, separated by one hop through a router, which wecall theexternal
verifier. The other is located remotely at another university, which we call theremote
verifier. Average ping times to the external and remote verifiers are 0.4 ms and 16 ms,
respectively. All CPU-scaling and power-saving features are disabled on the external
and remote verifiers during experiments to prevent the clockfrequency of the CPU
in the verifier from changing.

In the remainder of the paper, we sometimes refer to a target host as “VMware”
or “Xen”, when in fact we mean the guest OS running on VMware orXen. All
experiments run against Xen, with or without HVM support, are run against an un-



Towards Sound Detection of Virtual Machines 15

privileged user domain which is the only other domain running besides the privileged
domain 0.

In our experiments, we execute the benchmarking loop in the same privilege level
as the OS kernel. Once the benchmarking loop executes on the target host, it turns
off interrupts and executes a sequence of instructions thatwill experience detectable
performance differences depending on the presence or absence of a VMM. Interrupts
were disabled to improve the accuracy of timing measurements. Once the sequence
of instructions executes, the VMM detection code re-enables interrupts and sends a
notice of completion to the verifier.

We must address one more issue before delving into our benchmarking loops: the
issue of a heavily loaded target host. We compare the case where the target host is not
running a VMM with the case where it is. If there is no VMM, thendisabling inter-
rupts in the benchmarking loop truly disables them. The benchmarking loop executes
to completion without interruption, rendering the load on the target host irrelevant.
If the target system is a guest running on a VMM, interrupts are at least disabled in
that guest VM. Thus, only code executing in other guest VMs onthe same VMM can
affect performance. If another heavily loaded guest existsalongside the target guest,
the performance of the target guest may be degraded. This performance degradation
only applies on systems running VMMs, and will thusimprove our chances of suc-
cessfully detecting the VMM. All of our experiments are run without any extra load
on the VMMs, hence we evaluate our VMM detection approach in the worst-case of
an unloaded system.

6.3 Timing Integrity

A VMM has total control over instructions executed by the guest OSes. Thus, we
cannot trust a VMM to return valid answers tordtsc “in the wild” [10]. Figure 7
compares internal (local) versus external timing measurements for the exact same ex-
periment run on two variants of HVM Xen. One variant is the standard 3.0.2 release.
The variant labeled as “Low-Integrity” in the figure is actually an unstable develop-
ment release of Xen with a bug in the code which handlesrdtsc. It is illustrative
here because a party who wishes to thwart local VMM detectionmay intentionally
modify their VMM to return such invalid timing measurements.

Figure 7(a) shows the internal timing measurements for a loop of a sequence of
arithmetic instructions which clears interrupts at the beginning of each loop iteration.
Xen 3.0.2 behaves as expected, with longer instruction sequences requiring longer to
execute. In contrast, “Low-Integrity” Xen does not show anyoverhead whatsoever. In
fact, some of the elapsed times are negative. Figure 7(b) shows a rerun of the same
experiment, except that timing is performed by an external verifier. Localrdtsc
calls are now unnecessary, and the runtime of the two experiments is nearly identical.

VMware Workstation can be made to demonstrate similar behavior. In fact,
VMware provides a configuration option for VMs called
monitor control.virtual rdtsc [24]. When set totrue, a virtual counter
in the VMM is used to provide values for guest OS calls tordtsc. When set to
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Fig. 7.Timing integrity using internal versus external verifiers

false, VMware allows guest OS calls tordtsc to access the CPU’s true times-
tamp counter.

6.4 Identifying Remote Architectures

Inducing significant overhead in a VMM can result in long runtimes, which we de-
tect by measuring runtime from a separate system. However, without some idea of
the hardware architecture of the remote system in question,it is difficult to inter-
pret timing results correctly. In this section, we describea technique which is useful
for identifying an unknown remote system as having an Intel Pentium IV CPU. If
a system is known to be equipped with a Pentium IV, we can boundits expected
performance (as demonstrated in Section 4). This bound is what allows for the es-
tablishment of a runtime threshold, above which it is likelythat the target system
is running a VMM. The Netburst Microarchitecture of the Intel Pentium IV family
includes a trace cache with consistent specifications across all currently-produced
Pentium IV CPUs [3]; our hardware discovery heuristics detect the presence of the
trace cache. Other relevant characteristics of the PentiumIV microarchitecture in-
clude an out-of-order core and a rapid execution engine.

The trace cache stores instructions in the form of decodedµops rather than in
the form of raw bytes which are stored in more conventional instruction caches [17].
Thesetraces of the dynamic instruction stream permit instructions thatare noncon-
tiguous in a traditional cache to appear contiguous. A traceis a sequence of at most
n instructions and at mostm basic blocks (a sequence of instructions without any
jumps) starting at any point in the dynamic instruction stream. An entry in the trace
cache is specified by a starting address and a sequence of up tom − 1 branch out-
comes, which describe the path followed. This facilitates removal of the instruction
decode logic from the main execution loop, enabling the out-of-order core to sched-
ule multipleµops to the rapid execution engine in a single clock cycle. In the case
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rdtsc ;; get start time
mov $131072, %edi ;; n = 131072

loop:
xorl %eax, %eax ;; begin special
addl %ebx, %ebx ;; instr. seq.
movl %ecx, %ecx
orl %edx, %edx
... ;; 1K – 16K instr.
sub $1, %edi ;; n = n − 1

jnz loop ;; until n = 0

rdtsc ;; get end time

Fig. 8. Example assembly code used to fill trace cache with register-to-register arithmetic
instruction sequences without data hazards. These arithmetic instructionseach decode to a
singleµop on Intel Pentium IV CPUs.
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is attainable. Once an instruction

sequence exceeds the trace cache’s maximum size of 12KB, the CPI becomes 1. No such
effect is visible on a Pentium M (an architecture without a trace cache). Cycles measured
locally with rdtsc.

of register-to-register arithmetic instructions withoutdata hazards, it is possible to
retire threeµops every clock cycle. Register-to-register x86 arithmetic instructions
(e.g.,add,sub,and,or,xor,mov) decode into a singleµop. Thus, it is possible to
attain a Cycles-Per-Instruction (CPI) rate of1

3
for certain sequences of instructions.

Intel has published the size of the trace cache in the PentiumIV CPU family –
12K µops. However, the parametersm andn, as well as the number ofµops into
which x86 instructions decode, have not been published. We performed an experi-
ment where we executed loops of 1024 to 16384 arithmetic instructions devoid of
data hazards on Pentium IV systems running vanilla Linux 2.6.16. Figure 8 shows
the structure of our benchmarking loop. Figure 9 shows the results of this experi-
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With and without a VMM, the Pentium IV architecture shows a considerable jump in overhead
for a small number of additional instructions. In contrast, the Intel Pentium M (legend: PM)
shows no such jump.

ment when run using therdtsc – read time-stamp counter – instruction to measure
the elapsed CPU cycles locally. On the Pentium IV, the CPI is1

3
until the number

of instructions reaches Intel’s published trace cache capacity of 12K µops. We also
ran this experiment locally on a laptop equipped with a Pentium M CPU; no unusual
caching effects are observed (note that a CPI of less than 1 isobtained for the entire
loop).

At this point we know enough about the trace cache in Pentium IV CPUs to
construct a loop that has sufficient trace cache overhead to be detectable over the
Internet. As described above, the exact details of how the trace cache generates its
traces are not published. We performed additional experiments like those of Figure 9
locally and determined that a benchmarking loop composed ofa sequence of 11264
arithmetic register-to-register instructions fits insidethe trace cache, but that a se-
quence of 11328 instructions does not fit. That these figures are less than 12K is
expected, as there are additional instructions executed tomaintain loop counters and
jump back to the beginning of the loop. Thus, executing thesesequences multiple
times should cause the performance of the larger loop to suffer disproportionately
with respect to its added length.

Since the benchmarking loops contain only innocuous instructions, VMMs allow
them to execute directly. The exaggerated performance difference between the two
loops is largely unaffected by the presence of a VMM. Figure 10 shows the results
of an experiment designed to demonstrate this effect. The top three lines are the
execution time for the smaller sequence (11264 instructions per loop iteration) on
vanilla Linux, paravirtualized Xen, and VMware Workstation. The bottom three lines
show the same with the larger sequence (11328 instructions per loop iteration). The
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middle two lines show the two sequences executed on a PentiumM running vanilla
Linux; this serves to illustrate how minimal the runtime difference between the loops
is when there is no trace cache involved. The gap between the execution time of loops
of the smaller sequence and loops of the larger sequence is considerable making this
overhead identifiable across the Internet.

6.5 Inducing Detectable VMM Overhead

Given the results of the previous section, we have partial configuration information
about the remote architecture of the target host. For example, we know the CPU is
a member of the Pentium IV family. As described in Section 4.3, we need sufficient
overhead to distinguish between the slowest member of the CPU family running a
native OS and the fastest member of the CPU family running a guest OS on a VMM.

Recall that to detect a VMM, we must induce significant performance overhead.
As described in Section 4, we use sensitive-privileged instructions which result in
the execution of additional code inside the VMM. While we do not have space to ex-
haustively treat all sensitive instructions, we select a few and analyze their overhead
on Xen 3.0.2 and VMware Workstation on an Intel Pentium IV. The instructions we
consider arecli (clear interrupts),mov %cr0, %eax (read processor control reg-
ister 0),mov %cr2, %eax (read processor control register 2), andmov %cr3,
%eax; mov %eax, %cr3 (read and write processor control register 3, which con-
tains the physical address of the base of the page directory).

We next analyze these selected instructions locally on Xen 3.0.2, VMware Work-
station, and vanilla Linux to understand their behavior (Section 6.5). Armed with this
knowledge, we construct a remote attack that successfully detects the presence of a
VMM across the Internet (Section 6.6).

Per-Instruction Overhead

We configured VMware with the configuration setting
monitor control.virtual rdtsc = false to provide guest OSes with
direct access to the CPU’s timestamp counter. Paravirtualized Xen 3.0.2 allows its
guests to access the time stamp counter by default. Thus, we can run local exper-
iments to analyze per-instruction overhead. Our analysis is based on experiments
where a small number of one of the sensitive instructions in question are inserted
in between sequences of register-to-register arithmetic instructions. For each sensi-
tive instruction, we evenly space 1, 2, 4, 8, or 16 instances of that instruction among
12,256 arithmetic instructions. We selected 12,256 to ensure that trace cache effects
would not add noise to our results. We cannot be sure how the trace cache would
impact a smaller sequence of instructions because the exactµop structure of these
sensitive instructions is not published.

Figure 11 shows the results of local performance measurements. Figures 11(a),
11(b), and 11(c) yield very similar results. VMware Workstation shows a consistent
minor overhead above vanilla Linux. In contrast, Xen’s performance degrades sig-
nificantly with each additional sensitive instruction. However, for CR3, we read its
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(b) mov cr0, %eax (Read Processor Control Regis-
ter 0)
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(c) mov %cr2, %eax (Read Processor Control Reg-
ister 2)
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Fig. 11.Local execution times for selected sensitive instructions

current value and then rewrite that value. CR3 contains the physical address of the
base of the page directory, thus the VMM must interpose on access to CR3 to uphold
the resource control property. As Figure 11(d) shows, VMware Workstation incurs
considerable overhead when it handles a write to CR3.

While reading and writing CR3 does not induce the worst overhead on Xen, the
overhead is still significant. In the next section, we show how we use reads and writes
to CR3 to detect a VMM across the Internet.
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6.6 Successful Detection

We have established that an instruction sequence of reads and writes to CR3 results in
VMM overhead when the target system is running either VMwareor Xen. We used a
loop containing a sequence of such instructions in our remote detection experiment.
Although we did not include HVM Xen in our analysis of per-instruction overheads
in the previous section, we include it in this experiment to validate our approach.

Figure 12 shows the results of our experiment, where the remote verifier is lo-
cated at another university. We are able to induce extremelyhigh overhead; code
which executes in under 2 seconds on a native system takes more than 20 seconds to
execute when running on either paravirtualized Xen, HVM Xen, or VMware Work-
station. This is far above the amount of overhead necessary to overcome network
latencies, allowing us to conclude that our approach to VMM detection is feasible.

7 Security Analysis

We have shown in the previous sections that it is possible to craft code which has
pathological performance on a VMM, while still executing efficiently on bare hard-
ware. This discrepancy provides an avenue through which motivated parties can
detect VMMs. Recall that the execution of a detection algorithm has three logical
stages:
Stage 1. For a target machineRC , locate a hardware artifact to establish the con-
figurationC of the machine.
Stage 2. Establish a reference time,Baseline(RC), for distinguishing between
virtual and real machines with hardware configurationC.
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Stage 3. Develop and execute aBenchmark which when running on top of a
VMM on the fastest available machine for the architecture inquestion executes suf-
ficiently slower than theBenchmark running in a native OS on the slowest available
machine for the architecture in question.

We analyze the security of each stage individually, describing techniques which
a VMM might deploy to evade or resist detection.

7.1 Stage 1 and 2 Evasion

A VMM can corrupt the results of stages 1 and 2 by masking all possible hardware
artifacts that are observable through the VMM and simulating alternative artifacts
from a slower machine. If a VMM were able to successfully simulate a slower ma-
chine, the baseline value established in stage 2 would be larger than necessary. This
larger value might allow a VMM to execute aBenchmark without sufficient over-
head to identify its presence.

Consider the case of a VMM running on an Intel Pentium IV. If this VMM is able
to hide the existence of the trace cache, perhaps by masquerading as an Intel Pentium
3, then as a result of the speed difference between the Pentium IV and the Pentium
3, a detection attack may complete before the detection threshold for the Pentium 3,
even with the overhead of the VMM.

For a VMM to successfully masquerade as a different architecture requires the
following to be true: the configuration of the target machineis not known a priori
and the VMM is able to simulate a slower device during stage 1 while still running at
normal speed during stage 3. To successfully hide all hardware artifacts, the VMM
would need to be a full system simulator. To execute at normalspeed during stage
3, the VMM would have to be able to identify when the detectioncode is running
since running a cycle-accurate simulator on its own incurs delays that are orders of
magnitude larger than the overhead of any modern VMMs, making the simulator
timings off the charts [16].

7.2 Stage 3 Evasion

To describe our assumptions with respect to a VMM’s ability to evade detection,
we specify two models of VMM behavior: experiential VMMs andpropositional
VMMs. Our models follow from partitioning the arms race of Section 1.1 based on
a VMM’s level of omniscience.
Experiential VMM. An experiential VMM has posteriori knowledge of experien-
tially observed detectors but lacks identifiable information (i.e. process name, code
signatures, etc.) for all detectors. It may deploy general countermeasures to evade
detection such as virtualizing local timing sources (i.e.,rdtsc, performance counters,
etc.), but isn’t able to analyze programs to infer their intent. Experiential VMMs
may have a finite list of signatures to identify detectors, but are unable to prevent all
detection attempts.
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Propositional VMM. A propositional VMM has a priori knowledge of detectors
and evades detection by disabling or tampering with detection attempts either before
or during its execution.

A propositional VMMs is the case where the VMM can identify all detection
algorithms and trivially thwart detection. Recent work on verifiable code execution
on untrusted devices assumes a similar model of adversarialomniscience, however
is not useful for VMM detection because it does not work across an uncontrolled
network, such as the Internet [21].

Correctly identifying a detection attack makes it possiblefor the VMM to inter-
pose and tamper with the execution of the attack. If the VMM realizes it is under
a detection attack prior to the execution of the benchmarking loop, it may be able
to prevent the detection attack from executing correctly, perhaps returning a valid
response in the correct amount of time for a non-virtualizedhost.

Identifying that a particular code segment is a detection algorithm may be dif-
ficult. One potential approach is to rely on the unique structure of our detectors,
for example, long sequences of the same operations, few or noI/O operations, and
control-flow graphs with limited branching. These properties might provide suffi-
cient invariants to generate signatures that match detection algorithms.

Even with the unique properties of our benchmarking loop, there are a number
of difficulties inherent in evading detection. First, identification techniques could
introduce false positives which would affect benign applications, secondly, a single
false negative allows for the detection of the VM.

8 Discussion

We discuss limitations and potential extensions of our approach.

8.1 VMM Implementation Independence

While commodity VMMs aren’t VMBRs specifically designed to thwart detection,
they are implemented using the same techniques. As discussed in Section 3, these
techniques necessitate the existence of VMM overhead. If hardware assisted VMMs
become more common, then this overhead may be reduced, however our results show
that current generation systems provide sufficient overhead for detection.

8.2 User-Level Detection

The detectors developed in this paper run at kernel-level rather than at user-level.
In most scenarios, running a kernel-level detector is a reasonable assumption since
the system’s administrator is interested in detecting VMBRs. Administrators and
users regularly run kernel-level integrity checkers and attackers continue to perform
remote root exploits to gain administrator status. Statistical techniques may be nec-
essary to overcome the resulting noise that user-level detection would incur.
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8.3 Local VMM Detection

Rather than identify a target host as virtual or real by usingan external source of time,
local VMM detection aims to demonstrate to a user if their platform is virtual or real
without a trusted time source. One potential approach is fora detector to observe the
relative inter-leavings of short code sequences which are executed concurrently as a
relative timing attack. If code sequences can be developed whose inter-leavings are
virtualization sensitive, such an approach may be able to eliminate the requirement
of a trusted time source.

8.4 Widespread Virtualization

As more and more machines run VMMs, the existence of a VMM becomes less of an
anomaly. However, to dismiss VMM detection as useless in theface of widespread
virtualization is too harsh. Legacy machines without VMMs will likely persist for
many years to come. VMM detection algorithms like the ones developed in this paper
can help protect these machines against VMBRs when upgrading is not an option. We
believe that VMM detection will remain useful as long as non-virtualized platforms
exist.

9 Related Work

Most related work either detects VMMs based on implementation details, use tech-
niques which make assumptions that limit their applicability, or relies on the integrity
of values returned from the VMM. In contrast, our detection algorithm has a higher
degree of independence with respect to the implementation of the VMM on the tar-
get host, uses a hardware discovery heuristic to identify the configuration of remote
devices, and incorporates a remote timing and decision maker to eliminate the need
to trust the VMM.

Delalleau proposed a scheme to detect the existence of a VMM by using timing
analysis [4]. The proposed scheme requires a program to firsttime its own execution
on a VMM-free machine in a learning phase. Then, when the program infects a sus-
pect host of known configuration, its execution time is compared against the results
from the learning phase. Because the result of the learning phase is dependent on
the exact machine configuration and the scheme is not designed to produce a config-
urable overhead, it is unclear how practical it is to deploy such a detection algorithm
in practice.

Execution path analysis (EPA) [20] was first proposed in Phrack 59 by Jan
Rutkowski as an attempt to determine the presence of kernel rootkits by analyzing
the number of certain system calls. Although the main idea can also apply to detect
VMMs, EPA has several severe drawbacks. The main drawback isthat it requires
significant modification to the system (debug registers, debug exception handler)
that could be easily detected and consequently forged by theunderlying VMM.
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Pioneer [21] is a primitive which enables verifiable code execution on remote
machines. As part of the inherent challenge of verifiable code execution, Pioneer
needs to determine whether or not it is running inside a VMM. The solution in Pio-
neer is to time the runtime of a certain function that also reads in the interrupt enable
bit in the EFLAGS register. This function is pushed into the kernel and is expected to
run with interrupts turned off. However, if it was running inside a VMM, the output
of the EFLAGS register would be different than expected. Although promising, Pio-
neer assumes that the external verifier knows the exact hardware configuration of the
target host. We eliminate this assumption and rely on hardware artifacts to discover
the target host’s hardware configuration. In addition, the minimal timing overhead of
the Pioneer checksum function makes remote usage of Pioneerdifficult.

There are a number of previously developed techniques from the blackhat com-
munity. Redpill4 is an example detection algorithm used to detect the VMware virtual
machine monitor. Redpill operates by reading the address ofthe Interrupt Descriptor
Table (IDT) with theSIDT instruction and checking if it has been moved to certain
locations known to be used by VMware. This algorithm can be easily fooled since it
relies on the VMM to return the correct address of the IDT [10]. Similar to Redpill,
VMware’s Back5 is a software-dependent detection attack which uses the existence
of a special I/O port, called the VMware backdoor. This I/O port is specific to the
VMware virtual machine and hence can be used to detect VMware.

Holz and Raynal describe some heuristics for detecting honeypots and other sus-
picious environments from within code executing in said environment [7]. Dornseif
et al. study mechanisms designed specifically to detect the Sebek high-interaction
honeypot [6]. Unlike these approaches, the detection algorithm we have constructed
are not based upon specific software artifacts.

Vrable et al. touch briefly on non-trivial mechanisms for detecting execution
within a VMM [26]. They allude to the fact that although a honeynet may be able to
perfectly virtualize all hardware, an attacker may be able to infer that it is executing
inside a VMM through side channel measurements.

Robin and Irvine analyzed the Intel Pentium’s architectureand ISA [14] and
pointed out problems in implementing a secure VMM on the Intel Pentium archi-
tecture. For instance, certain instructions break hardware virtualization requirements
because they read sensitive registers and/or memory locations (e.g., the clock reg-
ister and interrupt registers), but are not privileged instructions. Execution of such
instructions does not raise an exception, and thus allows the attacker to read sensi-
tive system data. However, the VMM can perform binary translation when it loads
the process into memory, and change all such instructions into system calls. Alter-
natively, the VMM can expose a paravirtualized version of the underlying hardware,
which Xen does on the Intel x86 architecture [2].

Remote physical device fingerprinting can be used to detect VMMs if the external
verifier can directly interact with two different virtual machines running on the same
host [11]. Our approach only requires the existence of a single VM and hence is

4 http://invisiblethings.org/redpill.html
5 http://chitchat.at.infoseek.co.jp/vmware/
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useful in the case of virtual machine based rootkits [10]. Also, defending against
remote physical device fingerprinting is as simple as disabling or masking the TCP
option timestamps. HoneyD is an example virtual honeypot which defends against
remote physical device fingerprinting [13].

10 Conclusions

The main contribution of this article is the development of adetection algorithm
whose execution differs from the perspective of an externalverifier when a target
host is virtual (versus when it is executed directly on the underlying hardware). Our
detection algorithm is based on the timing dependency exception property of a vir-
tual machine monitor. We presented results where a single benchmarking program
generates sufficient overhead on several different virtualmachine monitors to be re-
motely detectable across the Internet. Included in our analysis is a machine with
hardware virtualization support. The success of our detection algorithm against this
platform demonstrates that hardware support for virtualization is not sufficient to
prevent VMM detection.
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