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Abstract—This paper presents a formal framework for
compositional reasoning about secure systems. A key insight
is to view a trusted system in terms of the interfaces that
the various components expose: larger trusted components are
built by combining interface calls in known ways; the adversary
is confined to the interfaces it has access to, but may combine
interface calls without restriction. Compositional reasoning
for such systems is based on an extension of rely-guarantee
reasoning for system correctness [1, 2] to a setting that
involves an adversary whose exact program is not known. At
a technical level, the paper presents an expressive concurrent
programming language with recursive functions for modeling
interfaces and trusted programs, and a logic of programs in
which compositional reasoning principles are formalized and
proved sound with respect to trace semantics. The methods are
applied to representative examples of web-based systems and
network protocols.

I. INTRODUCTION

Compositional security is a recognized central scientific
challenge for trustworthy computing (see, for example,
Bellovin [3], Mitchell [4], Wing [5]). Contemporary sys-
tems are built up from smaller components. However, even
if each component is secure in isolation, the composed
system may not achieve the desired end-to-end security
property: an adversary may exploit complex interactions
between components to compromise security. Such attacks
have shown up in the wild in many different settings,
including web browsers and infrastructure [6–10], network
protocols and infrastructure [5, 11–14], and application and
systems software [15, 16]. While there has been progress
on understanding secure composition in specific settings,
such as information flow control for non-interference-style
properties [17–19] and cryptographic protocols [20–25], a
systematic understanding of the general problem of secure
composition has not emerged yet.

This paper makes a contribution in this space. We present
a formal framework for compositional reasoning about se-
cure systems, incorporating two main insights. First, we
posit that a general theory of secure composition should
enable one to flexibly model and parametrically reason
about different classes of adversaries. This is critical because
while specific domains may have a canonical adversary
model (e.g., the standard network adversary model for
cryptographic protocols), it is unreasonable to expect that
a standard adversary model can be developed for all of
system security. Indeed, an adversary against web browser

mechanisms has capabilities that are very different from a
network adversary or an adversary against a trusted com-
puting system. To develop such a theory we view a trusted
system in terms of the interfaces that the various components
expose: larger trusted components are built by combining in-
terface calls in known ways; the adversary is confined to the
interfaces it has access to, but may combine interface calls
without restriction. Such interface-confined adversaries are
precisely modeled in our framework and provide a generic
way to model different classes of adversaries. For example,
in virtual machine monitor-based secure systems, we can
model an adversarial guest operating system by confining
it to the interface exposed by the virtual machine monitor
(VMM). Similarly, adversary models for web browsers, such
as the gadget adversary [7], can be modeled by confining the
adversary to the read and write interfaces for frames guarded
by the same origin policy as well as the frame navigation
policies.

Second, we develop compositional reasoning principles
for such systems by extending ideas from rely-guarantee
reasoning [1, 2]. While rely-guarantee reasoning was devel-
oped for proving correctness properties of known concurrent
programs, we extend it to soundly reason about system
security in the presence of interface-confined adversaries.
These principles generalize prior work on compositional
logics for network protocol analysis [23, 26–28] and secure
systems analysis [29] and are also related to a recently
proposed type system for modularly checking interfaces
of security protocols [24] (see Section II for a detailed
comparison).

At a technical level, the paper presents an expressive
concurrent programming language with recursive functions
for modeling system interfaces and interface-confined ad-
versaries. Specifically, the programming language is based
on an untyped, first-order, concurrent version of the lambda-
calculus with side-effects (Section III presents more details).
Security properties are specified in a logic of programs
(described in Section III). Our primary focus is on security
properties that can be cast as safety properties [30]. Compo-
sitional reasoning principles are codified in the proof system
for the logic of programs to support modular reasoning about
program specifications (Section IV-A), trusted programs
whose programs are known (Section IV-B) and interface-
confined adversarial (untrusted) code (Section IV-C). We
present the formal semantics for the logic of programs



and the main technical result of the paper—a proof of the
soundness of the proof system with respect to the trace
semantics of the logic (Section V). Finally, we describe
how the proof rules support rely-guarantee reasoning in the
presence of adversaries (Section VI).

While the focus of this paper is on the technical founda-
tions of this theory, we illustrate the methods by applying
them to representative examples of web-based systems and
network protocols. As a running example, we consider a web
mashup system and present a modular proof of its integrity
in the presence of a class of interface-confined adversaries.
The interface-based view is useful both in modeling the
browser interfaces that are composed in known ways by the
mashup and in flexibly modeling the adversary. Furthermore,
the proof exercises all the compositional reasoning principles
developed in this paper except rely-guarantee reasoning.
To demonstrate the latter as well as the generality of our
methods we present a modular proof of symmetric key
Kerberos V5 in the presence of a symbolic adversary. The
proof shows that the reasoning principles for secrecy in
Protocol Composition Logic [27] are instances of the general
rely-guarantee reasoning principles developed in this paper.
Concluding remarks and directions for future work appear
in Section VII.

II. RELATED WORK

We discuss below closely related work on logic-based and
language-based approaches for compositional security. Or-
thogonal approaches to secure composition of cryptographic
protocols include work on identifying syntactic conditions
that are sufficient to guarantee safe composition [20, 25],
which are not based on rely-guarantee reasoning. Another
orthogonal approach to secure composition is taken in the
universal composability or reactive simulatibility [21, 22]
projects. These simulation-based definitions when satisfied
can provide strong composition guarantees. However, they
are not based on rely-guarantee reasoning and have been
so far applied primarily to cryptographic primitives and
protocols.

Compositional Logics of Security: The framework pre-
sented in this paper is inspired by and generalizes prior work
on logics of programs for network protocol analysis [23, 26–
28] and secure systems analysis [29]. At a conceptual
level, a significant new idea is the use of interface-level
abstractions to modularly build trusted systems and flexibly
model adversaries with different capabilities by confining
them to stipulated interfaces. In contrast, prior work lacked
the interface abstraction and had a fixed adversary. Also,
the actions (side-effects) in the language were fixed in prior
work to communication actions, cryptographic operations,
and certain operations on shared memory. On the other
hand, our programming model and logic are parametric
in actions. One advantage of this generality is that the

compositional reasoning principles (proof rules) are action-
independent and can be applied to a variety of systems,
thus getting at the heart of the problem of compositional
security (see Section III-A for details of the parametrization).
We expect domain-specific reasoning to be codified using
axioms; thus, the set of axioms for reasoning about network
protocols that use cryptographic primitives will be different
from those for reasoning about trusted computing platforms.
The treatment of rely-guarantee reasoning in the presence
of adversaries generalizes the invariant rule schemas for au-
thentication [23], integrity [29], and secrecy [27] properties
developed earlier.

Refinement types for verifying protocols: Recently,
Bhargavan et al. have developed a type system to modularly
check interfaces of security protocols, implemented it, and
applied it to analysis of secrecy properties of cryptographic
protocols [24]. Their approach is based on refinement types,
i.e, ordinary types qualified with logical assertions, which
can be used to specify program invariants and pre- and
post-conditions. Programmers annotate various points in the
model with assumed and asserted facts. The main safety
theorem states that all programmer defined assertions are
implied by programmer assumed facts. However, a semantic
connection between the program state and the logical for-
mulas representing assumed and asserted facts is missing.
Consequently, there are no semantic end-to-end guarantees
and a protocol is proved correct only to the extent that
annotations in its code are meaningful. In contrast, we
prove that the inference system of our logic of programs is
sound with respect to trace semantics of the programming
language. Therefore, properties verified for a system will
hold on any trace obtained from the system’s execution
without relying on (possibly incorrect) programmer-provided
annotations. Our logic of programs may provide a semantic
foundation for the work of Bhargavan et al. and, dually,
the implementation in that work may provide a basis for
mechanizing the formal system presented in this paper.
Bhargavan et al.’s programming model is more expressive
than ours because it allows higher-order functions. We intend
to add higher-order functions to our framework in the near
future.

III. PROGRAMMING MODEL AND SECURITY PROPERTIES

In this section, we describe our formalism for modeling
systems composed of both trusted and untrusted programs
and a logic of programs for specifying and reasoning
about their security properties. Both the language and the
logic generalize prior work on security analysis of pro-
tocols [23, 26–28] and trusted computing platforms [29].
In Section III-A, we describe a concurrent programming
language for modeling systems and its operational seman-
tics. Among other things, the language supports recursive
functions that can be used to define interfaces to which



adversaries are confined. Use of the language to model se-
cure systems and adversary-accessible interface is illustrated
through an example in Section III-B. The same example is
also used to illustrate reasoning principles in Section IV.
Section III-C presents the logic of programs that is used
to express security properties of systems modeled in the
programming language.

A. Programming Model

We model a system as a set of remote or co-located
concurrent threads, each of which executes a sequential
program. The program of each thread may either be available
for analysis, in which case we call the thread trusted, or
it may be unknown, in which case we call the thread
untrusted or adversarial. The program of a thread consists
of atomic steps called actions and control constructs like
conditionals and sequencing. Actions model all operations
other than control flow including side-effect free operations
like encryption, decryption, and cryptographic signature
creation and verification as well as inter-thread interaction
through network message sending and receiving, shared-
memory reading and writing, etc. In the formal description
of our programming model, its operational semantics, and
reasoning principles, we treat actions abstractly, denoting
them with the letter a in the syntax of programs and
representing their behavior with sound axioms in the logic
of programs. The soundness theorem presented in this paper
is general, and applies whenever axioms chosen to codify
properties of actions are sound.

In order to reason about properties of untrusted threads,
the programming model limits their interaction with other
threads to stipulated interfaces (see Section IV for details).
An interface is a function f(x)

4
= e, with name f , argument

x, and body e. The body may include calls to f as well as
other functions, thus allowing for both recursion and mutual
recursion. Recursive interfaces are important in many set-
tings including web browsers, e.g, to model event handlers
that respond to input from the user, remote servers, and other
browser frames.

Formally, the sequential program of each thread is de-
scribed by an expression e in the following language of
program expressions. t denotes a term that can be passed
as arguments, and over which variables x range. We do not
stipulate a fixed syntax for terms; they may include inte-
gers, Booleans, keys, signatures, tuples, etc. However, our
language is first-order, so terms may not contain expressions.
To simplify reasoning principles, the language is interpreted
functionally: all expressions and actions must return a term
to the calling site and variables bind to terms. Mutable
program variables, if needed, may be modeled as a separate
syntactic entity whose contents can be updated through read
and write actions, as illustrated in an example later in this

section.
Expressions e ::= t | act a | let(e1, x.e2) |

if(b, e1, e2) | call(f, t)

Function defns ::= f(x)
4
= e

The expression t returns term t to the caller. act a evaluates
the action a, potentially causing side-effects. let(e1, x.e2)
is the sequential execution construct: it executes e1, binds
the term obtained from its evaluation to the variable x,
and evaluates e2. if(b, e1, e2) evaluates e1 if b is true and
evaluates e2 otherwise. call(f, t) calls function f with
argument t: if f(x)

4
= e then call(f, t) evaluates to e{t/x}.

(Ξ{t/x} denotes the usual capture-avoiding substitution of
the term t for the variable x in the syntactic entity Ξ.)

Operational Semantics: The operational semantics of
our programming language define how a configuration, the
collection of all simultaneously executing threads of the
system and shared state, reduces one step at a time. Formally,
a configuration C contains a set of threads T1, . . . , Tn and a
shared state σ. Although we treat the state abstractly in our
formal specification, it may be instantiated to model shared
memory as well as the network which holds messages in
transit. The state may change when threads perform actions,
e.g, a send action by one thread may add an undelivered
message to the network part of the state. Such interaction
between the state and actions is captured in the reduction
rule for actions, as described below.

A thread is a triple I;K; e containing a unique thread
identifier I , an execution stack K and an expression e that
is currently executing (also called active) in the thread. The
execution stack records the calling context of the currently
executing program as a sequence of frames.

Thread id I
Frame F ::= x.e
Stack K ::= [] | F :: K
Thread T ::= I ;K ; e
Configuration C ::= σ B T1, . . . , Tn

Selected reduction rules for our language are shown in
Figure 1 (The remaining rules are listed in Appendix A.)
The rules rely on judgments for evaluating actions a and
terms t, both of which are treated abstractly. The judgment
eval t t′ means that term t evaluates completely to the
term t′. For example, in a model that includes standard
arithmetic, a concrete instance of the judgment would allow
eval (3 + 5) 8. The judgment σ ; I B a 7→ σ′ ; I B t
means that action a when executed in thread I updates the
shared state σ to σ′ and returns term t. As an example,
in a system with shared memory, σ may be a map from
locations l to terms t, the action write l, t may change
contents of location l to t, and the following judgment may
hold: σ ; I B write l, t 7→ σ[l 7→ t] ; I B ().

Our primary reduction relation, that for configurations,
has the form C −→ C′. It interleaves reductions of individual



σ B T ↪→ σ′ B T ′

σ ; I B a 7→ σ′ ; I B t eval t t′

σ B I ; (x.e) :: K ; act a ↪→ σ′ B I ;K ; e{t′/x} red-act

σ B I ;K ; let(e1, x.e2) ↪→ σ B I ; (x.e2) :: K ; e1
red-let

C −→ C′

σ B Ti ↪→ σ′ B T ′i
σ B T1, . . . , Ti, . . . , Tn −→ σ′ B T1, . . . , T

′
i , . . . , Tn

red-config

Figure 1: Operational semantics, selected rules

threads in the configuration in an arbitrary order (rule red-
config). Reductions of threads are formalized by a reduction
relation for threads: σ B T ↪→ σ′ B T ′. This reduction
relation is standard for functional programs with side-effects
and we omit its description. Reductions caused by rules other
than (red-act) are called administrative reductions, whereas
those caused by (red-act) are called effectual reductions.

Our reasoning principles establish properties of traces. A
trace T is a finite sequence of reductions C −→ C′ starting
from an initial configuration. We associate a time point u
with every reduction on a trace. A time point is either a
real number or −∞ or ∞. The only constraint on time
points associated with a trace is that they be monotonically
increasing along the trace. Diagrammatically, we represent a
trace as follows (ui is the time at which Ci−1 reduces to Ci.)

u0−→ C0 u1−→ C1 . . . un−→ Cn
We assume that individual reduction steps happen instanta-
neously at the time associated with them on the trace and
that the state σ on the trace does not change between two
consecutive reductions. Specifically, in the above illustration,
if Ci = σi B Ti,1, . . . , Ti,n, then we assume that the state
of the trace is σi in the interval [ui, ui+1). u0 is called
the start time of the trace. In addition to the sequence of
reductions and time points, a trace may also include auxiliary
information, such as contents of memory at the start time.

B. An Extended Example

We introduce an illustrative, running example that is in-
spired by web mashups that aggregate financial information,
e.g, http://www.mint.com. The web mashup consists of three
trusted frames running concurrently in a web browser win-
dow. Other malicious frames, constrained by the interfaces
described below, may also be running simultaneously. Two
trusted frames belong to bank1.com and bank2.com with
whom the user of the mashup has accounts. The third trusted
frame is an aggregator frame belonging to aggregator.com.
It waits for the user to send it a signal (say, by pressing
a button), then communicates with the two other frames
through messages (described below) asking them to provide

Interfaces

send_auth(i,m)
4
= send i, self,m

write_acc(c, v)
4
=

if ACM(self, c,write)
then write c, v
else ()

read_acc(c)
4
=

if ACM(self, c,read)
then read c
else ()

Access control matrix

ACM(User, total box,read)
ACM(Agg, total box,write)
ACM(User, pass box,write)
ACM(Agg, pass box,read)

Known Programs

agg_loop()
4
=

= recv User;
u pass = read_acc(pass box);
nonce = new;
send_auth(Bank1, (u pass, nonce));
send_auth(Bank2, (u pass, nonce));
(v1, nonce′) = recv Bank1;
(v2, nonce′′) = recv Bank2;
if (nonce = nonce′ = nonce′′)
then write_acc(total box, v1 + v2)
else ();
agg_loop()

bank1_loop()
4
=

(u pass, nonce) = recv Agg;
page = get bank1.com/balance, u pass;
v = parse_balance(page);
send_auth(Agg, (v, nonce));
bank1_loop()

bank2_loop()
4
=

(u pass, nonce) = recv Agg;
page = get bank2.com/balance, u pass;
v = parse_balance(page);
send_auth(Agg, (v, nonce));
bank1_loop()

agg_body = agg_loop();
bank1_body = bank1_loop();
bank2_body = bank2_loop();

Figure 2: A Web Mashup Example



the user’s account balances in the respective banks. It then
computes the total of the two balances and displays them to
the user.

Communication Model and Actions: We model frames
as threads, calling the three threads Bank1, Bank2, and
Agg (for aggregator). Following standard browser inter-
faces [7], we assume that the native communication between
frames is message-passing: the action send I, J,m sends
message m to thread I , pretending that it comes from
thread J . Note that the actual sender may or may not be J .
Thus, the communication model allows sender-id spoofing
for messages. Dually, the action recv I returns a message
m purportedly sent by thread I to the calling thread, if
such a message exists, else it blocks. In addition, we allow
shared mutable cells with access control. Cells may model
text boxes on the screen as well as shared memory. The
actions read c and write c, t read the cell c and write
t to it, respectively. For this example, we need two cells:
pass box through which the user provides its password to
the aggregator, and total box where the aggregator displays
the total to the user. Finally, we assume the action get url, p
that retrieves the document at the URL url using credential
p for logging in, and the action new that generates a fresh
nonce.

Interfaces: The actions send, read, and write
described above do not enforce any security. For instance,
the action send allows sender spoofing. Similarly, write
allows any thread to write any location. Clearly, any browser
that allows direct access to these actions will not be able to
provide security guarantees for its applications. Accordingly,
we assume that these actions are not directly accessible to
threads running in the browser. Instead, threads are allowed
access to interfaces (functions) that layer security over these
actions. These browser interfaces are defined in Figure 2
and are named send_auth, read_acc and write_acc.
For better readability, we omit the keywords act and call
and write let(e1, x.e2) as (x = e1); e2. The send_auth
function sends a message to another frame, setting its sender
to the calling thread (named by the metavariable self).
Similarly, read_acc and write_acc check a predicate
ACM(I, c, p) which is true if thread I is allowed to perform
operation p ∈ {read,write} on cell c. The predicate is
also defined in Figure 2. The integrity of the mashup is
contingent on the assumption that malicious threads running
concurrently with the mashup have access to the actions
send, read, and write only through these interfaces.

Programs: Figure 2 lists the programs agg_body,
bank1_body and bank2_body of Agg, Bank1, and
Bank2, respectively. Agg waits for a signal from the
user (modeled as another thread User, whose program is
irrelevant). It then reads the user’s password from the cell
pass box, generates a new nonce, and sends the password
and nonce to the two banks (for simplicity, we assume
that the user’s password in both the banks is the same). It

waits for replies from the two banks, checks that the nonces
returned in the replies equal the one it sent, adds the values
returned by the banks, puts the sum in total box for the
user to see, and loops back to the waiting state.

The two bank frames run similar programs. Each frame
waits for a password and nonce from the aggregator, then
retrieves the balance of the user from its remote server and
sends the balance and nonce to the aggregator. It then returns
to its waiting state.

Security Property: We are interested in proving an
integrity property of the mashup, namely, that if the user sees
a total in total box, then that total was obtained by adding
balances in the user’s bank accounts at bank1.com and
bank2.com that were obtained after the user signaled the ag-
gregator frame. (This property is formalized in Section III-C
after we introduce our logic, and proved in Section IV-C.)
This integrity property requires that only the aggregator may
write to the cell total box, and that any message purportedly
sent by either bank and received by the aggregator actually
have been sent by the respective bank. These properties are
enforced by the interfaces accessible to programs and, in
particular, to malicious threads. Indeed, if a malicious thread
could execute either the write action or the send action
directly, it could violate this integrity property by either
writing an incorrect value in total box or by sending the
aggregator an incorrect value as coming from a bank.

C. Security Properties

We represent security properties as formulas of a logic
whose syntax is shown below. We are primarily interested
in reasoning about safety properties, and accordingly, our
reasoning principles are designed to support only such
properties.

Formulas ϕ,ψ ::= p @ u | b | t = t′ | u1 ≤ u2 |
ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | > | ⊥ |
∀x.ϕ | ∃x.ϕ | ϕ @ u

The logic includes only one modal formula, p @ u, which
means that the atomic formula p holds at time u (on the
trace against which the formula is being interpreted). p @ u
is a hybrid modality [31, 32]. It is known that all operators
of linear temporal logic (LTL) can be expressed using p @ u
and quantifiers, so this logic is at least as expressive as LTL.
In addition to increasing expressiveness, using a hybrid logic
instead of LTL allows us to express order between actions in
security properties in an intuitive manner, facilitates reason-
ing about invariants of programs modularly (Section IV) and
also facilitates rely-guarantee reasoning without the need for
additional induction principles (Section VI).
b denotes a Boolean term from the syntax of the language.

Atomic formulas p are terms applied to predicates, which
may represent either the execution of certain actions (corre-
sponding to the language’s actions a) or properties of state.
For example, a predicate Mem(l, t) that checks contents of



memory may be defined by saying that T |= Mem(l, t) @ u
if and only if, in trace T , memory location l contains term
t at time u. Similarly, in an analysis of security protocols,
T |= Enc(I, t, k) @ u may hold if and only if thread I in
trace T encrypts term t with key k at time u.

Example III.1. We formalize in our logic the integrity
property described informally at the end of the example
in Section III-B. Assume that the predicate Mem(c, v) @ u
means that cell c contain value v at time u, Recv(I, J, v) @
u means that thread I receives at time u a message sent
previously by thread J , Read(I, c, v) @ u means that thread
I reads value v from cell c at time u, and Get(I, url, p, v) @
u means that thread I retrieves page v from URL url
using credential p at time u. Then the integrity property
in Section III-B may be expressed as follows:

(Mem(total box, v′) @ u1 ∧
Mem(total box, v) @ u2 ∧
(u1 < u2) ∧ (v′ 6= v)) ⊃
∃uru, uup, up1, up2.
∃u pass, page1, page2, s.

(uru < uup < up1, up2 < u2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
Get(Bank1, bank1.com/balance, u pass, page1) @ up1 ∧
Get(Bank2, bank2.com/balance, u pass, page2) @ up2 ∧
v = parse_balance(page1) + parse_balance(page2)

The conditions of the implication in the above property
state that total box contains a different value v at time u2

than it had at time u1. The conclusion means that, under
these conditions, the user must have requested a total at time
uru and subsequently, bank balances must have been fetched
from bank1.com and bank2.com, and that v equals their
sum. It is instructive to observe the use of the modality @
to represent a relative order among events in this example.

Logic of Programs: On top of the temporal logic
described above, we build a logic of programs to reason
about properties of traces obtained by executing known or
interface-confined programs. Prior experience with security
analysis of protocols [23, 26–28] and trusted computing
platforms [29] shows that in addition to standard pre- and
post-conditions, analysis of secure systems often requires
reasoning that properties hold throughout the execution of a
program. We call such properties invariants and introduce a
novel construct to represent them in the logic of programs.

Specifically, we express pre- and post-conditions as well
as invariants using six kinds of assertions, generically de-
noted µ, ν.

Assertions µ, ν ::= [e]〈ub, ue, i, x〉ϕ | {e}〈ub, ue, i〉ϕ |
[f ]〈y, ub, ue, i, x〉ϕ | {f}〈y, ub, ue, i〉ϕ |
[]〈ub, ue, i〉ϕ | [a]〈ub, ue, i, x〉ϕ

In these assertions, ub, ue, i, x, y are bound variables whose
scope is ϕ. (Recall that ϕ denotes a formula in the temporal
logic described earlier.) The intuitive meanings of the six

assertions are listed below; formal semantics are postponed
to Section V.

- [e]〈ub, ue, i, x〉ϕ: If in a trace T , the active expres-
sion of thread I at time u′b is e, and this expres-
sion returns term t to its caller at time u′e, then
ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} holds.

- {e}〈ub, ue, i〉ϕ: If in a trace T , the active expres-
sion of thread I at time u′b is e, and this expres-
sion does not return to its caller until time u′e, then
ϕ{u′b/ub}{u′e/ue}{I/i} holds.

- [f ]〈y, ub, ue, i, x〉ϕ: If in a trace T , thread I calls
function f with argument t′ at time u′b, and this
function returns term t to its caller at time u′e, then
ϕ{t′/y}{u′b/ub}{u′e/ue}{I/i}{t/x} holds.

- {f}〈y, ub, ue, i〉ϕ: If in a trace T , thread I calls
function f with argument t′ at time u′b, and this
function does not return to the caller until time u′e,
then ϕ{t′/y}{u′b/ub}{u′e/ue}{I/i} holds.

- []〈ub, ue, i〉ϕ: If in a trace T , thread I does not per-
form any effectual reduction in the interval (u′b, u

′
e],

then ϕ{u′b/ub}{u′e/ue}{I/i} holds. (Recall from Sec-
tion III-A that an effectual reduction is the reduction
of an action, as opposed to the reduction of a control
flow construct.)

- [a]〈ub, ue, i, x〉ϕ: If in a trace T , the active expression
of thread I at time u′b is act a, and this expres-
sion returns term t to its caller at time u′e, then
ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} holds.

Assertions [e]〈ub, ue, i, x〉ϕ and [f ]〈y, ub, ue, i, x〉ϕ spec-
ify the behavior of a program that completes execution.
They are generalizations of partial correctness assertions
from other program logics like Hoare logic. We do not
need to specify pre- and post-conditions separately be-
cause we can encode them in ϕ using the construct
p @ u. For example, consider the function f(x)

4
=

let((act read l), z. (act write l, z+x)) that increments
the contents of the private memory location l by its argument
x. We can specify this function in our logic of programs as
[f ]〈y, ub, ue, i, x〉 ∀z. (Mem(l, z) @ ub ⊃ Mem(l, y + z) @
ue) ∧ x = (). A salient difference from other program logics
like Hoare logic is that variables bound in an expression e or
the body of a function f cannot appear in its specification.
In the example above, the variable x in the body of the
function differs from the x in its specification. In the former
case, the variable is the argument of the function whereas
in the latter case it is the result of the function. This is
unsurprising since our treatment of variables is functional;
other related formalisms like Hoare-Type Theory [33] follow
similar conventions.

The assertions {e}〈ub, ue, i〉ϕ and {f}〈y, ub, ue, i〉ϕ
specify invariants of programs – ϕ holds while the program
(e or f ) is executing. Prior work on Protocol Composition
Logic [23, 26–28] and the Logic of Secure Systems [29]



encode invariants using standard partial correctness asser-
tions for programs without conditionals, function calls, and
recursion. Our treatment is novel, strictly more general, and
it allows for modular analysis of invariants of programs with
arbitrary control flow constructs.

Whereas Section IV presents a proof system for estab-
lishing the four assertions [e]〈ub, ue, i, x〉ϕ, {e}〈ub, ue, i〉ϕ,
[f ]〈y, ub, ue, i, x〉ϕ, and {f}〈y, ub, ue, i〉ϕ, we do not stip-
ulate rules for establishing the remaining two assertions,
[]〈ub, ue, i〉ϕ and [a]〈ub, ue, i, x〉ϕ that specify properties of
administrative reductions and actions, respectively. Instead,
these two assertions must be established through sound
axioms that would depend on the representation of state and
actions chosen; the proof rules for establishing the other
four assertions use these two assertions as black-boxes. The
soundness theorem of our proof system applies whenever
the axioms chosen for establishing these two assertions are
sound. Domain specific reasoning can be codified using
axioms; thus, the set of axioms for reasoning about network
protocols that use cryptographic primitives will be different
from those for reasoning about trusted computing platforms
or web-based systems.

Thread-Local Reasoning: A salient feature of our logic
of programs is that the specifications of a program, if
established, hold irrespective of actions of threads other
than the one in which the program executes. This is im-
plicit in the intuitive meanings of the assertions above as
well as the formal semantics of the logic (Section V).
For example, the meaning of [e]〈ub, ue, i, x〉ϕ is that if
in a trace T , the active expression of thread I at time
u′b is e, and this expression returns term t to its caller at
time u′e, then ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} holds. How-
ever, ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} would hold irrespective
of the reductions that other threads may have performed
in the interim. As in prior work [26], this property of the
proof system simplifies reasoning significantly since we do
not have to reason about reductions of other threads when
we wish to prove a property that is specific to a thread (e.g,
that the thread does not write a certain location).

However, this approach does not apply directly when the
property we wish to prove relies on actions of other threads.
Such properties include secrecy of keys in network protocols
and integrity properties of shared memory. In a significant
extension to existing related work, we show in Section VI
how thread-local invariants can be used to encode rely-
guarantee reasoning, which allows modular proofs of such
non-local properties.

Example III.2. Among many others, an important invariant
that we prove in order to establish the integrity property in
Example III.1 is the following. (Send(i, j, i′, x) @ u means
that thread i sends message x to thread j at time u, setting

the sender-id of the message to i′.)

{bank1_body} 〈ub, ue, i〉
∀u, j, i′, x. (ub < u < ue) ⊃
Send(i, j, i′, x) @ u ⊃
∃ur1, up1. (ur1 < up1 < u) ∧
∃v′1, nonce′1, u pass′1.
Recv(i, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(i, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

x = (parse_balance(v′1), nonce′1)

This invariant states that while a thread i executes the
program bank1_body, if i sends a message x, then
x must be a pair containing a balance obtained from
bank1.com/balance and a nonce obtained from Agg. Be-
cause we need this property to hold irrespective of how far
bank1_body executes, the property must be stated and
proved as an invariant, not a partial correctness assertion.

IV. COMPOSITIONAL REASONING PRINCIPLES

Next, we codify in a proof system compositional rea-
soning principles for establishing assertions about programs
as well as security properties. In addition to standard rules
for proving temporal formulas and syntax-directed rules for
proving assertions about programs and functions, our proof
system includes two rules of inference that allow deduction
of properties of threads from invariants of their programs.
We call a thread trusted if the program it executes is known,
else we call the thread untrusted or adversarial. Using the
first rule (Section IV-B), we may combine knowledge that a
particular thread is executing a known program with any
invariant of the program to deduce that the formula in
the invariant holds forever. The second rule (Section IV-C)
embodies our central idea of reasoning about unknown,
potentially adversarial, code by confining it to interfaces: if
we know that an adversarial thread has access only to certain
interfaces, then under certain conditions, we can show that a
common invariant of all those interfaces always holds in the
system, regardless of the manner in which the adversarial
thread uses those interfaces. For instance, in the example
of Section III-B, we use this reasoning principle to establish
that whenever a thread writes to the location total box, then
that thread must be the aggregator.

Formally, proofs establish one of two hypothetical judg-
ments: Σ; Γ ` ϕ and Σ; Γ; ∆ ` µ. In both judgments Σ is a
set of first-order variables that may occur free in the rest of
the judgment, Γ is a list of assumed formulas of the temporal
logic and ∆ contains assumed specifications of functions.
A proof establishing either Σ; Γ ` ϕ or Σ; Γ; ∆ ` µ is
parametric in all variables in Σ, i.e., it holds for all ground
instances of the variables.
Σ ::= · | Σ, x
Γ ::= · | Γ, ϕ
∆ ::= · | ∆, [f ]〈y, ub, ue, i, x〉ϕ | ∆, {f}〈y, ub, ue, i〉ϕ
The judgment Σ; Γ ` ϕ coincides with the standard hypo-
thetical judgment of first-order classical logic with equality



(we treat p @ u as an atomic formula p(u)), with additional
axioms to make time points a total order. We elide the rules
for establishing this judgment and list them in Appendix B.

Assertions manifest in the judgment Σ; Γ; ∆ ` µ are
established by an analysis of the program in µ through rules
described in Section IV-A. Additionally, there are inference
rules to combine reasoning in the temporal logic with
reasoning about assertions. For instance, if [e]〈ub, ue, i, x〉ϕ
and ϕ ⊃ ϕ′, then one of the rules of inference allows
deduction of [e]〈ub, ue, i, x〉ϕ′. Such rules are common
in program logics; we allow several such rules that are
listed in Appendix B. As mentioned earlier, Sections IV-B
and IV-C describe the rule for proving properties of trusted
and untrusted threads, respectively.

A. Reasoning About Specifications of Programs

Specifications of a program are proved through syntax-
directed analysis of the program. Selected rules for estab-
lishing program specifications are shown in Figure 3; the
remaining rules are shown in Appendix B. As mentioned
in Section III-C, the rules of our proof system rely on
the abstract judgments [a]〈ub, ue, i, x〉ϕ and []〈ub, ue, i〉ϕ
(e.g, rule (PA)). The rules are modular: specifications of
a program are established by combining specifications of
sub-programs. For instance, we may justify the rule (PL) as
follows. In the conclusion of the rule we wish to establish a
partial correctness assertion of the expression let(e1, y.e2).
If this expression is active in thread i at time ub and
returns value x at time ue, then through an analysis of the
operational semantics it follows that at some time um after
ub, e1 must have become active, then at a later time u′m,
e1 would have returned some value y to e2, which would
have become active, and finally at time ue, e2 would have
returned x. So if []〈ub, um, i〉ϕ1, [e1]〈um, u

′
m, i, y〉ϕ2, and

[e2]〈u′m, ue, i, x〉ϕ3 all hold (as in the premises of the rule),
then ∃y.∃um.∃u′m.((ub < um < u′m < ue) ∧ ϕ1 ∧ ϕ2 ∧
ϕ3) must hold. Observe that it is necessary to existentially
quantify the variables y, um, and u′m in the conclusion
because during reasoning, we cannot determine their exact
values. This justifies the conclusion of the rule. Other rules
for establishing partial correctness assertions can be justified
similarly.

Rules for establishing invariance assertions are more in-
volved, but are also modular. We illustrate their justification
through the rule (IL). In the conclusion of the rule we
wish to establish an invariant that holds while let(e1, y.e2)
executes. If this expression starts executing in thread i at
time ub but does not return until time ue, then there are
only three possibilities: (a) e1 does not start executing until
time ue, (b) e1 started executing at some time um, but does
not return until time ue, or (c) e1 starts executing at time um,
returns at time u′m, e2 starts executing at time u′m, but does
not return until time ue. If we can show that ϕ holds in each
of these three cases, then ϕ is in invariant of let(e1, y.e2).

The premises of the rule account for exactly these three
cases: the first premise accounts for case (a), premises 2–4
account for case (b), and the remaining premises account
for case (c).

Rules (PF) and (IF) for proving partial correctness asser-
tions and invariants of functions check the corresponding
specification on the bodies of the respective functions. In
order to account for the possibility of recursion, we also
assume the function’s specification when we check the body
of the function by adding it to the context ∆ in the premises.
It is not obvious that this approach is sound and accounting
for it complicates our proof of soundness (see Section V).

Example IV.1. The invariant of Example III.2 can be estab-
lished using the rules of Figure 3 and some straightforward
axioms for relevant actions. For instance, we need to assume
that [send j, i′,m]〈ub, ue, i, x〉Send(i, j, i′,m) @ ue ∧
∀u ∈ (ub, ue).¬Send(i, j, i′,m′) @ u. This axiom as well as
others needed to prove this particular invariant are derived
from prior work on Protocol Composition Logic and the
Logic of Secure Systems [26, 29], where they were shown
to be sound.

B. Reasoning About Trusted Threads

In this section, we present a rule to prove properties of
trusted threads from knowledge of their programs. Formally,
in the logic, we say that HonestThread(I, e) if thread I
executes program expression e only.1 Let Start(I) @ u
hold if at time u, thread I is ready to execute, but has
not performed any reduction. The following rule, based on
the Honesty rule in prior work on Protocol Composition
Logic [26], allows us to prove a property of thread I from
an invariant of e if HonestThread(I, e).

Σ; Γ; · ` {e}〈ub, ue, i〉ϕ(ub, ue, i)
Σ; Γ ` HonestThread(I, e) Σ; Γ ` Start(I) @ u

Σ; Γ ` ∀u′. (u′ > u) ⊃ ϕ(u, u′, I)
HONTH

The justification for this rule is the following: since
HonestThread(I, e) and Start(I) @ u, it must be the case
that e is the active expression in I at time u. Further, since e
is the top-level program of I , it can never return. Hence, by
the definition of {e}〈ub, ue, i〉ϕ(ub, ue, i), ϕ(u, u′, I) must
hold for any u′ > u. (We do not stipulate rules for proving
either HonestThread(I, e) or Start(I) @ u since they
codify system-specific assumptions. Instead such formulas
must be explicit hypotheses in Γ.)

Example IV.2. In the web mashup example of
Section III-B, the thread Bank1 is known to execute
the program bank1_body. Hence, by definition,
HonestThread(Bank1,bank1_body). Further, we
may assume that the thread exists in the trace from the

1Technically, the syntax of our logic requires us to write the suffix
. . . @ u after each atomic formula. However, HonestThread(I, e) @ u is
independent of u, so we elide the suffix @ u after HonestThread(I, e).



Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕ
Σ; Γ; ∆ ` [act a]〈ub, ue, i, x〉ϕPA

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` {act a}〈ub, ue, i〉ϕ IA

Σ; Γ; ∆ ` []〈ub, um, i〉ϕ1 Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ϕ2 Σ, y; Γ; ∆ ` [e2]〈u′m, ue, i, x〉ϕ3

Σ; Γ; ∆ ` [let(e1, y.e2)]〈ub, ue, i, x〉∃y.∃um.∃u′m.((ub < um < u′m < ue) ∧ ϕ1 ∧ ϕ2 ∧ ϕ3)
PL

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ1 Σ; Γ; ∆ ` {e1}〈um, ue, i〉ψ2 Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ1, ψ2 ` ϕ

Σ; Γ; ∆ ` []〈ub, um, i〉ψ3 Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ψ4

Σ, y; Γ; ∆ ` {e2}〈u′m, ue, i〉ψ5 Σ, ub, um, u
′
m, ue, i, y; Γ, ub < um < u′m ≤ ue, ψ3, ψ4, ψ5 ` ϕ

Σ; Γ; ∆ ` {let(e1, y.e2)}〈ub, ue, i〉ϕ IL

f(z)
4
= e Σ, y; Γ; ∆, [f ]〈y, ub, ue, i, x〉ϕ ` [e{y/z}]〈ub, ue, i, x〉ϕ

Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ PF

f(z)
4
= e Σ, y; Γ; ∆, {f}〈y, ub, ue, i〉ϕ ` {e{y/z}}〈ub, ue, i〉ϕ

Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ IF

Figure 3: Selected modular rules for establishing program specifications

beginning, so Start(Bank1) @ −∞. In Example III.2,
we listed an invariant of bank1_body. Applying the rule
(HONTH) to that invariant we may conclude that:

∀u′ > −∞. ∀u, j, i′, x. (−∞ < u < u′) ⊃
Send(Bank1, j, i′, x) @ u ⊃
∃ur1, up1. (ur1 < up1 < u) ∧
∃v′1, nonce′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(Bank1, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

x = (parse_balance(v′1), nonce′1)

Instantiating with u′ =∞ and simplifying, we obtain:

∀u, j, i′, x.Send(Bank1, j, i′, x) @ u ⊃
∃ur1, up1. (ur1 < up1 < u) ∧
∃v′1, nonce′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(Bank1, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

x = (parse_balance(v′1), nonce′1)

This formula states a universal property of the thread Bank1
(as opposed to the program expression bank1_body),
namely, that whenever Bank1 sends out a message x, x
is a pair consisting of a nonce obtained from Agg and a
balance obtained from bank1.com/balance. This property
is crucial in proving the integrity property of Example III.1.

C. Reasoning About Interface-Confined Untrusted Threads

As opposed to trusted threads, whose security properties
may be established by analysis of their programs, the pro-
grams of untrusted or adversarial threads are not known, so
proving their security properties may seem impossible. Yet,
in practice, security of systems often relies on confinement
of behavior of untrusted threads. For instance, the integrity
property presented at the end of Section III-B holds only if
we can show that an untrusted thread cannot write to the cell
total box. The latter holds because all threads are forced to

use the interface write_acc in order to write a cell and
that interface prohibits any thread except Agg from writing
total box. In this section, we develop reasoning principles
that allow us to infer properties from the knowledge that an
untrusted thread has been restricted, or confined, to certain
known interfaces. We define an interface, denoted F , as a
set of functions. In general, an adversary that is confined to
F may construct a new set of functions G that call functions
of F and themselves and combine calls to functions of F
and G in any way it chooses. To formally represent such an
adversary, we need a few definitions.

Definition IV.3 (F-confined expressions). Given an inter-
face F , we call an expression e F-confined if the following
hold: (a) All occurrences of call in e have the form
call(f, t), where f ∈ F , and (b) act does not occur in
e.

Definition IV.4 (F-limited functions). Given an interface F ,
we call a set of functions G = {gk | gk(y)

4
= ek} F-limited

if the body ek of each function is (F ∪ G)-confined.

Definition IV.5 (F-confined thread). A (untrusted) thread I
is said to be F-confined if I executes a program e and there
is a F-limited interface G such that e is (F ∪ G)-confined.
The predicate Confined(I,F) holds iff I is F-confined.2

Definition IV.6 (Compositional formula). A formula
ϕ(ub, ue, i), possibly containing the free variables ub, ue, i,
is called compositional if ∀ub, um, ue, i. ((ub < um ≤ ue) ∧

2The restriction that the untrusted thread may not execute actions may
seem to limit the adversary’s abilities but this is not the case because we
may give the thread access to interfaces that execute the desired actions
immediately. For instance, to allow an adversary access to the write

action, we may give it the interface f(x)
4
= write x.



ϕ(ub, um, i) ∧ ϕ(um, ue, i)) ⊃ ϕ(ub, ue, i).

Roughly, a formula ϕ(ub, ue, i) describing some property
over an interval (ub, ue] is compositional if whenever the
formula holds on two adjoining intervals, it also holds on
the union of the intervals. In general, if ϕ(ub, ue, i) encodes
the fact that a safety property holds throughout the interval
(ub, ue], then ϕ(ub, ue, i) will be compositional.

We codify our reasoning principles for untrusted,
interface-confined threads in the following rule:
(ϕ(ub, ue, i) compositional) ·; Γ; · ` []〈ub, ue, i〉ϕ(ub, ue, i)

∀f ∈ F . (·; Γ; · ` {f}〈y, ub, ue, i〉ϕ(ub, ue, i))
∀f ∈ F . (·; Γ; · ` [f ]〈y, ub, ue, i, x〉ϕ(ub, ue, i))

Σ; Γ ` Confined(I,F)

Σ; Γ,Γ′ ` ∀ue. ϕ(−∞, ue, I)
RES

The informal justification for the rule (RES) is that, owing
to its confinement to F , the reduction of I up to any time
point ue can be split into calls to functions in F interspersed
with administrative reductions of the adversary’s choosing.
Since ϕ is a partial correctness assertion of all functions
in F (fourth premise) and administrative reductions (second
premise), as well an invariant of all functions in F (third
premise), it must hold over all these splits. Therefore, due
to the compositionality of ϕ (first premise), ϕ(−∞, ue, I)
must hold. The formal justification of this rule is a non-
trivial part of the soundness theorem (Section V) because
we must consider all F-confined programs that the thread I
may execute.

Example IV.7. An important property needed in the proof
of the integrity property of Example III.1 is the following:

∀i, v, u. Write(i, total box, v) @ u ⊃ i = Agg

Since this property speaks of all threads i, it requires reason-
ing about untrusted threads. Here, we show that if all threads
are confined to the interfaces send_auth, write_acc,
read_acc and the following two interfaces that mimic the
recv and get actions, then this property can be established
using the rule (RES).

recv_i(x)
4
= recv x get_i(x)

4
= get x

Define the set F = {send_auth,write_acc,read_acc,
recv_i,get_i}. Assume that ∀i. Confined(i,F). Due
to the fact that the access control matrix allows only Agg
to write cell total box, it can be shown that the following
hold:

∀f ∈ F . ({f}〈y, ub, ue, i〉
∀v, u.((ub < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ i = Agg)

∀f ∈ F . ([f ]〈y, ub, ue, i, x〉
∀v, u.((ub < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ i = Agg)

[]〈ub, ue, i〉
∀v, u.((ub < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ i = Agg

Further, ∀v, u.((ub < u ≤ ue) ∧ Write(i, total box, v) @
u) ⊃ i = Agg is compositional by definition. Therefore, by
rule (RES) we may derive that
∀i.∀ue.∀v, u.((−∞ < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ i = Agg

Choosing ue = ∞ and simplifying, we obtain the required
property ∀i, v, u. Write(i, total box, v) @ u ⊃ i = Agg.
The reader may observe that if untrusted threads are not
confined to the interface set F , then this property may not
hold. For instance, if an untrusted thread has access to the
write action through some other interface that does not
check the access control matrix, then the invariants in the
premise of the (RES) rule may not hold.

Proof of Integrity Property of Example III.1: The
integrity property from Example III.1 can be proved using
the inference rules presented in this section, assuming that all
untrusted threads are confined to the interface set F defined
in Example IV.7. Details of the proof are in Appendix F.
Briefly, the proof relies on the property of the trusted thread
Bank1 derived in Example IV.2 using the (HONTH) rule,
and similarly derived properties about the threads Bank2
and Agg. We also need the property of untrusted threads
derived in Example IV.7 using the (RES) rule and a similarly
derived property that any message purportedly sent by thread
I was actually sent by thread I , i.e, the absence of sender-id
spoofing. This property is a consequence of the fact that the
only function in F that contains a send action, namely
send_auth, ensures that the sender-id in an outgoing
message is set correctly to the actual sender.

V. SEMANTICS AND SOUNDNESS THEOREM

In this section, we formally define the trace semantics of
temporal formulas ϕ and assertions µ and show that our
proof rules are sound, i.e, any formula or assertion proved
using the rules is valid in the semantics. This provides
foundational justification for the reasoning principles of
Section IV.

Semantics: Since our programming model and the logic
of programs are parametric in the syntax of terms and
predicates, we assume that interpretations of these entities
are given. Let [[t]] denote the semantic interpretation of the
term t in some domain and let .= denote equality in the
domain. For interpreting atomic formulas, we assume the
existence of a Boolean valued function V (T , u, p) (T is a
trace, u is a ground time point, and p is a ground atomic
formula) such that [[t]] .= [[t′]] implies V (T , u, p{t/x}) =
V (T , u, p{t′/x}). Given these assumptions, we may define
the semantics T |= ϕ of ground temporal formulas ϕ in a
standard manner (see Appendix C for details).

In order to define semantics of assertions, we need a
notion of the suffix of a trace, also called a subtrace.

Definition V.1 (Subtraces). Let T be the trace
u0−→ C0 u1−→ C1 . . . un−→ Cn



For any k ≥ 0, we define the truncation of T to k, written
trunc(T , k) as the trace which contains only the last k+ 1
configurations of T . If k > n then trunc(T , k) = T .

Semantics of ground assertions µ are represented through
the judgment T , n |= µ, which roughly means that the as-
sertion µ holds in the subtrace trunc(T , n). The additional
information n is needed to prove soundness for recursive
functions. One representative clause of the definition of
T , n |= µ is shown below; others are listed in Appendix C.

- T , n |= {e}〈ub, ue, i〉ϕ holds iff T |=
ϕ{u′b/ub}{u′e/ue}{I/i} whenever the following
pattern matches the subtrace trunc(T , n) for some
u′ < u′b, there is no reduction in thread I in the
interval (u′, u′b], and the stack of I has suffix K in the
interval (u′b, u

′
e].

. . .
u′−→ σ B I ;K ; e

Finally, we define semantics of hypothetical judgments of
the proof system.

- T |= (Σ; Γ ` ϕ) if for every grounding substitution θ
with domain Σ, T |= Γθ implies T |= ϕθ.

- T |= (Σ; Γ; ∆ ` µ) if for every grounding substitution
θ with domain Σ and every n, T |= Γθ and T , n |= ∆θ
imply T , n |= µθ.
Soundness: Assuming that the axioms chosen to reason

about the assertions [a]〈ub, ue, i, x〉ϕ and []〈ub, ue, i〉 are
valid in the semantics, we can show that any hypothetical
judgment established using the proof system of Section IV is
semantically valid. As a result, any instance of our reasoning
principles is sound if we choose sound axioms for actions
and administrative reductions.

Theorem V.2 (Soundness). Suppose that each assumed
axiom (e.g, about the assertions [a]〈ub, ue, i, x〉ϕ and
[]〈ub, ue, i〉ϕ) is sound. Then for every T ,

1) Σ; Γ ` ϕ implies T |= (Σ; Γ ` ϕ).
2) Σ; Γ; ∆ ` µ implies T |= (Σ; Γ; ∆ ` µ).

The proof of soundness proceeds by a lexicographic
induction, first on the maximum number of (RES) rules in
any path in the given derivation, and then on the depth of the
derivation. A simpler, more obvious induction on the depth
of the derivation does not work because in the (RES) rule
the proof that the program e being executed by the thread I
satisfies invariant ϕ may be arbitrarily deeper than the proofs
of the premises. Another technical difficulty arises due to
the possibility of recursive functions: for the rules (PF) and
(IF) of Figure 3, we must subinduct on the number n in
the definition of T , n |= µ. Appendix D shows the proof of
soundness for these critical cases.

VI. RELY-GUARANTEE REASONING

Often, a security property relies on specific behavior of
threads that can be ascertained only if the security property

itself holds. For instance, in the HRU model of access
control [34], where an access control matrix prevents its own
modification, the property that a certain access is not allowed
may rely on the matrix preventing untrusted threads from
creating a corresponding entry in it. Similarly, the analysis
of secrecy of keys in security protocols often relies both on
the keys having remained secret in the past and on trusted
threads performing only stipulated actions [27].

The rely-guarantee method is a general technique
for proving such properties for concurrently executing
threads [1, 2, 35]. Summarily, suppose ϕ is a property of
state. The rely-guarantee method envisages that in order to
show that ϕ holds in all states of the system’s execution, it
suffices to prove the following three properties:
(A) ϕ holds initially.
(B) There is a class of properties ψ(i), indexed by threads

i, such that for any action that i may perform, if ϕ
holds in the state preceding the action, then ψ(i) holds
immediately after i executes the action.

(C) If ϕ holds in a state and ψ(i) holds in the next state
for all i, then ϕ holds in the next state.

Here, we show how, for a wide class of properties, the
rely-guarantee technique is a special case of the reasoning
principles presented in Section IV. Suppose ϕ(u) is a
property that we wish to establish for all time points u.
Assume that there is a set of threads identified by the
predicate ι(i) and a thread-specific property ψ(u, i) such
that the following analogues of the properties (A)–(C) hold:

(1) ϕ(−∞)
(2) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)
(3) (ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2)) ⊃

∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧
∀u4 ∈ (u1, u3). ϕ(u4)

Then, we can prove in the proof system of Section IV that
∀u. ϕ(u).

Theorem VI.1 (Rely-guarantee). Conditions (1)–(3) as
above imply ∀u. ϕ(u) in the proof system of Section IV.

Proof: The proof follows by a straightforward analysis
in the temporal logic. See Appendix E for details.

In general, condition (2) is analogous to property (B) and
it may be established through invariants. For instance, if
ι(i) = i ∈ I, where I is a set of trusted threads, then by
rule (HONTH), condition (2) holds if the following assertion
holds for all programs e that threads in I may execute.

{e}〈ub, ue, i〉 ∀u ∈ (ub, ue]. (∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

Condition (3) means that if there is violation of ϕ at time u2

but this was not the case at time u1 then is must be a first
violation at time u3 that is caused due to a violation of the
thread specific property by some thread satisfying ι. This
is stronger than property (C), but holds for state properties
that satisfy (C). In practice, condition (3) may be established
either as a sound axiom, or through other proof rules.



Analysis of secrecy in the Kerberos V5 protocol: We
have used the rely-guarantee method outlined here to prove
secrecy of the shared key generated by the authentication
server during the Kerberos V5 protocol. Our proof is similar
to a prior proof of the same property written in Protocol
Composition Logic (PCL) [27]. The PCL proof uses a
secrecy induction through a rule called (NET), which is an
instance of our rely-guarantee technique if we choose ϕ to be
the PCL predicate SafeNet and ψ to be the PCL predicate
SendsSafeMsg. Consequently, the proof shows that secrecy
analysis in PCL is a special case of rely-guarantee reasoning
in our framework. Details of the analysis are in Appendix G.

VII. FUTURE WORK

This paper makes significant progress towards developing
a systematic foundation for compositional system security.
We plan to extend this work in several directions. So
far, we have considered reasoning principles for first-order
programs where code cannot be passed as arguments or
returned from expressions. However, many systems rely on
passing code either as data or through pointers. To model
and to establish security properties of such applications, we
propose to extend the formalism with higher-order constructs
and develop associated compositional reasoning principles.
While this paper has focused on the technical foundations
of the theory, we plan to apply this framework to develop
a systematic basis for web security, to formalize attacker
models for web browsers proposed in the literature [7] and
develop new ones, and to build an understanding of relevant
security policies, end-to-end security properties, attacks in
the wild, and ways to defend and prove web applications
secure against these attacks.
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APPENDIX A.
OPERATIONAL SEMANTICS

The operational semantics of the programming language
are shown in Figure 4.

APPENDIX B.
PROOF SYSTEM FOR THE LOGIC OF PROGRAMS

The proof system of the logic of programs is summarized
in Figures 5–7.

APPENDIX C.
SEMANTICS OF FORMULAS AND ASSERTIONS

Our main semantic relations take the form T |= ϕ and
T , n |= µ. The former means that the ground ordinary
formula ϕ holds on trace T . T , n |= µ is explained later. We
define these relations by induction on ϕ and µ. Semantics for
formulas with free variables are a special case of semantics



Temporal formulas

Σ; Γ, ϕ ` ϕhypO
Σ; Γ ` t = t

eqI
Σ; Γ ` t = t′ Σ; Γ ` ϕ{t/x}

Σ; Γ ` ϕ{t′/x} eqE
Σ; Γ ` u ≤ u timeR

Σ; Γ ` u1 ≤ u2 Σ; Γ ` u2 ≤ u3

Σ; Γ ` u1 ≤ u3
timeT

Σ; Γ ` (u1 ≤ u2) ∨ (u2 ≤ u1)
timet

Σ; Γ ` ((u1 ≤ u2) ∧ (u2 ≤ u1)) ⊃ u1 = u2
timeAS

Σ; Γ ` ϕ Σ; Γ, ϕ ` ϕ′
Σ; Γ ` ϕ′ cutOO

Σ; Γ ` ϕ ∨ ¬ϕEM

Σ; Γ ` ϕ Σ; Γ ` ψ
Σ; Γ ` ϕ ∧ ψ ∧I

Σ; Γ ` ϕ ∧ ψ
Σ; Γ ` ϕ ∧E1

Σ; Γ ` ϕ ∧ ψ
Σ; Γ ` ψ ∧E2

Σ; Γ ` ϕ
Σ; Γ ` ϕ ∨ ψ∨I1

Σ; Γ ` ψ
Σ; Γ ` ϕ ∨ ψ∨I2

Σ; Γ ` ϕ1 ∨ ϕ2 Σ; Γ, ϕ1 ` ϕ Σ; Γ, ϕ2 ` ϕ
Σ; Γ ` ϕ ∨E

Σ; Γ, ϕ ` ψ
Σ; Γ ` ϕ ⊃ ψ⊃I

Σ; Γ ` ϕ ⊃ ψ Σ; Γ ` ϕ
Σ; Γ ` ψ ⊃E

Σ; Γ ` >>I

Σ; Γ,⊥ ` ϕ⊥E
Σ, x; Γ ` ϕ
Σ; Γ ` ∀x.ϕ∀I

Σ; Γ ` ∀x.ϕ
Σ; Γ ` ϕ{t/x}∀E

Σ; Γ ` ϕ{t/x}
Σ; Γ ` ∃x.ϕ ∃I

Σ; Γ ` ∃x.ϕ Σ, x; Γ, ϕ ` ϕ
Σ; Γ ` ϕ ∃E

Figure 5: Proof System, part 1

for hypothetical judgments, which are explained later in this
section.

Definition C.1 (Subtraces). Let T be the trace
u0−→ C0 u1−→ C1 . . . un−→ Cn

For any k ≥ 0, we define the truncation of T to k, written
trunc(T , k) as the trace which contains only the last k+ 1
configurations of T . More precisely,
• If k ≥ n, then trunc(T , k) equals T .
• If k < n, then trunc(T , k) is the trace:

un−k−→ Cn−k
un−k+1−→ Cn−k+1 . . .

un−→ Cn
Note that trunc(T , k) is not a trace in the strictest sense
since it does not have the auxiliary information that may be
associated with T . It is only a sequence of actions, and may
not be used to interpret formulas.

Semantics of terms and predicates: Since the language
and the logic are parametric in the syntax of terms and predi-
cates, we must make some assumptions about interpretations
of these entities. Let [[t]] denote the semantic interpretation
of the term t. Let t .= t′ mean that t and t′ are syntactically
equal.

- Every closed term t evaluates (in the semantics) to a
closed term [[t]]. The following are assumed to hold:

- If eval t t′, then [[t]] .= [[t′]]. Note that given a
semantic definition of [[·]], this clause imposes a
constraint on eval.

- [[[[t]]]] .= [[t]]
- If [[t1]] .= [[t2]], then [[t{t1/x}]] .= [[t{t2/x}]].

- There is a Boolean-valued function V (T , u, p) which
given a trace T , a time point u, and a ground atomic

formula p, states whether p holds on T at time u or
not. We require the following:

- If [[t]] .= [[t′]], then V (T , u, p{t/x}) =
V (T , u, p{t′/x}).

Semantics of temporal formulas:
• T |= t1 = t2 iff [[t1]] .= [[t2]].
• T |= u1 ≤ u2 iff u1 is less than or equal to u2 in the

usual order on real numbers.
• T |= p @ u iff V (T , u, p).
• T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ.
• T |= ϕ ∨ ψ iff T |= ϕ or T |= ψ.
• T |= ϕ ⊃ ψ iff T 6|= ϕ or T |= ψ.
• T |= > always.
• T |= ⊥ never.
• T |= ∀x.ϕ iff for every ground term t, T |= ϕ{t/x}.
• T |= ∃x.ϕ iff there is a ground term t, T |= ϕ{t/x}.

Semantics of assertions: The semantic relation for
assertions has the form T , n |= µ. n restricts matching to
the subtrace containing the last n + 1 states of the trace
only. This is needed to inductively establish soundness for
recursive functions.
• T , n |= []〈ub, ue, i〉ϕ iff whenever in subtrace
trunc(T , n) thread I has no effectual reduction
in the interval (u′b, u

′
e), it is the case that T |=

ϕ{u′b/ub}{u′e/ue}{I/i}.
• T , n |= [a]〈ub, ue, i, x〉ϕ iff whenever in subtrace
trunc(T , n) the active expression in I at time u′b
is act a, and at time u′e this action a reduces
returning term t to its continuation, it is the case
that T |= ϕ{u′b/ub}{u′e/ue}{I/i}{t/x}. More pre-
cisely, T , n |= [a]〈ub, ue, i, x〉ϕ holds iff T |=
ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} whenever the following



Partial correctness assertions

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` [t]〈ub, ue, i, x〉ϕ ∧ (x = t)

PT
Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕ

Σ; Γ; ∆ ` [act a]〈ub, ue, i, x〉ϕPA

Σ; Γ; ∆ ` []〈ub, um, i〉ϕ1 Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ϕ2 Σ, y; Γ; ∆ ` [e2]〈u′m, ue, i, x〉ϕ3

Σ; Γ; ∆ ` [let(e1, y.e2)]〈ub, ue, i, x〉∃y.∃um.∃u′m.((ub < um < u′m < ue) ∧ ϕ1 ∧ ϕ2 ∧ ϕ3)
PL

Σ; Γ; ∆ ` []〈ub, um, i〉ϕ1 Σ; Γ; ∆ ` [e1]〈um, ue, i, x〉ϕ2 Σ; Γ; ∆ ` [e2]〈um, ue, i, x〉ϕ3

Σ; Γ; ∆ ` [if(b, e1, e2)]〈ub, ue, i, x〉∃um.((ub < um < ue) ∧ ϕ1 ∧ (b ⊃ ϕ2) ∧ ((¬b) ⊃ ϕ3))
PI

Σ; Γ; ∆ ` []〈ub, um, i〉ϕ1 Σ; Γ; ∆ ` [f ]〈y, um, ue, i, x〉ϕ2

Σ; Γ; ∆ ` [call(f, t2)]〈ub, ue, i, x〉∃um.((ub < um < ue) ∧ ϕ1 ∧ ϕ2{t2/y})PC

f(z)
4
= e Σ, y; Γ; ∆, [f ]〈y, ub, ue, i, x〉ϕ ` [e{y/z}]〈ub, ue, i, x〉ϕ

Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ PF

Invariance assertions

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` {t}〈ub, ue, i〉ϕ IT

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` {act a}〈ub, ue, i〉ϕ IA

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ1 Σ; Γ; ∆ ` {e1}〈um, ue, i〉ψ2 Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ1, ψ2 ` ϕ

Σ; Γ; ∆ ` []〈ub, um, i〉ψ3 Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ψ4

Σ, y; Γ; ∆ ` {e2}〈u′m, ue, i〉ψ5 Σ, ub, um, u
′
m, ue, i, y; Γ, ub < um < u′m ≤ ue, ψ3, ψ4, ψ5 ` ϕ

Σ; Γ; ∆ ` {let(e1, y.e2)}〈ub, ue, i〉ϕ IL

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ1 Σ; Γ; ∆ ` {e1}〈um, ue, i〉ψ2 Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ1, ψ2, b ` ϕ

Σ; Γ; ∆ ` []〈ub, um, i〉ψ3 Σ; Γ; ∆ ` {e2}〈um, ue, i〉ψ4 Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ3, ψ4,¬b ` ϕ
Σ; Γ; ∆ ` {if(b, e1, e2)}〈ub, ue, i〉ϕ II

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ
Σ; Γ; ∆ ` []〈ub, um, i〉ψ Σ; Γ; ∆ ` {f}〈y, um, ue, i〉ψ′

Σ, ub, um, ue, i; Γ, ub < um ≤ ue, ψ, ψ
′{t2/y} ` ϕ

Σ; Γ; ∆ ` {call(f, t2)}〈ub, ue, i〉ϕ IC

f(z)
4
= e Σ, y; Γ; ∆, {f}〈y, ub, ue, i〉ϕ ` {e{y/z}}〈ub, ue, i〉ϕ

Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ IF

Trusted and Untrusted Threads

Σ; Γ; · ` {e}〈ub, ue, i〉ϕ(ub, ue, i) Σ; Γ ` HonestThread(I, e) Σ; Γ ` Start(I) @ u

Σ; Γ ` ∀u′. (u′ > u) ⊃ ϕ(u, u′, I)
HONTH

(ϕ(ub, ue, i) compositional) ·; Γ; · ` []〈ub, ue, i〉ϕ(ub, ue, i)
∀f ∈ F . (·; Γ; · ` {f}〈y, ub, ue, i〉ϕ(ub, ue, i)) ∀f ∈ F . (·; Γ; · ` [f ]〈y, ub, ue, i, x〉ϕ(ub, ue, i)) Σ; Γ ` Confined(I,F)

Σ; Γ,Γ′ ` ∀ue. ϕ(−∞, ue, I)
RES

Figure 6: Proof System, part 2

pattern matches the subtrace trunc(T , n), and there is no reduction in thread I in the interval (u′b, u
′
e).

. . .
σ B I ; (x.e) :: K ; act a

u′e−→ σ′ B I ;K ; e{t/x}
. . .



General rules for assertions

(Σ; Γ; ∆ ` µ) is an axiom
Σ,Σ′; Γ,Γ′; ∆,∆′ ` µ axM

Σ; Γ; ∆, µ ` µhypM
Σ; Γ; ∆ ` µ Σ; Γ; ∆, µ ` µ′

Σ; Γ; ∆ ` µ′ cutMM

Σ; Γ ` ϕ Σ; Γ, ϕ; ∆ ` µ′
Σ; Γ; ∆ ` µ′ cutOM

Σ; Γ ` ϕ
Σ; Γ; ∆ ` []〈ub, ue, i〉ϕGOE

Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ Σ, ub, ue, i; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ′ GE

Σ; Γ ` ϕ
Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕGOA

Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕ Σ, ub, ue, i, x; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` [a]〈ub, ue, i, x〉ϕ′ GA

Σ; Γ ` ϕ
Σ; Γ; ∆ ` [e]〈ub, ue, i, x〉ϕGOEP

Σ; Γ; ∆ ` [e]〈ub, ue, i, x〉ϕ Σ, ub, ue, i, x; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` [e]〈ub, ue, i, x〉ϕ′ GEP

Σ; Γ ` ϕ
Σ; Γ; ∆ ` {e}〈ub, ue, i〉ϕGOEI

Σ; Γ; ∆ ` {e}〈ub, ue, i〉ϕ Σ, ub, ue, i; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` {e}〈ub, ue, i〉ϕ′ GEI

Σ; Γ ` ϕ
Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕGOFP

Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ Σ, y, ub, ue, i, x; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ′ GFP

Σ; Γ ` ϕ
Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕGOFI

Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ Σ, y, ub, ue, i; Γ, ϕ ` ϕ′
Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ′ GFI

Figure 7: Proof System, part 3

• T , n |= [e]〈ub, ue, i, x〉ϕ iff whenever in thread
I in subtrace trunc(T , n) the active expression at
time u′b is e, and at time u′e this expression re-
turns term t to its continuation, it is the case
that T |= ϕ{u′b/ub}{u′e/ue}{I/i}{t/x}. More pre-
cisely, T , n |= [e]〈ub, ue, i, x〉ϕ holds iff T |=
ϕ{u′b/ub}{u′e/ue}{I/i}{t/x} whenever the following
pattern matches the subtrace trunc(T , n) for some
u′ > u′b and eval t t′, there is no reduction in thread
I in the interval (u′b, u

′), and the stack of I has suffix
(x.e′) :: K in the interval (u′, u′e).

. . .
σ B I ; (x.e′) :: K ; e

u′−→ . . .
σ B I ; (x.e′) :: K ; t

u′e−→ σ B I ;K ; e′{t′/x}
. . .

• T , n |= {e}〈ub, ue, i〉ϕ iff whenever in thread I in
subtrace trunc(T , n) the active expression at time u′b
is e, and until time u′e this expression has not returned,
it is the case that T |= ϕ{u′b/ub}{u′e/ue}{I/i}{r/x}.
More precisely, T , n |= {e}〈ub, ue, i〉ϕ holds iff
T |= ϕ{u′b/ub}{u′e/ue}{I/i} whenever the following
pattern matches the subtrace trunc(T , n) for some
u′ < u′b, there is no reduction in thread I in the interval
(u′, u′b], and the stack of I has suffix K in the interval
(u′b, u

′
e].

. . .
u′−→ σ B I ;K ; e

. . .

• T , n |= [f ]〈y, ub, ue, i, x〉ϕ iff whenever in thread
I in subtrace trunc(T , n), f is called at time
u′b with argument t2, and at time u′e returns
term t to its continuation, it is the case that
T |= ϕ{t2/y}{u′b/ub}{u′e/ue}{I/i}{t/x}. More
precisely, T , n |= [f ]〈y, ub, ue, i, x〉ϕ holds iff
T |= ϕ{t2/y}{u′b/ub}{u′e/ue}{I/i}{t/x} whenever
the following pattern matches the subtrace trunc(T , n)
for eval t t′, eval t2 t

′
2, and f(y)

4
= e, and in the

interval (u′b, u
′
e) the stack of I has suffix (x.e′) :: K.

. . .
σ B I ; (x.e′) :: K ; call(f, t2)

u′b−→ σ B I ; (x.e′) :: K ; e{t′2/y}
. . .
σ B I ; (x.e′) :: K ; t

u′e−→ σ B I ;K ; e′{t′/x}
. . .

• T , n |= {f}〈y, ub, ue, i〉ϕ iff whenever in thread I
in subtrace trunc(T , n), f is called at time u′b with
argument t2, and until time u′e it has not returned, it
is the case that T |= ϕ{t2/y}{u′b/ub}{u′e/ue}{I/i}.
More precisely, T , n |= {f}〈y, ub, ue, i〉ϕ holds iff



T |= ϕ{t2/y}{u′b/ub}{u′e/ue}{I/i} whenever the
following pattern matches the subtrace trunc(T , n) for
eval t2 t′2, and f(y)

4
= e, and in the interval (u′b, u

′
e]

the stack of I has suffix K.

. . .
σ B I ;K ; call(f, t2)

u′b−→ σ B I ;K ; e{t′2/y}
. . .

Observation C.2. The following hold:
1) If T , n |= []〈ub, ue, i〉ϕ and n′ ≤ n, then T , n′ |=

[]〈ub, ue, i〉ϕ. Similar properties hold for other prefixes
[a], [e], {e}, [f ], and {f}.

2) It is always the case that T , 0 ` [f ]〈y, ub, ue, i, x〉ϕ
and T , 0 ` {f}〈y, ub, ue, i〉ϕ because the subtrace
trunc(T , 0) has only one state and therefore cannot
contain a reduction; in particular, trunc(T , 0) cannot
contain a call to f .

Semantics of sequents: We lift semantics from formulas
to sequents as follows.

- T |= (Σ; Γ ` ϕ) if for every grounding substitution θ
with domain Σ, T |= Γθ implies T |= ϕθ.

- T |= (Σ; Γ; ∆ ` µ) if for every grounding substitution
θ with domain Σ and every n, T |= Γθ and T , n |= ∆θ
imply T , n |= µθ.

APPENDIX D.
SOUNDNESS

We prove that our logic of programs is sound with respect
to the semantics of Section C if we assume that all axioms
are also sound.

Lemma D.1 (Closure under evaluation). eval t t′ implies
(T |= ϕ{t/x} iff T |= ϕ{t′/x}).

Proof: Since eval t t′, [[t]] .= [[t′]] by assumption. It
therefore suffices to show that [[t]] .= [[t′]] implies (T |=
ϕ{t/x} iff T |= ϕ{t′/x}). This follows by induction on
ϕ. For the base case where ϕ = p @ u, we appeal to
the assumption that [[t]] .= [[t′]] implies V (T , u, p{t/x}) =
V (T , u, p{t′/x}).

Next, we need a few definitions and lemmas about F-
confined expressions and F-limited interfaces. (These terms
are defined in Section IV-C.)

Definition D.2 (F-invariant). Given an interface F , a for-
mula ϕ(ub, ue, i) containing only the free variables ub, ue,
and i is called an (F ,Γ,∆)-invariant if the following hold
for every Σ:

- ϕ(ub, ue, i) is compositional (see Section IV-C for a
definition of compositional)

- For every f ∈ F , Σ; Γ; ∆ `
{f}〈y, ub, ue, i〉ϕ(ub, ue, i)

- For every f ∈ F , Σ; Γ; ∆ `
[f ]〈y, ub, ue, i, x〉ϕ(ub, ue, i)

- Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ(ub, ue, i)

Lemma D.3 (Invariance of F-confined expressions). Let e
be F-confined, and let ϕ(ub, ue, i) be an (F ,Γ,∆)-invariant.
Let Σ ⊇ fv(e). Then,

1) Σ; Γ; ∆ ` [e]〈ub, ue, i, x〉ϕ(ub, ue, i)
2) Σ; Γ; ∆ ` {e}〈ub, ue, i〉ϕ(ub, ue, i)

Proof: We prove (1) by induction on e, i.e., we show
that Σ; Γ; ∆ ` [e]〈ub, ue, i, x〉ϕ(ub, ue, i). We proceed by
a case analysis on e, and show some representative cases
below.

Case. e = t. To show: Σ; Γ; ∆ ` [t]〈ub, ue, i, x〉ϕ(ub, ue, i).
We have:

1) Σ; Γ; ∆ ` []〈ub, ue, i, x〉ϕ(ub, ue, i) (Defn. of
(F ,Γ,∆)-invariant)

2) Σ; Γ; ∆ ` [t]〈ub, ue, i, x〉ϕ(ub, ue, i) ∧ x = t (Rule
PT on 1)

3) Σ, ub, ue, i, x; Γ, ϕ(ub, ue, i) ∧ x = t ` ϕ(ub, ue, i)
(Thm. in predicate logic)

4) Σ; Γ; ∆ ` [t]〈ub, ue, i, x〉ϕ(ub, ue, i) (Rule GEP on
2,3)

Case. e = act a does not apply due to definition of F-
confined.
Case. e = let(e1, y.e2). To show: Σ; Γ; ∆ `
[let(e1, y.e2)]〈ub, ue, i, x〉ϕ(ub, ue, i). We have:

1) Σ; Γ; ∆ ` []〈ub, um, i〉ϕ(ub, um, i) (Defn. of
F-invariant and weakening)

2) Σ; Γ; ∆ ` [e1]〈um, u
′
m, i, y〉ϕ(um, u

′
m, i) (i.h. on e1)

3) Σ, y; Γ; ∆ ` [e2]〈u′m, ue, i, x〉ϕ(u′m, ue, i) (i.h. on e2)
4) Σ; Γ; ∆ ` [let(e1, y.e2)]〈ub, ue, i, x〉∃y.∃um.∃u′m.((ub <

um < u′m < ue) ∧ ϕ(ub, um, i) ∧ ϕ(um, u
′
m, i) ∧

ϕ(u′m, ue, i)) (Rule PL on 1–3)
5) Σ, ub, um, ue, i; Γ, ub < um ≤

ue, ϕ(ub, um, i), ϕ(um, ue, i) ` ϕ(ub, ue, i)
(Defn. of (F ,Γ,∆)-invariant)

6) Σ, ub, ue, i, x; Γ,∃y.∃um.∃u′m.((ub < um < u′m <
ue) ∧ ϕ(ub, um, i) ∧ ϕ(um, u

′
m, i) ∧ ϕ(u′m, ue, i)) `

ϕ(ub, ue, i) (Thm. in predicate logic using 5)
7) Σ; Γ; ∆ ` [let(e1, y.e2)]〈ub, ue, i, x〉ϕ(ub, ue, i)

(Rule GEP on 4,6)
Case. e = call(f, t). To show: Σ; Γ; ∆ `
[call(f, t)]〈ub, ue, i, x〉ϕ(ub, ue, i). By definition of
F-confined, f ∈ F . We have:

1) Σ; Γ; ∆ ` []〈ub, um, i〉ϕ(ub, ue, i) (Defn. of
(F ,Γ,∆)-invariant)

2) Σ; Γ; ∆ ` [f ]〈y, um, ue, i, x〉ϕ(um, ue, i) (Defn. of
(F ,Γ,∆)-invariant)

3) Σ; Γ; ∆ ` [call(f, t)]〈ub, ue, i, x〉∃um.((ub < um <
ue) ∧ ϕ(ub, ue, i) ∧ ϕ(um, ue, i))

(Rule PC on 1,2)



4) Σ, ub, um, ue, i; Γ, ub < um ≤
ue, ϕ(ub, um, i), ϕ(um, ue, i) ` ϕ(ub, ue, i)

(Defn. of (F ,Γ,∆)-invariant)
5) Σ, ub, ue, i, x; Γ,∃um.((ub < um < ue) ∧

ϕ(ub, ue, i) ∧ ϕ(um, ue, i)) ` ϕ(ub, ue, i)
(Thm. in predicate logic using 4)

6) Σ; Γ; ∆ ` [call(f, t)]〈ub, ue, i, x〉ϕ(ub, ue, i) (Rule
GEP on 3,5)

Next, we prove (2) by induction on e and case analysis
of its structure. The proof is similar to that of (1), so we
show only the interesting case of e = call(f, t).

Case. e = call(f, t). To show: Σ; Γ; ∆ `
{call(f, t)}〈ub, ue, i〉ϕ(ub, ue, i). We have:

1) Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ(ub, ue, i) (Defn. of
(F ,Γ,∆)-invariant)

2) Σ; Γ; ∆ ` []〈ub, um, i〉ϕ(ub, um, i) (Defn. of
(F ,Γ,∆)-invariant)

3) Σ; Γ; ∆ ` {f}〈y, um, ue, i〉ϕ(um, ue, i) (Defn. of
(F ,Γ,∆)-invariant)

4) Σ, ub, um, ue, i; Γ, ub < um ≤
ue, ϕ(ub, um, i), ϕ(um, ue, i) ` ϕ(ub, ue, i)

(Defn. of (F ,Γ,∆)-invariant)
5) Σ; Γ; ∆ ` {call(f, t)}〈ub, ue, i〉ϕ(ub, ue, i) (Rule

IC on 1–4)

Lemma D.4 (Invariance of F-limited functions). Let G
be a set of F-limited functions and let ϕ(ub, ue, i) be an
(F ,Γ,∆)-invariant. Then ϕ(ub, ue, i) is an (F ∪ G,Γ,∆)-
invariant.

Proof: Let G = {gk | gk(y)
4
= ek ; k = 1, . . . , n}.

Define:

µk = [gk]〈y, ub, ue, i, x〉ϕ(ub, ue, i)
νk = {gk}〈y, ub, ue, i〉ϕ(ub, ue, i)
∆′ = µ1, ν1, . . . , µn, νn

Observe that by definition, and due to weakening and rule
hypM, ϕ(ub, ue, i) is an (F ∪ G,Γ,(∆,∆′))-invariant. By
definition of F-limited, it follows that the body ek of each
function in G is (F ∪ G)-confined. Hence by Lemma D.3,
we have:

- y; Γ; ∆,∆′ ` [ek]〈ub, ue, i, x〉ϕ(ub, ue, i) for each k
- y; Γ; ∆,∆′ ` {ek}〈ub, ue, i〉ϕ(ub, ue, i) for each k

Equivalently, we have
A0. y; Γ; ∆, µ1, ν1, . . . , µn, νn `

[ek]〈ub, ue, i, x〉ϕ(ub, ue, i) for each k
B0. y; Γ; ∆, µ1, ν1, . . . , µn, νn `

{ek}〈ub, ue, i〉ϕ(ub, ue, i) for each k
Choosing k = 1 in (A0), we get
y; Γ; ∆, µ1, ν1, . . . , µn, νn ` [e1]〈ub, ue, i, x〉ϕ(ub, ue, i).
By rule PF, we have: ·; Γ; ∆, ν1, . . . , µn, νn `
[g1]〈y, ub, ue, i, x〉ϕ(ub, ue, i) or equivalently that

·; Γ; ∆, ν1, . . . , µn, νn ` µ1. Using rule cutMM on
this and (A0) and (B0), we get:
A0’. y; Γ; ∆, ν1, . . . , µn, νn ` [ek]〈ub, ue, i, x〉ϕ(ub, ue, i)

for each k
B0’. y; Γ; ∆, ν1, . . . , µn, νn ` {ek}〈ub, ue, i〉ϕ(ub, ue, i)

for each k
Choosing k = 1 in (B0’), we get y; Γ; ∆, ν1, . . . , µn, νn `
{e1}〈ub, ue, i〉ϕ(ub, ue, i). By rule IF, we have:
·; Γ; ∆, µ2, ν2, . . . , µn, νn ` {g1}〈y, ub, ue, i〉ϕ(ub, ue, i) or
equivalently that ·; Γ; ∆, µ2, ν2, . . . , µn, νn ` ν1. Using rule
cutMM on this and (A0’) and (B0’), we get:
A1. y; Γ; ∆, µ2, ν2, . . . , µn, νn `

[ek]〈ub, ue, i, x〉ϕ(ub, ue, i) for each k
B1. y; Γ; ∆, µ2, ν2, . . . , µn, νn `

{ek}〈ub, ue, i〉ϕ(ub, ue, i) for each k
Repeating the previous two step n − 1 times each, we
eventually get:
An. y; Γ; ∆ ` [ek]〈ub, ue, i, x〉ϕ(ub, ue, i) for each k
Bn. y; Γ; ∆ ` {ek}〈ub, ue, i〉ϕ(ub, ue, i) for each k

Weakening, we get
C. y; Γ; ∆, µk ` [ek]〈ub, ue, i, x〉ϕ(ub, ue, i) for each k
D. y; Γ; ∆, νk ` {ek}〈ub, ue, i〉ϕ(ub, ue, i) for each k

Applying rules PF and IF to (C) and (D) respectively, we
get:

1) ·; Γ; ∆ ` [gk]〈y, ub, ue, i, x〉ϕ(ub, ue, i) for each k
2) ·; Γ; ∆ ` {gk}〈y, ub, ue, i〉ϕ(ub, ue, i) for each k

Further from the definition of (F ,Γ,∆)-invariant we have:
3. Σ; Γ; ∆ ` []〈ub, ue, i〉ϕ(ub, ue, i)
4. Σ, ub, um, ue, i; Γ, ub < um ≤

ue, ϕ(ub, um, i), ϕ(um, ue, i) ` ϕ(ub, ue, i)
5. Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ(ub, ue, i) for each f ∈
F

6. Σ; Γ; ∆ ` {f}〈y, ub, ue, i〉ϕ(ub, ue, i) for each f ∈ F
(1)–(6) imply that ϕ(ub, ue, i) is an (F ∪ G,Γ,∆)-invariant.

This lemma is also important in practice. Suppose an
adversary is given an interface F such that ϕ(ub, ue, i) is an
(F ,Γ,∆)-invariant. Suppose the adversary uses the functions
F to define a new set of functions G. By construction, G
is F-limited. Lemma D.4 tells us that ϕ(ub, ue, i) is an
(F ∪ G,Γ,∆)-invariant. Hence the adversary cannot break
system invariants simply by creating new functions from
existing ones. Although intuitive, formally establishing this
property is non-trivial as the proofs above show.

Theorem D.5 (Soundness). Suppose that each assumed
axiom (e.g, about the assertions [a]〈ub, ue, i, x〉ϕ and
[]〈ub, ue, i〉ϕ) is sound. Then for every T ,

1) Σ; Γ ` ϕ implies T |= (Σ; Γ ` ϕ).
2) Σ; Γ; ∆ ` µ implies T |= (Σ; Γ; ∆ ` µ).

In general, the proof of soundness proceeds by induction
on the depth of the given derivations in the proof system.
The proof is complicated due to two reasons:



• In order to correctly account for recursion, we have
to subinduct on the number of steps in a trace when
proving soundness of rules (IF) and (PF).

• For the rule (RES), we use Lemmas D.2 and D.4,
but these Lemmas do not set a bound on the depth
of the derivations they produce. Consequently, if the
proof is only by induction on the depth of derivations,
then we cannot apply the i.h. to derivations obtained
from Lemmas D.2 and D.4. The observation that lets
us proceed is that the derivations constructed in these
Lemmas do not use the rule (RES). As a result, if we
induct lexicographically, first on the maximum number
of (RES) rules in any path of the derivation, and then
on the derivation’s depth, then the induction succeeds.

Definition D.6 (RES-depth). Define the RES-depth of a
derivation as the maximum number of (RES) rules on any
path in the derivation starting at its root and ending at a leaf.

Proof of soundness.: We prove (1) and (2)
simultaneously by a lexicographic induction, first on
the RES-depth of the given derivation, and then on its
depth. We show the interesting cases of the rules (PF) and
(RES) here.

Case.
f(z)

4
= e

Σ, y; Γ; ∆, [f ]〈y, ub, ue, i, x〉ϕ ` [e{y/z}]〈ub, ue, i, x〉ϕ
Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ

PF

We seek to show that T |= Σ; Γ; ∆ ` [f ]〈y, ub, ue, i, x〉ϕ.
Pick a substitution θ for Σ and an n. Assume that:

• T |= Γθ
• T , n |= ∆θ

It suffices to show that T , n |= [f ]〈y, ub, ue, i, x〉ϕθ. We
prove a more general statement: we use a subinduction on
k to show that T , k |= [f ]〈y, ub, ue, i, x〉ϕθ for each k ≤ n.

Subcase. k = 0. To show: T , 0 |= [f ]〈y, ub, ue, i, x〉ϕθ.
This follows from Observation C.2(2).

Subcase. k = k′ + 1 ≤ n. To show: T , k′ + 1 |=
[f ]〈y, ub, ue, i, x〉ϕθ. Following the definition of T , k′ +
1 |= [f ]〈y, ub, ue, i, x〉ϕ, suppose that the following pattern
matches thread I in trunc(T , k′ + 1) where eval t t′,
eval t2 t′2, f(z)

4
= e, and in the interval (u′b, u

′
e) the stack

of I has suffix (x.e′) :: K.

. . .
σ B I ; (x.e′) :: K ; call(f, t2)

u′b−→ σ B I ; (x.e′) :: K ; e{t′2/z}
. . .
σ B I ; (x.e′) :: K ; t

u′e−→ σ B I ;K ; e′{t′/x}
. . .

It now suffices to show that T |=
ϕθ{t2/z}{u′b/ub}{u′e/ue}{I/i}{t/x}. Consider the
subtrace of T that starts at u′b. Observe that this trace is
strictly shorter than trunc(T , k′ + 1) since it lacks at
least the state containing σ B I ; (x.e′) :: K ; call(f, t2)
in I . So suppose that this subtrace is trunc(T , k′′),
where k′′ ≤ k′. Now by our assumption we have
T , n |= ∆θ, and hence Observation C.2(1) implies
T , k′′ |= ∆θ. By the subinduction hypothesis, we also have
T , k′′ |= [f ]〈y, ub, ue, i, x〉ϕθ. Combining, we have:
• T , k′′ |= (∆, [f ]〈y, ub, ue, i, x〉ϕ)θ

Since we also assumed that T |= Γθ, induction hypothesis
on the premise of the rule PF implies that:
• T , k′′ |= [eθ{y/z}{t0/y}]〈ub, ue, i, x〉ϕθ{t0/y} for

any t0.
Simplifying and choosing t0 = t′2, we get T , k′′ |=
[eθ{t′2/z}]〈ub, ue, i, x〉ϕθ{t′2/y}. Since e is the body of f , it
may contain only one free variable (z), and therefore eθ = e,
which gives us T , k′′ |= [e{t′2/z}]〈ub, ue, i, x〉ϕθ{t′2/y}.
Now observe that by construction, trunc(T , k′′) matches
the pattern:

u′b−→ σ B I ; (x.e′) :: K ; e{t′2/z}
. . .
σ B I ; (x.e′) :: K ; t

u′e−→ σ B I ;K ; e′{t′/x}
. . .

By definition of T , k′′ |=
[e{t′2/z}]〈ub, ue, i, x〉ϕθ{t′2/y}, we therefore have
T |= ϕθ{t′2/y}{u′b/ub}{u′e/ue}{I/i}{t/x}.
Since eval t2 t′2, Lemma D.1 implies T |=
ϕθ{t2/y}{u′b/ub}{u′e/ue}{I/i}{t/x}, as required.

Case.

(ϕ(ub, ue, i) compositional)
∀f ∈ F . (·; Γ; · ` {f}〈y, ub, ue, i〉ϕ(ub, ue, i))
∀f ∈ F . (·; Γ; · ` [f ]〈y, ub, ue, i, x〉ϕ(ub, ue, i))

·; Γ; · ` []〈ub, ue, i〉ϕ(ub, ue, i)
Σ; Γ ` Confined(I,F)

Σ; Γ,Γ′ ` ∀ue. ϕ(−∞, ue, I)
RES

Pick a trace T and a substitution θ for Σ such
that T |= (Γ,Γ′)θ. Since Γ must be closed, it
follows that T |= Γ. It suffices to show that for
any ground u′e, T |= ϕ(−∞, u′e, I)θ. From the first



four premises, ϕ(ub, ue, i) is an (F ,Γ,·)-invariant, so
ϕ(−∞, u′e, I)θ = ϕ(−∞, u′e, Iθ). By i.h. on the fifth
premise, T |= Confined(Iθ,F). By definition of the latter,
it follows that there is a F-limited set G such that the
program of Iθ in its first state, say e, is (F ∪ G)-confined.
By Lemma D.4, ϕ(ub, ue, i) is an (F ∪ G,Γ,·)-invariant.
By Lemma D.3, ·; Γ; · ` [e]〈ub, ue, i, x〉ϕ(ub, ue, i) and
·; Γ; · ` {e}〈ub, ue, i〉ϕ(ub, ue, i). We distinguish multiple
subcases:

Subcase. Iθ does not exist in T . From the
soundness of the fourth premise (via the i.h.), we get
T ,∞ |= []〈ub, ue, i〉ϕ(ub, ue, i), which immediately implies
ϕ(−∞, u′e, Iθ), since clearly Iθ performs no effectual
reduction in the interval (−∞, u′e).

Subcase. Iθ first appears in T at time u′b and u′e ≤ u′b.
Again, from the soundness of the fourth premise (via the
i.h.), we directly have T |= ϕ(−∞, u′e, Iθ), since clearly
Iθ performs no effectual reduction in the interval (−∞, u′e).

Subcase. Iθ first appears in T at time u′b and u′e >
u′b. As reasoned before the case analysis, ·; Γ; · `
{e}〈ub, ue, i〉ϕ(ub, ue, i), where e is the initial program of
thread Iθ. Further, the RES-depth of this derivation is no
more than that of premises 1–4, which is one less than
that of the whole derivation. Hence by i.h., this sequent is
sound, which implies T ,∞ |= {e}〈ub, ue, i〉ϕ(ub, ue, i).3

By definition of the semantics of modal formulas, we must
have T |= ϕ(u′b, u

′
e, Iθ). (Observe that e cannot return

since it must start with an empty stack.) Further, since Iθ
performs no effectual reduction in the interval (−∞, u′b),
and the fourth premise is sound by the i.h., we also get
T |= ϕ(−∞, u′b, Iθ). Using the soundness of the first
premise (choosing ub = −∞, um = u′b, ue = u′e, i = Iθ)
we combine T |= ϕ(−∞, u′b, Iθ) and T |= ϕ(u′b, u

′
e, Iθ) to

obtain T |= ϕ(−∞, u′e, Iθ).

APPENDIX E.
PROOF OF THEOREM VI.1

This Appendix proves Theorem VI.1. Suppose that the
conditions (1)–(3) of the statement of the theorem hold.

(1) ϕ(−∞)
(2) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

(3)
(ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧

∀u4 ∈ (u1, u3). ϕ(u4)
We wish to show that ∀u. ϕ(u). We reason by contradic-

tion. Suppose for some u, ¬ϕ(u). By (1) and (3) we can

3Note that the depth (not RES-depth) of the derivation of ·; Γ; · `
{e}〈ub, ue, i〉ϕ(ub, ue, i) may be more than the depth of any of the
premises 1–4. Hence this step will not work if we induct merely on the
depths of given derivations.

deduce that there are i and u3 such that (u3 ≤ u) ∧ ι(i) ∧
¬ψ(u3, i) ∧ ∀u4 < u3. ϕ(u4). From ι(i), ∀u4 < u3. ϕ(u4),
and (2) we deduce ψ(u3, i). This contradicts the previously
derived fact ¬ψ(u3, i).

APPENDIX F.
PROOF OF INTEGRITY PROPERTY OF EXAMPLE IN

SECTION III-B
In Section III-B, we presented an example inspired by web

mashups and informally stated a relevant integrity property
for it. In Example III.1, we formalized the property in our
temporal logic and, in Section IV-C, we described a high-
level outline of its proof. In this appendix we present details
of that proof.

First, we codify basic properties of the actions and
memory I/O in the example’s model (see Section III-B for
details of the actions and memory) as axioms. Selected such
axioms are shown in Figure 8. It can be shown easily by
induction on traces that the axioms are sound. Hence, by
the soundness theorem (Theorem D.5), the proof system
of our logic extended with these axioms is sound, so we
may use the proof system to prove the property of interest.
Further, we also make some example-specific assumptions
about trusted and untrusted threads. These are also shown
in the same figure.

The property we are trying to prove, as also shown in
Example III.1, is that:

(Mem(total box, v′) @ u1 ∧
Mem(total box, v) @ u2 ∧
(u1 < u2) ∧ (v′ 6= v)) ⊃
∃uru, uup, up1, up2.
∃u pass, page1, page2, s.

(uru < uup < up1, up2 < u2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
Get(Bank1, bank1.com/balance, u pass, page1) @ up1 ∧
Get(Bank2, bank2.com/balance, u pass, page2) @ up2 ∧
v = parse_balance(page1) + parse_balance(page2)

We start from the assumption:

(Mem(total box, v′) @ u1 ∧
Mem(total box, v) @ u2 ∧
(u1 < u2) ∧ (v′ 6= v))

(1)

and seek to show that:

∃uru, uup, up1, up2.
∃u pass, page1, page2, s.

(uru < uup < up1, up2 < u2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
Get(Bank1, bank1.com/balance, u pass, page1) @ up1 ∧
Get(Bank2, bank2.com/balance, u pass, page2) @ up2 ∧
v = parse_balance(page1) + parse_balance(page2)

From axiom (Mem) and (1), we get:

∃i, uw ∈ (u1, u2]. Write(i, total box, v) @ uw (2)



Model-specific axioms

(Mem) (Mem(c, v) @ u ∧ Mem(c, v′) @ u′ ∧
(u < u′) ∧ (v 6= v′)) ⊃

∃i, uw ∈ (u, u′]. Write(i, c, v′) @ uw

(Receive) Recv(i, j, v) @ u ⊃ ∃j′, u′. (u′ < u) ∧
Send(j′, i, j, v) @ u′

(New1) (New(i, n) @ u ∧ Recv(j, j′, v) @ u′ ∧ n ∈ v) ⊃
u < u′

(New2) (New(i, n) @ u ∧ Send(i, j, i′, v) @ u′ ∧ n ∈ v) ⊃
u < u′

(New3) (New(i, n) @ u ∧ New(i′, n) @ u′) ⊃
((i = i′) ∧ (u = u′))

(SendU) (Send(i1, j, i2, v) @ u ∧ Send(i′1, j
′, i′2, v

′) @ u) ⊃
(v = v′)

Example-specific assumptions

Let F = {send_auth, write_acc, read_acc, recv_i,
get_i}

(Untrust) ∀i. Confined(i,F)
(Trust1) HonestThread(Agg, {agg_body})
(Trust2) HonestThread(Bank1, {bank1_body})
(Trust3) HonestThread(Bank2, {bank2_body})
(Start1) Start(Agg) @ −∞
(Start2) Start(Bank1) @ −∞
(Start3) Start(Bank2) @ −∞

Figure 8: Selected axioms and assumptions for the proof of
integrity of the web mashup example

We wish to show that the thread i in (2) is Agg. To do
this, we exploit the fact that all threads are confined to
the interfaces F (assumption (Untrust), Figure 8) and the
interfaces in F only allow Agg to write to cell total box.
Formally, we prove the following using the rules of Figure 6.

∀f ∈ F . ({f}〈y, ub, ue, i〉
∀v, u. ((ub < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ (i = Agg))
(3)

∀f ∈ F . ([f ]〈y, ub, ue, i, x〉
∀v, u. ((ub < u ≤ ue) ∧ Write(i, total box, v) @ u)

⊃ (i = Agg))
(4)

Further, it is easy to see that the invariant ϕ(ub, ue, i) =
∀v, u. ((ub < u ≤ ue) ∧ Write(i, total box, v) @ u) ⊃
(i = Agg) is compositional. Hence applying the rule (RES)
to (3), (4), and assumption (Untrust), we obtain (for a thread
parameter i):

∀ue. ∀v, u. ((−∞ < u ≤ ue) ∧ Write(i, total box, v) @ u)
⊃ (i = Agg)

Instantiating with ue =∞, simplifying, and quantifying the
i, we get:

∀i, v, u. Write(i, total box, v) @ u ⊃ (i = Agg) (5)

Note that (5) cannot be derived if we allow threads access
to the write action directly. Combining (2) and (5) we
obtain:

∃uw ∈ (u1, u2]. Write(Agg, total box, v) @ uw (6)

We continue our reasoning by examining the program
of Agg, which, by assumption (Trust1), we already know
to be agg_body. We show the following invariant of the
program using the rules of Figure 6. The proof includes a
proof of a similar assertion about the function agg_loop
and also other assertions about send_auth, write_acc
and read_acc, which we omit here.

{agg_body}〈ub, ue, i〉
∀v, u. ((ub < u ≤ ue) ∧ Write(i, total box, v) @ u) ⊃
∃uru, uup, un, us1, us2, u

′
1, u

′
2. ∃u pass, nonce, v1, v2, s.

(uru < uup < un < us1 < us2 < u′1 < u′2 < u) ∧
Recv(i, User, s) @ uru ∧
Read(i, pass box, u pass) @ uup ∧
New(i, nonce) @ un ∧
Send(i, Bank1, i, (u pass, nonce)) @ us1 ∧
Send(i, Bank2, i, (u pass, nonce)) @ us2 ∧
Recv(i, Bank1, (v1, nonce)) @ u′1 ∧
Recv(i, Bank2, (v2, nonce)) @ u′2 ∧
v = v1 + v2

(7)

Applying the rule (HONTH) to the assumptions (Trust1) and
(Start1) and (7), we obtain:

∀ue. (ue > −∞) ⊃
∀v, u. ((ub < u ≤ ue) ∧ Write(i, total box, v) @ u) ⊃
∃uru, uup, un, us1, us2, u

′
1, u

′
2. ∃u pass, nonce, v1, v2, s.

(uru < uup < un < us1 < us2 < u′1 < u′2 < u) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (v1, nonce)) @ u′1 ∧
Recv(Agg,Bank2, (v2, nonce)) @ u′2 ∧
v = v1 + v2

The instantiation ue =∞ and some simplification yield:



∀v, u. Write(i, total box, v) @ u ⊃
∃uru, uup, un, us1, us2, u

′
1, u

′
2. ∃u pass, nonce, v1, v2, s.

(uru < uup < un < us1 < us2 < u′1 < u′2 < u) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (v1, nonce)) @ u′1 ∧
Recv(Agg,Bank2, (v2, nonce)) @ u′2 ∧
v = v1 + v2

(8)
Combining (6) and (8) gives:

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2. ∃u pass, nonce, v1, v2, s.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (v1, nonce)) @ u′1 ∧
Recv(Agg,Bank2, (v2, nonce)) @ u′2 ∧
v = v1 + v2

(9)
Next, we wish to reason from the following two lines in (9):

Recv(Agg,Bank1, (v1, nonce)) @ u′1
Recv(Agg,Bank2, (v2, nonce)) @ u′2

We wish to show the following:

∃u′′1 .(u′′1 < u′1) ∧ Send(Bank1, Agg,Bank1, (v1, nonce)) @ u′′1
∃u′′2 .(u′′2 < u′2) ∧ Send(Bank2, Agg,Bank2, (v2, nonce)) @ u′′2

To prove the above, we start by showing that the following
holds in our example:

∀u, i, j, i′, v. Send(i, j, i′, v) @ u ⊃ (i = i′)

In order to prove this, we intend to exploit the fact that the
only interface which allows sending satisfies this property.
Formally, we show the following using the rules of Figure 6.

∀f ∈ F . ({f}〈y, ub, ue, i〉
∀u, j, i′. ((ub < u ≤ ue) ∧ Send(i, j, i′, v) @ u)

⊃ (i = i′))
(10)

∀f ∈ F . ([f ]〈y, ub, ue, i, x〉
∀u, j, i′. ((ub < u ≤ ue) ∧ Send(i, j, i′, v) @ u)

⊃ (i = i′))
(11)

Observe that the invariant ϕ(ub, ue, i) = ∀u, j, i′. ((ub <
u ≤ ue) ∧ Send(i, j, i′, v) @ u) ⊃ (i = i′) is compo-
sitional. Hence, applying the rule (RES) to (10), (11), and
assumption (Untrust), we obtain the following for any thread
parameter i:

∀ue. ∀u, j, i′. ((−∞ < u ≤ ue) ∧ Send(i, j, i′, v) @ u)
⊃ (i = i′)

Instantiating with ue = ∞, simplifying, and quantifying
over the parameter i, we get:

∀i, u, j, i′. Send(i, j, i′, v) @ u ⊃ (i = i′) (12)

Combining with axiom (Receive) yields:

∀i, j, v, u. Recv(i, j, v) @ u ⊃ ∃u′. (u′ < u) ∧
Send(j, i, j, v) @ u′ (13)

From (9) and (13), we get the following facts in the context
of the existential quantifiers in (9):

∃u′′1 .(u′′1 < u′1) ∧ Send(Bank1, Agg,Bank1, (v1, nonce)) @ u′′1
∃u′′2 .(u′′2 < u′2) ∧ Send(Bank2, Agg,Bank2, (v2, nonce)) @ u′′2

(14)
Next, we would like to reason about the threads Bank1 and
Bank2 from their programs, which, owing to assumptions
(Trust2) and (Trust3), we know to be bank1_body and
bank2_body, respectively. We show here the reasoning
about Bank1; the reasoning about Bank2 is similar. Using
the rules of Figure 6, we prove the following invariant:

{bank1_body} 〈ub, ue, i〉
∀u, j, i′, x. (ub < u ≤ ue) ⊃
Send(i, j, i′, x) @ u ⊃
∃ur1, up1. (ur1 < up1 < u) ∧
∃v′1, nonce′1, u pass′1.
Recv(i, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(i, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

x = (parse_balance(v′1), nonce′1)

(15)

Applying the rule (HONTH) to assumptions (Trust2) and
(Start2) and (15), we obtain:

∀ue. (ue > −∞) ⊃
∀u, j, i′, x. (ub < u ≤ ue) ⊃
Send(Bank1, j, i′, x) @ u ⊃
∃ur1, up1. (ur1 < up1 < u) ∧
∃v′1, nonce′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(Bank1, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

x = (parse_balance(v′1), nonce′1)

Instantiating with ue =∞, u = u′′1 , j = Agg, i′ = Bank1,
x = (v1, nonce), and simplifying, we get:

Send(Bank1, Agg,Bank1, (v1, nonce)) @ u′′1 ⊃
∃ur1, up1. (ur1 < up1 < u′′1 ) ∧
∃v′1, nonce′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(Bank1, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

(v1, nonce) = (parse_balance(v′1), nonce′1)

Combining with (14) we get:



∃ur1, up1, u
′′
1 . (ur1 < up1 < u′′1 < u′1) ∧

∃v′1, nonce′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce

′
1)) @ ur1 ∧

Get(Bank1, bank1.com/balance, u pass′1, v
′
1) @ up1 ∧

(v1, nonce) = (parse_balance(v′1), nonce′1)

Simplification using the last line yields:

∃ur1, up1, u
′′
1 . (ur1 < up1 < u′′1 < u′1) ∧

∃v′1, u pass′1.
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass′1, v

′
1) @ up1 ∧

v1 = parse_balance(v′1)

A similar property may be derived for Bank2. Combining
both with (9), we get:

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2, ur1, up1, ur2, up2.

∃u pass, nonce, v1, v2, s, u pass′1, u pass′2, v
′
1, v

′
2.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
(ur1 < up1 < u′1) ∧ (ur2 < up2 < u′2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (v1, nonce)) @ u′1 ∧
Recv(Agg,Bank2, (v2, nonce)) @ u′2 ∧
v = v1 + v2 ∧
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass′1, v

′
1) @ up1 ∧

v1 = parse_balance(v′1) ∧
Recv(Bank2, Agg, (u pass′2, nonce)) @ ur2 ∧
Get(Bank2, bank2.com/balance, u pass′2, v

′
2) @ up2 ∧

v2 = parse_balance(v′2)
(16)

Simplifying using the lines v1 = parse_balance(v′1)
and v2 = parse_balance(v′2), we get:

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2, ur1, up1, ur2, up2.

∃u pass, nonce, s, u pass′1, u pass′2, v
′
1, v

′
2.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
(ur1 < up1 < u′1) ∧ (ur2 < up2 < u′2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (parse_balance(v′1), nonce)) @ u′1 ∧
Recv(Agg,Bank2, (parse_balance(v′2), nonce)) @ u′2 ∧
v = parse_balance(v′1) + parse_balance(v′2) ∧
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass′1, v

′
1) @ up1 ∧

Recv(Bank2, Agg, (u pass′2, nonce)) @ ur2 ∧
Get(Bank2, bank2.com/balance, u pass′2, v

′
2) @ up2

(17)
Next, observe that we have the facts New(Agg, nonce) @
un and Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 in
the above formula. From axiom (New1), it follows that

un < ur1. Similarly, we may also derive that un < ur2.
Incorporating these into (17) (see the line marked ∗ below),
we get:

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2, ur1, up1, ur2, up2.

∃u pass, nonce, s, u pass′1, u pass′2, v
′
1, v

′
2.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
∗ (un < ur1 < up1 < u′1) ∧ (un < ur2 < up2 < u′2) ∧

Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (parse_balance(v′1), nonce)) @ u′1 ∧
Recv(Agg,Bank2, (parse_balance(v′2), nonce)) @ u′2 ∧
v = parse_balance(v′1) + parse_balance(v′2) ∧
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass′1, v

′
1) @ up1 ∧

Recv(Bank2, Agg, (u pass′2, nonce)) @ ur2 ∧
Get(Bank2, bank2.com/balance, u pass′2, v

′
2) @ up2

(18)
By (13) and the fact Recv(Bank1, Agg, (u pass′1, nonce)) @
ur1 above, we deduce that:

∃u′r1. (u′r1 < ur1) ∧
Send(Agg,Bank1, Agg, (u pass′1, nonce)) @ u′r1

(19)
Due to axiom (New2), it follows that un < u′r1. Incorporat-
ing into (19), we get

∃u′r1. (un < u′r1 < ur1) ∧
Send(Agg,Bank1, Agg, (u pass′1, nonce)) @ u′r1

(20)
We may derive a similar fact about Bank2. Combining both
facts with (18) we obtain:

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2, ur1, up1, ur2, up2.

∃u pass, nonce, s, u pass′1, u pass′2, v
′
1, v

′
2.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
(un < u′r1 < ur1 < up1 < u′1) ∧
(un < ur2′ < ur2 < up2 < u′2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (parse_balance(v′1), nonce)) @ u′1 ∧
Recv(Agg,Bank2, (parse_balance(v′2), nonce)) @ u′2 ∧
v = parse_balance(v′1) + parse_balance(v′2) ∧
Send(Agg,Bank1, Agg, (u pass′1, nonce)) @ u′r1 ∧
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass′1, v

′
1) @ up1 ∧

Send(Agg,Bank2, Agg, (u pass′2, nonce)) @ u′r2 ∧
Recv(Bank2, Agg, (u pass′2, nonce)) @ ur2 ∧
Get(Bank2, bank2.com/balance, u pass′2, v

′
2) @ up2

(21)
Our next objective is to show that u pass′1 = u pass. To
prove this, we first show that the aggregator never sends out



two messages with the same nonce. Then, since we already
have the facts Send(Agg,Bank1, Agg, (u pass, nonce)) @
us1 and Send(Agg,Bank1, Agg, (u pass′1, nonce)) @ u′r1,
we easily derive u pass′1 = u pass. Proving that the
aggregator never sends out the same message twice requires
some care. Because agg_body is a loop, many invariants
will not compose with themselves. We show that:

{agg_body}〈ub, ue, i〉
∀u, v, i′, j. ((ub < u ≤ ue) ∧ Send(i, j, i′, v) @ u) ⊃
∃n, x, un. (ub < un < u) ∧ New(i, n) @ un ∧ (v = (x, n)) ∧

∀x′, i′′, u′ ∈ (ub, u).¬(Send(i, j, i′′, (x′, n)) @ u′)
(22)

Applying the rule (HONTH) to assumptions (Trust1) and
(Start1) and (22), we obtain:

∀ue. (ue > −∞) ⊃
∀u, v, i′, j. ((−∞ < u ≤ ue) ∧ Send(Agg, j, i′, v) @ u) ⊃
∃n, x, un. (−∞ < un < u) ∧ New(Agg, n) @ un ∧

(v = (x, n)) ∧
∀x′, i′′, u′ ∈ (−∞, u).

¬(Send(Agg, j, i′′, (x′, n)) @ u′)

Instantiating with ue =∞ and simplifying, we get:

∀u, v, i′, j. Send(Agg, j, i′, v) @ u ⊃
∃n, x, un. (un < u) ∧ New(Agg, n) @ un ∧

(v = (x, n)) ∧
∀x′, i′′, u′ < u.

¬(Send(Agg, j, i′′, (x′, n)) @ u′)

Using this, the fact that time points are a total order, and
axiom (New3), we can easily show that:

∀u, u′, un, x, x
′, n, j, i′, i′′.

(New(Agg, n) @ un ∧ Send(Agg, j, i′, (x, n)) @ u ∧
Send(Agg, j, i′′, (x′, n)) @ u′) ⊃ (u = u′)

Using axiom (SendU), we derive:

∀u, u′, un, x, x
′, n, j, i′, i′′.

(New(Agg, n) @ un ∧ Send(Agg, j, i′, (x, n)) @ u ∧
Send(Agg, j, i′′, (x′, n)) @ u′) ⊃ (x = x′)

(23)

From (23), we obtain that in (21), u pass′1 = u pass and
u pass′2 = u pass. Using this, we obtain,

∃uw. (uw < u1 ≤ u2).
∃uru, uup, un, us1, us2, u

′
1, u

′
2, ur1, up1, ur2, up2.

∃u pass, nonce, s, v′1, v
′
2.

(uru < uup < un < us1 < us2 < u′1 < u′2 < uw) ∧
(un < u′r1 < ur1 < up1 < u′1) ∧
(un < ur2′ < ur2 < up2 < u′2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
New(Agg, nonce) @ un ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ us1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ us2 ∧
Recv(Agg,Bank1, (parse_balance(v′1), nonce)) @ u′1 ∧
Recv(Agg,Bank2, (parse_balance(v′2), nonce)) @ u′2 ∧
v = parse_balance(v′1) + parse_balance(v′2) ∧
Send(Agg,Bank1, Agg, (u pass, nonce)) @ u′r1 ∧
Recv(Bank1, Agg, (u pass′1, nonce)) @ ur1 ∧
Get(Bank1, bank1.com/balance, u pass, v′1) @ up1 ∧
Send(Agg,Bank2, Agg, (u pass, nonce)) @ u′r2 ∧
Recv(Bank2, Agg, (u pass′2, nonce)) @ ur2 ∧
Get(Bank2, bank2.com/balance, u pass, v′2) @ up2

Eliminating some unnecessary lines, we obtain:

∃uru, uup, up1, up2.
∃u pass, nonce, s, v′1, v

′
2.

(uru < uup < up1, up2 < u2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
Get(Bank1, bank1.com/balance, u pass, v′1) @ up1 ∧
Get(Bank2, bank2.com/balance, u pass, v′2) @ up2 ∧
v = parse_balance(v′1) + parse_balance(v′2)

Renaming v′1 → page1 and v′2 → page2, we obtain the
required property:

∃uru, uup, up1, up2.
∃u pass, nonce, s, page1, page2.
(uru < uup < up1, up2 < u2) ∧
Recv(Agg, User, s) @ uru ∧
Read(Agg, pass box, u pass) @ uup ∧
Get(Bank1, bank1.com/balance, u pass, page1) @ up1 ∧
Get(Bank2, bank2.com/balance, u pass, page2) @ up2 ∧
v = parse_balance(page1) + parse_balance(page2)

APPENDIX G.
PROOF OF SECRECY OF AUTHENTICATION SERVER’S

KEY IN KERBEROS

In this appendix we use our encoding of the rely-guarantee
approach (Section VI) to prove the secrecy of the key gener-
ated by the key authentication server during the Kerberos V5
protocol. Our proof is similar to a prior proof of the same
property in Protocol Composition Logic (PCL) [27] and the
instantiation of our framework for this example employs the
same actions and similar axioms as PCL. Because the latter
have already been proved sound in PCL, we do not have
to prove their soundness again. Our proof demonstrates that
secrecy induction in PCL is a special case of rely-guarantee
reasoning in our framework and also shows how PCL’s
actions and axioms are an instance of our framework.



Actions, Communication Model and Predicates

For this example, we use the standard communication
model for network protocols [27]: communication is based
on messages, which may be intercepted and read by anyone
(unless explicitly protected by encryption). There is no
automatic authentication of senders, so messages have no
information about source or destination. The action send v
sends the message v on the network, while recv receives
a message from the network. Correspondingly, the predicate
Send(i, v) @ u means that thread i sent message v at time
u whereas Recv(i, v) @ u means that thread i received v
at time u. Principals are denoted by terms with subscript
p. Following PCL, we associate owning principals with
each thread and state our secrecy properties in terms of
what principals know. The predicate Owner(i, tp) means that
thread i is owned by principal tp. We assume that each
thread has a unique owner.

We also use PCL’s symmetric encryption framework.
The term k(tp, t′p) is assumed to be a pre-shared secrecy
key known only to the principals tp and t′p. ENC(k, v)
denotes the term obtained by encrypting v with the key
k. The action enc k, v encrypts v with key k and returns
ENC(k, v), while the action dec v, k decrypts v of the
form ENC(k, v′) with k and returns v′. The action new
generates a new nonce; the predicate New(i, n) @ u means
that thread i generates the nonce n at time u. We assume that
nonces can be used as shared keys. Realistically, this requires
that the key be derived from the nonce using an algorithm
but, as in PCL, we elide this detail. Our proof requires
that principals and timestamps (denoted t) be distinguishable
from nonces and keys.

We use two actions that are not present in PCL. The
action pick picks a term of the appropriate type from the
set of terms known to the thread. For instance, pick at
type thread will choose a thread that the caller knows is
executing. We use this action to allow the client and TGS
to decide which other threads to initiate the communication
with (see Figure 9). Note that, unlike new, pick does not
generate a nonce. Further, it plays no role in our analysis.4

The action flag t flags the term t as being significant to an
analysis. The predicate Flag(i, t) @ u means that thread i
flags term t at time u. Operationally, flag t behaves like a
no-op. However, it is useful for stating our secrecy property,
because it allows us to represent internal variables of the
program of the KAS in formulas.

Following the prior PCL proof, we include the predicate
Has(i, v) @ u which means that thread i has previously
(at or before time u) seen all components of the term v
in clear text. This may happen because each component
was either generated by i (through new) or because it

4In PCL, parties that the client and the TGS communicate with are
arguments to the programs of the client and the TGS. Our approach is
equivalent.

received it unencrypted or because it received the compo-
nent encrypted and had the relevant decryption keys. We
also include another predicate from PCL: SafeMsg(v, s,K),
which means that each occurrence of the atomic term s in
the term v is protected through encryption with a key in
the set K. For precise, inductive definitions of Has(i, v) and
SafeMsg(v, s,K), we refer the reader to the prior work on
analysis of Kerberos V5 in PCL [27].

Model of Kerberos V5

The Kerberos V5 protocol consists of four roles – client,
KAS (Key Authentication Server), TGS (Ticket Granting
Server), and Server. The programs of these four roles are
shown in Figure 9. match v, v′; e is an abbreviation for
if(v = v′, e,halt), where halt = infloop() for
infloop()

4
= infloop(). self_prin refers to the

principal owning the thread executing the program. Every
session of the protocol is initiated by the client, which
also plays a central role since all other roles communicate
directly with the client only. We omit a description of the
protocol, referring the reader to prior work for details [27].
Observe that the only occurrence of the action flag in the
four programs is in the expression marked tgs, and it is the
argument AKey in this occurrence that we wish to prove
secret. For the protocol to work correctly, the principals
named Cp, Kp, Tp, and Sp must execute the programs
client, kas, tgs, and server respectively.

Abbreviations and Definitions

In order to simplify the presentation of the secrecy
property and its proof, we introduce abbreviations and
definitions for formulas in temporal logic. These are shown
in Figure 10. K denotes a set of keys and S denotes a
set of principals. Informally, Honest(Pp) means that each
thread owned by Pp executes one of the programs from
Figure 9, OwnedIn(i,S) means that the owner of thread i
lies in the set S, OrigRes(s,S) means that the principal who
created the term s lies in the set S, KeyRes(K,S) means
that each key in the set K is known only to principals in
S, KORes(s,K,S) combines the previous two predicates,
SendsSafeMsg(i, s,K) means that if thread i sends s in
a message, then all occurrences of s in that message
are protected by keys in K, SafeNet(s,K, u) means that
prior to time u, every threads protects s in all messages
it sends using keys in K, and SendOut(i, s) means that
thread i sends a message containing s, possibly encrypted.
The predicates Honest, SendsSafeMsg, and SafeNet have
meanings similar to predicates of the same names in PCL.
Predicates OrigRes, KeyRes, and KORes are related to the
PCL predicates OrigHonest, KeyHonest, and KOHonest,
respectively. However, the PCL analogues require that the
thread i in the definitions of OrigRes and KeyRes be honest,
not owned in a specific set S.



client =
(Kp, Tp, Sp, t) = pick;
n1 = new;
send (self_prin, Tp, n1);
(x, tgt, enckc) = recv;
match x,self_prin;
(AKey, n′1, T

′
p) = dec enckc, k(Cp,Kp);

match n′1, n1;
match T ′p, Tp;

n2 = new;
encct = enc AKey,self_prin;
send (tgt, encct,self_prin, Sp, n2);
(x, st, enctc) = recv;
match x,self_prin;
(SKey, n′2, S

′
p) = dec enctc, AKey;

match n′2, n2;
match S′p, Sp;

enccs = enc SKey, (self_prin, t);
send (st, enccs);
encsc = recv;
textsc = dec SKey, encsc;
match textsc, t;

kas =
(Cp, Tp, n1) = recv;
AKey = new;
flag (AKey,Cp, Tp);
tgt = enc k(Tp,self_prin), (AKey,Cp);
enckc = enc k(Cp,self_prin), (AKey, n1, Tp);
send (Cp, tgt, enckc);

tgt =
Kp = pick;
(tgt, encct, Cp, Sp, n2) = recv;
(AKey,C′p) = dec tgt, k(self_prin,Kp);
match C′p, Cp;
textct = dec encct, AKey;
match textct, Cp;
SKey = new;
st = enc k(Sp,self_prin), (SKey,Ch);
enctc = enc AKey, (SKey, n2, Sp);
send (Cp, st, enctc);

server =
Tp = pick;
(st, enccs) = recv;
(SKey,Cp) = dec st, k(self_prin, Tp);
(C′p, t) = dec enccs, SKey;
match Cp, C

′
p;

encsc = enc SKey, t;
send encsc;

Figure 9: Programs of the four roles in the Kerberos V5 protocol
(adapted from [27])

Abbreviations

(ϕ ∧ ψ) @ u = (ϕ @ u) ∧ (ψ @ u)
(ϕ ∨ ψ) @ u = (ϕ @ u) ∨ (ψ @ u)
(ϕ ⊃ ψ) @ u = (ϕ @ u) ⊃ (ψ @ u)

(¬ϕ) @ u = ¬(ϕ @ u)
> @ u = >
⊥ @ u = ⊥

(∀x.ϕ) @ u = ∀x. (ϕ @ u)
(∃x.ϕ) @ u = ∃x. (ϕ @ u)

(ϕ @ u′) @ u = ϕ @ u′

ϕ ◦ (u1, u2) = ∀u. (u1 < u < u2) ⊃ (ϕ @ u)
ϕ ◦ (u1, u2] = ∀u. (u1 < u ≤ u2) ⊃ (ϕ @ u)
ϕ ◦ [u1, u2) = ∀u. (u1 ≤ u < u2) ⊃ (ϕ @ u)
ϕ ◦ [u1, u2] = ∀u. (u1 ≤ u ≤ u2) ⊃ (ϕ @ u)

Definitions

Honest(Pp) = ∀i. Owner(i, Pp) ⊃
HonestThread(i, {client,kas,tgs,server})

OwnedIn(i,S) = ∃ip. Owner(i, ip) ∧ ip ∈ S
OrigRes(s,S) = ∀i, u. New(i, s) @ u ⊃ OwnedIn(i,S)
KeyRes(K,S) = ∀i, k. (Has(i, k) ∧ k ∈ K)

⊃ OwnedIn(i,S)
KORes(s,K,S) = OrigRes(s,S) ∧

∀u. KeyRes(K,S) @ u
SendsSafeMsg(i, s,K) = Send(i, v) ⊃ SafeMsg(v, s,K)
SafeNet(s,K, u) = ∀i, u′. (u′ ≤ u)

⊃ SendsSafeMsg(i, s,K) @ u′

HasOnly(S, s) = ∀i. Has(i, s) ⊃ OwnedIn(i,S)
SendOut(i, s) = ∃m. Send(i,m) ∧ s ∈ m

Figure 10: Abbreviations and definitions for secrecy analysis in
Kerberos V5

Secrecy Property

The property we wish to show is that the key AKey
generated by the KAS (see Figure 9) in any session of the
protocol becomes known only to the KAS, the client, and
the TGS in that session, provided, of course, that the client,
KAS, and TGS follow the programs of the protocol (they
may run concurrent sessions in other roles of the protocol,
but may not run any other programs). Formally, we may
represent this property in the temporal logic as follows:

ϕsec = ∀i, akey, cp, kp, tp, u.
(Flag(i, (akey, cp, tp)) @ u ∧ Owner(i, kp) ∧
Honest(kp) ∧ Honest(cp) ∧ Honest(tp))
⊃ ∀u′. HasOnly({kp, cp, tp}, akey) @ u′

Axioms

The axioms needed to prove the above secrecy property
are shown in Figure 11. All axioms are adaptations of similar
axioms or rules in PCL [26, 27]. (Receive) means that if a
thread receives a message then some thread must have sent
the message earlier. (New3) means that a nonce n can only
be generated once. (KeyR) states that if Ip and Jp are honest
principals, then their shared key k(Ip, Jp) is known only
to them. (SendN) means that in the beginning of a trace,



Axioms

(Receive) Recv(i, v) @ u ⊃ ∃j, u′. (u′ < u) ∧
Send(j, v) @ u′

(New3) (New(i, n) @ u ∧ New(i′, n) @ u′) ⊃
((i = i′) ∧ (u = u′))

(KeyR) (Honest(Ip) ∧ Honest(Jp)) ⊃
HasOnly({Ip, Jp}, k(Ip, Jp)) @ u

(SendN) ¬Send(i, v) @ −∞

(NET) (KORes(s,K,S) ∧ SafeNet(s,K, u1) ∧
¬SafeNet(s,K, u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S) ∧

¬SendsSafeMsg(i, s,K) @ u3 ∧
∀u4 ∈ (u1, u3). SafeNet(s,K, u4)

(POS) (SafeNet(s,K, u) ∧ Has(i, s) @ u) ⊃
(∃u′. (u′ < u) ∧ New(i, s) @ u′) ∨
(∃k. (k ∈ K) ∧ Has(i, k) @ u)

Figure 11: Model-specific axioms for secrecy analysis in Kerberos
V5

or before it, there cannot be any send action (as per our
definition of traces, there cannot be any action prior to the
first state of a trace).

The axiom (NET) is based on a rule of the same name
in PCL. Although our version is seemingly more general
than the PCL version, its soundness follows in the same
way as that of the PCL rule (NET). In PCL, the (NET) rule
facilitates secrecy induction. Similarly, in our framework,
the (NET) axiom facilitates the rely-guarantee method for
secrecy. The (POS) axiom is a translation of an axiom of
the same name in PCL.

Proof of Secrecy Property

To prove the secrecy property ϕsec, we choose parameters
I0, AKey0, Cp0, Kp0, Tp0, and U0 for the variables i, akey,
cp, kp, tp, and u in the formula ϕsec that we want to show
and show that:

(Flag(I0, (AKey0, Cp0, Tp0)) @ U0 ∧ Owner(I0,Kp0) ∧
Honest(Kp0) ∧ Honest(Cp0) ∧ Honest(Tp0))
⊃ ∀u′. HasOnly({Kp0, Cp0, Tp0}, AKey0) @ u′

Define S0 = {Kp0, Cp0, Tp0}. Then, it suffices to show that

ϕ0 = ∀u′. HasOnly(S0, AKey0) @ u′

follows from the assumptions

Γ0 = Flag(I0, (AKey0, Cp0, Tp0)) @ U0, Owner(I0,Kp0),
Honest(Kp0), Honest(Cp0), Honest(Tp0)

(24)
We now take Γ0 as our set of assumptions. In the sequel,
whenever we derive a modal formula ψ or assertion µ,
what we really mean is Σ; Γ0 ` ψ or Σ; Γ0; · ` µ for an
appropriate Σ that includes at least I0, AKey0, Cp0, Kp0,
Tp0, and U0. (What we eventually prove is that Σ; Γ0 ` ϕ0,
from which ϕsec follows immediately.)

Preliminary deductions: Let K0 =
{k(Tp0,Kp0), k(Cp0,Kp0)}. Our first step is to prove
the following property:

∀i, cp, tp, kp, u, akey.
(Flag(i, (akey, cp, tp)) @ u ∧ Owner(i, kp) ∧ Honest(kp)) ⊃
∃u′ < u. New(i, akey) @ u′ ∧
¬SendOut(i, akey) ◦ (u′, u] ∧
∀u′. SendsSafeMsg(i, akey, {k(tp, kp), k(cp, kp)}) @ u′

(25)
This property is equivalent to showing that

∀kp, i. (Honest(kp) ∧ Owner(i, kp)) ⊃
∀cp, tp, u, akey. Flag(i, (akey, cp, tp)) @ u ⊃
∃u′ < u. New(i, akey) @ u′ ∧
¬SendOut(i, akey) ◦ (u′, u] ∧
∀u′. SendsSafeMsg(i, akey, {k(tp, kp), k(cp, kp)}) @ u′

Equivalently, we may assume for parameters i, kp that
Honest(kp) and Owner(i, kp) and prove that

∀cp, tp, u, akey. Flag(i, (akey, cp, tp)) @ u ⊃
∃u′ < u. New(i, akey) @ u′ ∧
¬SendOut(i, akey) ◦ (u′, u] ∧
∀u′. SendsSafeMsg(i, akey, {k(tp, kp), k(cp, kp)}) @ u′

(26)
We prove the above using the rule (HONTH). We
show using the rules of Figure 6 that for E0 =
{client,kas,tgs,server}, it is the case that:

∀e ∈ E0. ({e}〈ub, ue, i〉
∀u ∈ (ub, ue]. ∀cp, tp, akey. Flag(i, (akey, cp, tp)) @ u ⊃
∃u′ < u. New(i, akey) @ u′ ∧
¬SendOut(i, akey) ◦ (u′, u] ∧
∀u′. SendsSafeMsg(i, akey, {k(tp, kp), k(cp, kp)}) @ u′

Since we have already assumed Honest(kp) and
Owner(i, kp), which imply by definition of Honest(kp) that
HonestThread(i, E0), we may apply rule (HONTH) to the
above formula to deduce that:

∀ue. (ue > −∞) ⊃
∀u ∈ (−∞, ue]. ∀cp, tp, akey. Flag(i, (akey, cp, tp)) @ u ⊃
∃u′ < u. New(i, akey) @ u′ ∧
¬SendOut(i, akey) ◦ (u′, u] ∧
∀u′. SendsSafeMsg(i, akey, {k(tp, kp), k(cp, kp)}) @ u′

Choosing ue = ∞ and simplifying, we obtain (26).
Thus (26) holds. Hence (25) also holds. We now instanti-
ate (25) by choosing i = I0, cp = Cp0, tp = Tp0, kp = Kp0,
u = U0, and akey = AKey0 to get:

(Flag(I0, (AKey0, Cp0, Tp0)) @ U0 ∧ Owner(I0,Kp0) ∧
Honest(Kp0)) ⊃
∃u′ < U0. New(I0, AKey0) @ u′ ∧
¬SendOut(I0, AKey0) ◦ (u′, U0] ∧
∀u′. SendsSafeMsg(I0, AKey0,K0) @ u′

(27)



The conditions of the implication in (27) are assumed to hold
in Γ0 (see (24)). Therefore, it follows that the consequent
of the implication, i.e, the following must also hold:

∃u′ < U0. New(I0, AKey0) @ u′ ∧
¬SendOut(I0, AKey0) ◦ (u′, U0] ∧
∀u′. SendsSafeMsg(I0, AKey0,K0) @ u′

(28)

Next, we wish to prove that OrigRes(AKey0,S0).
To do this, we prove the stronger statement:
∀u, i. New(i, AKey0) @ u ⊃ i = I0. To prove the
latter, assume that New(i, AKey0) @ u. By axiom (New3)
and New(I0, AKey0) @ u′ in (28) we obtain i = I0 as
required. Hence, ∀u, i. New(i, AKey0) @ u ⊃ i = I0. This
implies OrigRes(AKey0,S0). (Note that OwnedIn(I0,S0)
follows from the assumption Owner(I0,Kp0) in Γ0.)

Further the fact ∀u. KeyRes(K0,S0) @ u follows immedi-
ately from axiom (KeyR) and the assumptions Honest(Kt0),
Honest(Ct0), and Honest(Tt0) in Γ0. Combining with
OrigRes(AKey0,S0), which was derived earlier, we deduce
that:

KORes(AKey0,K0,S0) (29)

Key Step: Rely-Guarantee: The key step in our
proof is an instance of the rely-guarantee technique
of Section VI. Using this technique we establish that
∀u. SafeNet(AKey0,K0, u). In order to apply this tech-
nique, we instantiate the framework of Section VI by choos-
ing:

ϕ(u) = SafeNet(AKey0,K0, u)
ι(i) = OwnedIn(i,S0)
ψ(u, i) = SendsSafeMsg(i, AKey0,K0) @ u

In order to apply the method of Section VI, we must show
that the following hold for ϕ, ι, and ψ as defined above:

(1) ϕ(−∞)
(2) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

(3)
(ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧

∀u4 ∈ (u1, u3). ϕ(u4)
(1) follows immediately from axiom (SendN) and the def-
inition ϕ(u) = SafeNet(AKey0,K0, u). The proof of (2),
which is the critical step here, and uses reasoning about
programs, is described later. To prove (3), we instantiate
the axiom (NET) by choosing s = AKey0, K = K0, and
S = S0 to obtain:

(KORes(AKey0,K0,S0) ∧ SafeNet(AKey0,K0, u1) ∧
¬SafeNet(AKey0,K0, u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S0) ∧

¬SendsSafeMsg(i,S0,K0) @ u3 ∧
∀u4 ∈ (u1, u3). SafeNet(AKey0,K0, u4)

Since we already know KORes(AKey0,K0,S0) from (29),
we may eliminate that condition from the above formula to
obtain:

(SafeNet(AKey0,K0, u1) ∧ ¬SafeNet(AKey0,K0, u2) ∧
(u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S0) ∧

¬SendsSafeMsg(i,S0,K0) @ u3 ∧
∀u4 ∈ (u1, u3). SafeNet(AKey0,K0, u4)

This is precisely the statement of (3) above. Hence, using
Theorem VI.1 we deduce that ∀u. ϕ(u), i.e,

∀u. SafeNet(AKey0,K0, u) (30)

Next, we fix any time parameter u′0, and try to show that
HasOnly(S0, AKey0) @ u′0. Following the definition of
HasOnly assume that for some i, Has(i, AKey0) @ u′0.
It suffices to show that OwnedIn(i,S0). From (30), the
assumption Has(i, AKey0) @ u′0, and axiom (POS), we
obtain:

(∃u′. (u′ < u′0) ∧ New(i, AKey0) @ u′) ∨
(∃k. (k ∈ K0) ∧ Has(i, k) @ u′0)

We case analyze these two disjuncts. If ∃u′. (u′ < u′0) ∧
New(i, AKey0) @ u′, then using axiom (New3) and (28)
we obtain i = I0. Since Γ0 contains the assumption
Owner(I0,Kt0) and Kt0 ∈ S0, OwnedIn(i,S0) follows from
definition of OwnedIn.

If ∃k. (k ∈ K0) ∧ Has(i, k) @ u′0, then from
fact (29), i.e, KORes(AKey0,K0,S0), we immediately ob-
tain OwnedIn(i,S0).

Since, in both case analyses we obtain OwnedIn(i,S0), it
follows that HasOnly(S0, AKey0) @ u′0 for any u′0. Since
u′0 is a parameter, this implies ∀u′. HasOnly(S0, AKey0) @
u′, which is the ϕ0 that we wanted to prove. Hence, ϕsec,
our secrecy property, holds.

Proof of Condition (2) of Rely-Guarantee: It only
remains to show that condition (2) in the use of the rely-
guarantee method holds. Expanding out the condition using
earlier definitions of ϕ(u), ι(i), and ψ(u, i), we must show
that:

∀i, u. (OwnedIn(i,S0) ∧ ∀u′ < u. SafeNet(AKey0,K0, u
′))

⊃ SendsSafeMsg(i, AKey0,K0) @ u

This formula is equivalent to

∀i. OwnedIn(i,S0) ⊃ ∀u. ((∀u′ < u. SafeNet(AKey0,K0, u
′))

⊃ SendsSafeMsg(i, AKey0,K0) @ u)

To prove this formula, pick a parameter i0,
and assume OwnedIn(i0,S0). It suffices to show
∀u. ((∀u′ < u. SafeNet(AKey0,K0, u

′)) ⊃
SendsSafeMsg(i0, AKey0,K0) @ u).

The assumption OwnedIn(i0,S0) implies that there is
an ip such that Owner(i0, ip) and ip ∈ S0. From the
assumptions Honest(Kp0), Honest(Tp0), and Honest(Cp0)
in Γ0, we obtain HonestThread(i0, E0). Hence, if we can
prove the assertion below, then by rule (HONTH), we



would obtain ∀u. ((∀u′ < u. SafeNet(AKey0,K0, u
′)) ⊃

SendsSafeMsg(i0, AKey0,K0) @ u) as required.

∀e ∈ E0. ({e}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u)

Therefore, we only need show the above assertion for each
e ∈ E0. So, we must show:

{client}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

(31)

{kas}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

(32)

{tgs}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

(33)

{server}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

(34)
We prove these formulas one by one.

Proof of assertion (31): We are trying to show that:

{client}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

Using the rules of Figure 6, we show that

{client}〈ub, ue, i〉 ∀u ∈ (ub, ue]. ∀x. Send(i, x) @ u ⊃
(∃tp, cp, n1, u1.(ub < u1 < u) ∧

New(i, n1) @ u1 ∧
¬Flag(i, (n1, , )) ◦ (ub, ue] ∧
x = (cp, tp, n1)) ∨

(∃tgt, cp, akey, sp, n2, u2, ur.(ub < ur < u2 < u) ∧
New(i, n2) @ u2 ∧
¬Flag(i, (n2, , )) ◦ (ub, ue] ∧
Recv(i, tgt) @ ur ∧
x = (tgt, ENC(akey, cp), cp, sp, n2)) ∨

(∃st, cp, t, ur, skey.(ub < ur < u) ∧
Recv(i, st) @ ur ∧
x = (st, ENC(skey, (cp, t))))

(35)
Now we argue that the temporal formula in the assertion (35)
implies that in the assertion (31), which, by rule (GEI),
would mean that (31) holds. We use a method of contradic-
tion. Assume that the formula in (35) holds. Further assume
that the condition of the implication in (31) holds, but the
conclusion does not. So we must have for some u ∈ (ub, ue]
that:

∀u′ < u. SafeNet(AKey0,K0, u
′) (36)

¬SendsSafeMsg(i, AKey0,K0) @ u (37)

Expanding the definition of SendsSafeMsg in (37), we
further obtain that there is a message x such that:

Send(i, x) @ u ∧ ¬SafeMsg(x,AKey0,K0) (38)

From Send(i, x) @ u in (38) and (35) it follows that one
of the disjuncts in (35) must hold. We case analyze the
three possible disjuncts and show that, in each case, a
contradiction can be derived.

Case. The following disjunct holds:

∃tp, cp, n1, u1.(ub < u1 < u) ∧
New(i, n1) @ u1 ∧
¬Flag(i, (n1, , )) ◦ (ub, ue] ∧
x = (cp, tp, n1)

(39)

The last line of (39) and (38) together yield

¬SafeMsg((cp, tp, n1), AKey0,K0) (40)

By definition of SafeMsg, if follows that at least one of the
following three must hold:

¬SafeMsg(cp, AKey0,K0) (41)

¬SafeMsg(tp, AKey0,K0) (42)

¬SafeMsg(n1, AKey0,K0) (43)

However, (41) and (42) cannot hold because cp and tp
are principals, and, hence, cannot contain AKey0. There-
fore, (43) must be true. This forces n1 = AKey0. From this
and (39) we deduce:

New(i, AKey0) @ u1 (44)

We already know from (28) that there is a u′ < U0 such that
New(I0, AKey0) @ u′. Using axiom (New3) we deduce:

(i = I0) ∧ (u′ = u1) (45)

From (45) and (39) we deduce:

(ub < u′ < u) ∧ ¬Flag(I0, (AKey0, , )) ◦ (ub, ue] (46)

From (28) we also know that

Flag(I0, (AKey0, Cp0, Tp0)) @ U0 (47)

Using (46), (47), and u′ < U0 we obtain:

U0 > ue (48)

Since u′ < u ≤ ue, we also get:

u′ < u < U0 (49)



Hence from (28) we obtain ¬SendOut(I0, AKey0) ◦ (u′, u]
which implies

¬SendOut(I0, AKey0) @ u (50)

From (38), (39), (45), and n1 = AKey0 we also deduce
Send(I0, (cp, tp, AKey0)) @ u, which contradicts (50).

Case. The following disjunct holds:

∃tgt, cp, akey, sp, n2, u2, ur.(ub < ur < u2 < u) ∧
New(i, n2) @ u2 ∧
¬Flag(i, (n2, , )) ◦ (ub, ue] ∧
Recv(i, tgt) @ ur ∧
x = (tgt, ENC(akey, cp), cp, sp, n2)

(51)

The last line of (51) and (38) together yield

¬SafeMsg((tgt, ENC(akey, cp), cp, sp, n2), AKey0,K0)
(52)

By definition of SafeMsg, if follows that at least one of the
following must hold:

¬SafeMsg(cp, AKey0,K0) (53)

¬SafeMsg(sp, AKey0,K0) (54)

¬SafeMsg(n2, AKey0,K0) (55)

¬SafeMsg(tgt, AKey0,K0) (56)

However, (53) and (54) cannot hold because cp and sp are
principals, and, hence, cannot contain AKey0. Therefore,
either (55) or (56) must be true. If (55) holds, then we derive
a contradiction as in the previous case (replacing n1 with
n2 and u1 with u2). So it suffices to show that (56) entails
a contradiction. So assume that (56) holds. From (51) we
know that there is a ur such that:

(ur < u) ∧ Recv(i, tgt) @ ur (57)

Using axiom (Receive), we obtain a us and a j such that:

(us < ur < u) ∧ Send(j, tgt) @ us (58)

From (36) and us < u in above formula, we also deduce
that SendsSafeMsg(j, AKey0,K0) @ us. So, from (58)
we obtain SafeMsg(tgt, AKey0,K0). This contradicts the
assumption (56).

Case. The following disjunct holds:

∃st, cp, t, ur, skey.(ub < ur < u) ∧
Recv(i, st) @ ur ∧
x = (st, ENC(skey, (cp, t)))

(59)

The last line of (59) and (38) together yield

¬SafeMsg((st, ENC(skey, (cp, t))), AKey0,K0) (60)

By definition of SafeMsg, if follows that at least one of the
following must hold:

¬SafeMsg(cp, AKey0,K0) (61)

¬SafeMsg(t, AKey0,K0) (62)

¬SafeMsg(st, AKey0,K0) (63)

However, (61) and (62) cannot hold because cp and t
are a principal and a timestamp, respectively and, hence,
cannot contain AKey0. Therefore, (63) must be true. In that
case, we derive a contradiction as in the previous case (by
substituting tgt with st).

Proof of assertion (32): We are trying to show that:

{kas}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

Using the rules of Figure 6, we show that

{kas}〈ub, ue, i〉 ∀u ∈ (ub, ue]. ∀x. Send(i, x) @ u ⊃
(∃cp, tp, ur, un, uf , a, kp, n1.

(ub < ur < un < uf < u ≤ ue) ∧ Owner(i, kp) ∧
Recv(i, (cp, tp, n1)) @ ur ∧
New(i, a) @ un ∧
Flag(i, (a, cp, tp)) @ uf ∧
x = (cp, ENC(k(tp, kp), (a, cp)),

ENC(k(cp, kp), (a, n1, tp))))
(64)

Now we argue that the temporal formula in the assertion (64)
implies that in the assertion (32), which, by rule (GEI),
would mean that (32) holds. We use a method of contradic-
tion. Assume that the formula in (64) holds. Further assume
that the condition of the implication in (32) holds, but the
conclusion does not. So we must have for some u ∈ (ub, ue]
that:

∀u′ < u. SafeNet(AKey0,K0, u
′) (65)

¬SendsSafeMsg(i, AKey0,K0) @ u (66)

Expanding the definition of SendsSafeMsg in (66), we
further obtain that there is a message x such that:

Send(i, x) @ u ∧ ¬SafeMsg(x,AKey0,K0) (67)

From Send(i, x) @ u in (67) and (64) it follows that the
conclusion of (64), i.e, the following, holds.

∃cp, tp, ur, un, uf , a, kp, n1.
(ub < ur < un < uf < u ≤ ue) ∧ Owner(i, kp) ∧
Recv(i, (cp, tp, n1)) @ ur ∧
New(i, a) @ un ∧
Flag(i, (a, cp, tp)) @ uf ∧
x = (cp, ENC(k(tp, kp), (a, cp)),

ENC(k(cp, kp), (a, n1, tp)))

(68)

The last line of (68) and (67) together yield



¬SafeMsg((cp, ENC(k(tp, kp), (a, cp)),
ENC(k(cp, kp), (a, n1, tp))), AKey0,K0)

(69)

By definition of SafeMsg, if follows that at least one of the
following must hold:

¬SafeMsg(cp, AKey0,K0) (70)

¬SafeMsg(tp, AKey0,K0) (71)

¬SafeMsg(n1, AKey0,K0) (72)

¬SafeMsg(a,AKey0,K0) (73)

However, (70) and (71) cannot hold because cp and tp are
principals and, hence, cannot contain AKey0. If (72) holds,
then we derive a contradiction as in the second case for client
earlier (by replacing tgt with (cp, tp, n1)). If (73) holds, then
we must have:

a = AKey0 (74)

From (68) and (74) we conclude:

New(i, AKey0) @ un (75)

Using axiom (New3), (75), and (28) we obtain:

un = u′ ∧ i = I0 (76)

From (28) and (76), we derive that

SendsSafeMsg(i, AKey0,K0) @ u (77)

This contradicts (66).
Proof of assertion (33): We are trying to show that:

{tgs}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

Using the rules of Figure 6, we show that

{tgs}〈ub, ue, i〉 ∀u ∈ (ub, ue]. ∀x. Send(i, x) @ u ⊃
(∃tgt, encct, sp, cp, n2, skey, a, un, ur, k.

(ub < ur < un < u ≤ ue) ∧
Recv(i, (tgt, encct, cp, sp, n2)) @ ur ∧
New(i, skey) @ un ∧
x = (cp, ENC(k, (skey, cp)), ENC(a, (skey, n2, sp))))

(78)
Now we argue that the temporal formula in the assertion (78)
implies that in the assertion (33), which, by rule (GEI),
would mean that (33) holds. We use a method of contradic-
tion. Assume that the formula in (78) holds. Further assume
that the condition of the implication in (33) holds, but the
conclusion does not. So we must have for some u ∈ (ub, ue]
that:

∀u′ < u. SafeNet(AKey0,K0, u
′) (79)

¬SendsSafeMsg(i, AKey0,K0) @ u (80)

Expanding the definition of SendsSafeMsg in (80), we
further obtain that there is a message x such that:

Send(i, x) @ u ∧ ¬SafeMsg(x,AKey0,K0) (81)

From Send(i, x) @ u in (81) and (78) it follows that the
conclusion of (78), i.e, the following, holds.

(∃tgt, encct, cp, sp, n2, skey, a, un, ur, k.
(ub < ur < un < u ≤ ue) ∧
Recv(i, (tgt, encct, cp, sp, n2)) @ ur ∧
New(i, skey) @ un ∧
x = (cp, ENC(k, (skey, cp)), ENC(a, (skey, n2, sp))))

(82)
The last line of (82) and (81) together yield

¬SafeMsg((cp, ENC(k, (skey, cp)), ENC(a, (skey, n2, sp))),
AKey0,K0)

(83)
By definition of SafeMsg, if follows that at least one of the
following must hold:

¬SafeMsg(cp, AKey0,K0) (84)

¬SafeMsg(sp, AKey0,K0) (85)

¬SafeMsg(skey,AKey0,K0) (86)

¬SafeMsg(n2, AKey0,K0) (87)

However, (84) and (85) cannot hold because cp and sp are
principals and, hence, cannot contain AKey0. If (86) holds,
then we derive a contradiction as in the first case for client
(substituting skey for n1). If (87) holds, then we derive a
contradiction as in the second case for client (replacing tgt
with (tgt, encct, cp, sp, n2)).

Proof of assertion (34): We are trying to show that:

{server}〈ub, ue, i〉
∀u ∈ (ub, ue]. (∀u′ < u. SafeNet(AKey0,K0, u

′))
⊃ SendsSafeMsg(i, AKey0,K0) @ u

Using the rules of Figure 6, we show that

{server}〈ub, ue, i〉 ∀u ∈ (ub, ue]. ∀x. Send(i, x) @ u ⊃
(∃t, k. x = ENC(k, t))

(88)
Now we argue that the temporal formula in the assertion (88)
implies that in the assertion (34), which, by rule (GEI),
would mean that (34) holds. We use a method of contradic-
tion. Assume that the formula in (88) holds. Further assume
that the condition of the implication in (34) holds, but the
conclusion does not. So we must have for some u ∈ (ub, ue]
that:

∀u′ < u. SafeNet(AKey0,K0, u
′) (89)

¬SendsSafeMsg(i, AKey0,K0) @ u (90)

Expanding the definition of SendsSafeMsg in (90), we
further obtain that there is a message x such that:



Send(i, x) @ u ∧ ¬SafeMsg(x,AKey0,K0) (91)

From Send(i, x) @ u in (91) and (88) it follows that the
conclusion of (88), i.e, the following, holds.

∃t, k. x = ENC(k, t) (92)

(92) and (91) together yield

¬SafeMsg(ENC(k, t), AKey0,K0) (93)

By definition of SafeMsg, if follows that:

¬SafeMsg(t, AKey0,K0) (94)

This yields a contradiction because t is a timestamp and
cannot contain AKey0.


