
PFPL Supplement: PCF By Value*

Robert Harper

Fall, 2019

1 Introduction

Languages such as T or F are total in that every well-formed expression
has a unique value. Thus, the fact that a program is well-typed suffices to
ensure its termination. But typing is only a sufficient condition for termi-
nation; it can be onerous to formulate a program in a total language. Both
theoretical and practical experience shows that it will ever be thus, for the
simple reason that a given type system can only encode certain termination
proofs, and cannot capture them all.

Languages such as PCF are partial in that a well-typed program need
not terminate. In fact, in such languages it is rather easy to write programs
that don’t. More importantly, it is easy to write programs that do terminate,
but whose proof of termination is not easily captured by a type system. It
becomes the responsibility of programmers to ensure that their programs
terminate as part of the larger problem of proving that they work as in-
tended.

When non-termination is possible the distinction between evaluation
orders for expressions becomes significant. For example, the application
of a constant function that does not examine its argument will terminate
under by-name, even when applied to a divergent argument, but will be
divergent under by-value under such conditions. Indeed, such consider-
ations motivated the development of lazy languages, which seek to avoid
evaluation of expressions unless their values are certainly needed to deter-
mine the outcome of execution.

To achieve laziness it is necessary to treat unevaluated computations as if
they were values. In particular, to allow for examples such as the constant

*Copyright © Robert Harper. All Rights Reserved.

1

function, it is necessary to substitute possibly divergent computations for
variables. This means that variables are not just placeholders for expres-
sions that have values, but also for expressions that do not. But how can
a placeholder hold a place for nothing at all? The trick is to arrange that
undefined expressions are tantamount to values of their type, and can be
substituted for variables. Unfortunately, doing so has the undesirable con-
sequence that there are three booleans, rather than two, the two expected
values, plus the special undefined value. Consequently, it is not valid to
reason by cases on whether a boolean variable is either true or false! Sim-
ilarly, the putative type of natural numbers has as elements not just the
numerals, but also the undefined value, values built from it by application
of successor, and a value consisting of an infinite stack of successors! The
principle of mathematical induction is wildly inapplicable for such a type–
in fact, there cannot be a type of natural numbers, or booleans, in such a
setting.

By contrast by-value, or eager, languages consider variables to range
only over values of their type. Thus, there are two booleans, and mathe-
matical induction is valid for the type nat. The formulation of PCF given
in PFPL does not bring out this fundamental difference between the by-
value and by-name interpretations of the language. To bring this out prop-
erly it is helpful to reformulate PCFv that draws a modal distinction be-
tween values and computations. In this formulation variables range only
over values, and the modality makes explicit the requirement that com-
putations be evaluated before being used. The modal formulation has the
addditional advantage that it scales naturally to account for exceptions, a
form of computation that requires explicit sequencing, and for parallelism,
which requires a generalization of the modality to allow for simultaneous
evaluation of computations. (These extensions are described in described
in Harper (2019) and Harper (2018).)

Acknowledgement: Thanks to Todd Wilson for helpful discussions about
laziness and eagerness in PCF.

2 PCFv

The statics of PCFv draws a distinction between two modes of expression,
values and computations. This separation is expressed in the statics by two
forms of typing judgment, Γ ⊢ v : τ for values and Γ ⊢ e ∼·· τ for com-
putations, which are defined in Figure 1. General recursion is omitted by
design; correspondingly, function values may be self-referential.

2

The meaning of variables is given by the following substitution princi-
ples:

Lemma 2.1. 1. If Γ ⊢ v : τ and Γ, x : τ ⊢ v′ : τ′, then Γ ⊢ {v/x}v′ : τ′.

2. If Γ ⊢ v : τ and Γ, x : τ ⊢ e′ ∼·· τ′, then Γ ⊢ {v/x}e′ ∼·· τ′.

Thus, only values may be substituted for variables, whether in another
value, or in a computation.

The dynamics of PCFv is given in Figure 2. Function applications eval-
uate their argument before the call, and the successor is given an eager
interpretation. Moreover, application of a self-referential function provides
the function itself, a value, along with the argument value, to the body of
the function, unrolling the recursion on demand. It would not be possible
to give a by-value dynamics for general recursion, precisely because doing
so would require substitution of a non-value for a variable.

It may appear, at first glance, that there is no way to compute the suc-
cessor of anything other than a value. For example, if e ∼·· nat, then how is
it possible to compute its successor? The apparent difficulty is that the typ-
ing rule for the successor demands that its argument be a value, and not a
computation, so the expression s(e) is ill-formed when e is a computation
that is not also a value. The solution is to sequence the evaluation of the
computation e before the formation of the successor, which we may write
as let(e ; x . s(x)).

But how is the let to be defined? There are two possibilities in PCFv,
one uses a function, the other uses a conditional:

1. Define let(e ; x . s(x)) to be the application

ap(λ[nat](x . s(x)) ; e).

2. Define let(e ; x . s(x)) to be the conditional

ifz[nat](e ; s(z) ; x . s(s(x))).

The first solution is more general in that it may be used to define let(e1 ;
x . e2) in general in terms of application, whereas the second is applicable
only to computations of natural numbers.

Theorem 2.2 (Safety for PCFv). 1. If v : τ, then v val.

2. If e ∼·· τ, then either e : τ or e 7−→ e′ for some e′ such that e′ ∼·· τ.

3

Γ, x : τ ⊢ x : τ (1a)

Γ ⊢ z : nat (1b)

Γ ⊢ v : nat
Γ ⊢ s(v) : nat (1c)

Γ, x : τ1 ⇀ τ2, y : τ1 ⊢ e ∼·· τ2

Γ ⊢ fun[τ1 ; τ2](x . y . e) : τ1 ⇀ τ2 (1d)

Γ ⊢ v : τ
Γ ⊢ v ∼·· τ (1e)

Γ ⊢ e ∼·· nat Γ ⊢ e0 ∼·· τ Γ, x : nat ⊢ e1 ∼·· τ

Γ ⊢ ifz[τ](e ; e0 ; x . e1) ∼·· τ (1f)

Γ ⊢ e1 ∼·· τ2 ⇀ τ Γ ⊢ e2 ∼·· τ2

Γ ⊢ ap(e1 ; e2) ∼·· τ (1g)

Figure 1: PCFv: Statics

4

z val (2a)

e val
s(e) val (2b)

fun[τ1 ; τ2](x . y . e) val (2c)

e 7−→ e′

ifz[τ](e ; e0 ; x . e1) 7−→ ifz[τ](e′ ; e0 ; x . e1) (2d)

ifz[τ](z ; e0 ; x . e1) 7−→ e0 (2e)

s(e) val
ifz[τ](s(e) ; e0 ; x . e1) 7−→ {e/x}e1 (2f)

e1 7−→ e′1

ap(e1 ; e2) 7−→ ap(e′1 ; e2) (2g)

e1 val e2 7−→ e′2

ap(e1 ; e2) 7−→ ap(e1 ; e′2) (2h)

e2 val
ap(fun[τ1 ; τ2](x . y . e) ; e2) 7−→ {fun[τ1 ; τ2](x . y . e), e2/x, y}e (2i)

Figure 2: PCFv: Dynamics

5

3 Computation Modality

Γ ⊢ e ∼·· τ

Γ ⊢ comp(e) : comp(τ) (3a)

Γ ⊢ v1 : comp(τ1) Γ, x : τ1 ⊢ e2 ∼·· τ2

Γ ⊢ bnd(v1 ; x . e2) ∼·· τ2 (3b)

e 7−→ e′

bnd(comp(e) ; x . e2) 7−→ bnd(comp(e′) ; x . e2) (3c)

e val
bnd(comp(e) ; x . e2) 7−→ {e/x}e2 (3d)

Figure 3: PCFv: Computation Modality

The distinction between the by-name and by-value formulations of PCF
is in the meanings of variables. In the by-name case variables range over
unevaluated computations; in the by-value case variables range only over
values. When variables range over computations it makes sense to admit
fix[τ](x . e) at any type—even if it is divergent when evaluated, it still
makes sense to form the unrolling, {fix[τ](x . e)/x}e. But when variables
range over values, it is not sensible to perform this substitution. Instead,
recursive functions are defined as values, and recursion is unrolled when
such a function is applied, using only value substitution.

The two concepts of variables may be reconciled in PCFv by introduc-
ing the type comp(τ) whose values are encapsulated computations of the
form comp(e) in which e is an unevaluated computation. The elimination
form for the modality is the computation bnd(e1 ; x . e2), which evaluates
the encapsulated computation e1, then passes its value to the computation
e2. The statics and dynamics of this extension of PCFv are given in Figure 3.

The “base case” for computations is given by Rule (1e) in which values
are implicitly regarded as degenerate computations. An alternative is to
make this inclusion explicit by replacing Rule 1e with the following rule:

Γ ⊢ v : τ
Γ ⊢ ret(v) ∼·· τ

.
(4)

When closed, the computation ret(v) is deemed a final state in the dy-

6

namics. Correspondingly, Rule 3d becomes

bnd(comp(ret(v)) ; x . e2) 7−→ {v/x}e2 (5)

The computation modality may be used to define let by the equation

let(e1 ; x1 . e2) ≜ bnd(comp(e1) ; x1 . e2),

with derived statics

Γ ⊢ e1 ∼·· τ1 Γ, x1 : τ1 ⊢ e2 ∼·· τ2

Γ ⊢ let(e1 ; x . e2) ∼·· τ2 .

With this in mind there is clearly no loss of generality in restricting the
principal arguments of conditionals and applications to be values:

Γ ⊢ v : nat Γ ⊢ e0 ∼·· τ Γ, x : nat ⊢ e1 ∼·· τ

Γ ⊢ ifz[τ](v ; e0 ; x . e1) ∼·· τ (6a)

Γ ⊢ v1 : τ2 ⇀ τ Γ ⊢ v2 : τ2

Γ ⊢ ap(v1 ; v2) ∼·· τ (6b)

The dynamics may be correspondingly simplified by eliminating rules (2d),
(2g), and (2h). The original forms are definable using let:

s∗(e) ≜ let(e ; x . s(x))

ifz∗[τ](e ; e0 . x) ≜ let(e ; y . ifz[τ](y ; e0 ; x . e1))

ap∗(e1 ; e2) ≜ let(e1 ; x1 . let(e2 ; x2 . ap(x1 ; x2)))

When the inclusion of values as computations is made explicit, it is simi-
larly convenient to define

ret∗(e) ≜ let(e ; x . ret(x)).

It is easy to check that these derived forms give rise to the expected statics
and dynamics.

The purpose of the modal formulation is to separate the sequencing of
evaluation of the principal arguments of an elimination form from the cru-
cial rule defining the action of an elimination form on an introductory form.
For writing examples it is rather tedious to use the modal formulation di-
rectly; the starred forms given above allow for principal arguments to be
computations, not just values, which is much more convenient.

7

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, Cambridge, England, Second edition, 2016.

Robert Harper. Types and parallelism. Supplement to Harper (2016), Fall
2018. URL https://www.cs.cmu.edu/~rwh/pfpl/supplements/par.pdf.

Robert Harper. Exceptions: Control and data. Supplement
to Harper (2016), Fall 2019. URL https://www.cs.cmu.edu/~rwh/pfpl/
supplements/exceptions.pdf.

Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Proceed-
ings of the 4th International Conference on Typed Lambda Calculi and Ap-
plications, TLCA ’99, pages 228–242, London, UK, UK, 1999. Springer-
Verlag. ISBN 3-540-65763-0. URL http://dl.acm.org/citation.cfm?
id=645894.671755.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001. doi: 10.1017/S0960129501003322. URL https://doi.org/10.
1017/S0960129501003322.

8

