
Conversational Programming
Exploring Interactive Program Analysis

Alexander Repenning1,2
AgentSheets Inc1, Boulder, Colorado,

University of Colorado2, Boulder, Colorado
ralex@cs.colorado.edu

Abstract
Our powerful computers help very little in debugging the program
we have so we can change it into the program we want. We
introduce Conversational Programming as a way to harness our
computing power to inspect program meaning through a
combination of partial program execution and semantic program
annotation. A programmer in our approach interactively selects
highly autonomous “agents” in a program world as conversation
topics and then changes the world to explore the potential
behaviors of a selected agent in different scenarios. In this way,
the programmer proactively knows how their code affects
program execution as they explore various contexts. This paper
describes conversational programming through design principles
and use cases.

Categories and Subject Descriptors D.1.5 [Object-oriented
Programming]; D.1.5 [Visual Programming]; D.3.3
[Programming Languages]; D2.5 [Testing and Debugging]:
testing tools; D.2.6 [Programming Environments]: Interactive
Environments.

Keywords: Game design, computational thinking, computational
science, debugging, end-user programming, visual programming.

1. Introduction
Although computers have become incredibly powerful, debugging
programs is still an arduous task. Imagine that a programmer is
working on a game or simulation based on many objects, but the
program is not behaving correctly and requires debugging. Pea
[27] conceptualizes the process of debugging as “systematic
efforts to eliminate discrepancies between the intended outcomes
of a program [the program we want] and those brought through
the current version of the program [the program we have].” In
order to test it, our programmer is playing her game while seeking
to find a situation where what she expected to see does not
happen. What went wrong? She starts looking at the code. How
does her powerful multi Gigahertz, parallel-processing computer
help her at this moment? Sadly, in spite of this power, her
programming environment is providing little if any help. Should it

not be possible to employ that enormous computational power to
analyze the situation the game is in, and to provide semantic
feedback on what the program is doing and why it is doing it?

This is the goal of conversational programming: use the power of
the computer to provide immediate semantic feedback to
programmers. We believe that this is of particular relevance to
non-expert programmers who generally have limited
understanding of typically complex debugging tools.

Our motivation for this research comes from several large
computer science education projects where we dealt with novice
programmers. These novices included elementary school students
using our AgentSheets [28, 37, 40] and AgentCubes [13, 14, 34,
38, 42] programming environments. Our project goal was to teach
these students computational thinking [21, 50] by having them
create games and simulations. In the context of the Scalable Game
Design project [33], we have worked with over 10,000 students
and found debugging to be one of the largest challenges for
computer science students and teachers alike. This challenge
arises, not because existing environments do not have usable
debugging tools, but because these tools need to become much
more proactive to become truly useful.

An ideal tool would support debugging by visualizing
discrepancies between the “the program we want” and the
“program we have.” This ideal is not possible because “the
program we want” only exists in the mind of the programmer and
is not accessible to the computer. The best the computer can do is
to explicitly present the semantics of the “program we have” to
programmers and prompt them to experience potential
discrepancies. Programming approaches that help avoid making
mistakes in the first place are a step in the right direction.

Visual programming [2, 47] approaches and, more generally,
approaches such as structured editing can make programming
more accessible to novice programmers by reducing some of their
syntactic programming struggles with problems like missing
semicolons. With AgentSheets, we pioneered a number of visual
programming approaches that included programming by example
[29] and educational drag and drop programming [35]. Our goal
was to make programming accessible to young children. However,
the value of such approaches is limited [19]. Just as spell checkers
do not automatically turn people into best-selling authors, visual
programming does not guarantee that programs will make sense
or even work at all.

Live programming is concerned with the semantic level of
programming. McDirmid defines [23] “Live programming
eliminates disruptive debugging sessions by allowing us to edit
and execute code concurrently.” Live programming is useful for a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! 2013, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2472-4/13/10…$15.00.
DOI string, see ACM eform confirmation for url.

number of applications including user interface programming [1].
If a programmer makes a mistake, how long will it take for the
resulting problem to manifest itself? A popular example of a
simple live programming is the programming environment
featured by the Khan Academy (Figure 1). A programmer can, for
instance, change the position and size of the rectangle by editing
the parameter values of the rect function by typing in new
values or using a value slider. As the value changes the drawing
updates instantly—making the connection between code and
result crystal clear. According to experimental psychologist
Michotte, if reporting can be done in just a few milliseconds [24]
this may further help programmers perceive the connection
between cause and effect. Michotte calls this the “perception of
casualty” and suggests that this kind of observation is not a
cognitive process with clear and active thought processes, but
instead is experienced as a direct causal connection.

Figure 1. A Live Programming environment at Khan Academy

The basic model of live programming is quickly challenged when
programs become more complex [23], do not converge, do not
terminate, include non-determinism or depend on user interaction.
An AgentCubes simulation (Figure 2) consists of a potentially
large number of agents, and a world containing instances of these
agents. AgentCubes is a live programming environment in the
sense that when the programmer is running the simulation, any
change to the program is instantly reflected in the program
execution—just as with the program in Figure 1. However, there
are at least two cases in which this kind of “liveness” [20]may be
either unwanted by the programmer or impossible to achieve
because of computational constraints.

• Unwanted liveness: Executing the entire program to show
the consequences of a change may be unwanted by
programmers if they are engaging in a series of changes that
may produce inconsistent in-between states of the program
that could create unwanted side effects.

• Intractable liveness: A program could include loops that
may be unbounded or may result in significant delays. This
would decrease the usefulness of live programming [23].
Also, one might create non-determinisms that do not lead to
a well-defined single converging future, but instead imply
multiple different futures. Non-determinism makes long term
program forecasting difficult.

We propose conversational programing as an extension of the live
programming framework. Conversational programming applies
live programming concepts to applications that are based on sets
of highly autonomous non-deterministic objects such as agents. A
conversation includes the notion of a conversation topic and an

Figure 2. Selecting an agent in the AgentCubes world will bring up its behavior. Conversational programming runs the behavior one step
into the future and annotates it to forecast what the agent will be doing. The left panel is the collection of agent classes. At the top is the
world. At the bottom is the behavior editor with the condition palette on the left and the action palette to the right.

interactive, spontaneous communication between the
programming environment and the programmer.

The topic of the conversation is an agent selected by the
programmer in the world. In Figure 2, the programmer selected a
car in a city traffic simulation. The selected car can be recognized
through its yellow selection handles. Selecting the car brings up
the behavior, i.e., the code, of the car and semantically annotates
the behavior—forecasting to the programmer what rule of the
behavior would run. This selection is essential, because the entire
program analysis is done only for the specific selected agent
instance. The programmer could have selected other cars of the
same class with potentially completely different code annotations
based on where the car is in the world and what its attribute values
are. At the left of the behavior in Figure 2 is the Visual AgentTalk
[37] conditions palette. This palette also gets updated based on the
agent selected.

The interactive and spontaneous communication component of the
conversation is based on the programmer’s ability to not only
change selections but also to change the world in order to explore
the behavior of agents. By dragging a car around the programmer
can move it to different parts of the city to explore different
scenarios. In this case the programmer does not actually change
the code, but interacts with the world by changing it in order to
get information back about the behavior of an agent. For instance,
the programmer may drag a car to a different traffic light and
discover that that car would turn in the wrong direction.

Conversational programming contributes to the framework of live
programming by adding the idea of object selection to direct the
focus of live programing. This kind of “directness” [20] is not
only useful to the programmer but makes live programming more
applicable for agent-based applications that might include non
determinism and user interaction. With this approach, only the
conditions of a single agent instance need to be computed instead
computing the entire program. Live programming is typically
about "programming with feedback about program execution",
while conversational programming is speculative in the sense of
"programing with feedback about how the program could
execute."

A previous paper [32] presented an early example of
conversational programming, but did not provide a full conceptual
framework. Section 2 of this paper describes the conversational
programming architecture and includes design principles. Section
3 explains how conversational annotation works through use
cases. Section 4 describes related work.

2. Conversational Programming Architecture
The conversational programming architecture presented here
should not be understood as a universal architecture but as an
early proof of concept approach to investigating the usefulness of
conversational programming for end-user programming [5, 11,
16]. Adding conversational programming to AgentSheets and
AgentCubes turned debugging from a user initiated reactive
activity to a system initiated proactive one. AgentSheets programs
are rule based (e.g., Figure 10) and include the notion of
conditions and actions. A large percentage of student problems
were based on confusion with the relevance of rule order and
condition order and whether individual conditions were true or
false. These kinds of semantic issues could have been easily
explored with the built-in “test” button of AgentSheets, which

allows any condition, action and rule to be tested individually.
However, our experience is that the large majority of students
failed to use the “test” button as a debugging tool. Even after
explicit encouragement, students typically fell back into a mode
where they would just guess which rule was the problem and then
try to address the problem by tweaking that rule. Part of this
difficulty may be that students perceive condition selection to be a
lot of work. In order to find a problem, it may be necessary to
select quite a few conditions to localize the problem source. The
proactive nature of conversational programming overcomes this
problem by evaluating all the relevant conditions of the selected
agent in parallel, that is, without the need to individually select
conditions and to press the test button for each one. In essence,
conversational programing is doing a lot of the programmer’s
busy work.

The intention of adding conversational programming to
AgentSheets was to implement a more proactive debugging
approach that would help overcome the hesitancy of end user
programmers to employ debugging tools. Conversational
programming in AgentSheets essentially tries to run the program
one step into future, but only to the point where it can show the
programmer what would happen without actually making it
happen. Conversational programming semantically annotates rules
to show which rules will fail and which rules will fire. It also
annotates all the conditions that had to be tested to make this
determination.

Our design principles to integrate conversational programming
into AgentSheets and AgentCubes were:

• Do not cause side effects: While conditions need to be
checked, actions should not be executed as they would have
side effects. Most, but not all, conditions of the Visual
AgenTalk language are side-effect free. The timer condition,
for instance has a side effect that needs to be addressed.

• Be responsive: When a user changes the program or a state
relevant to the program, for instance by editing the world, the
annotation should change nearly instantly. In AgentCubes,
conditions that are flipping from false to true or vice versa
even get animated to help with the perception of causality
[24].

• Be CPU conservative: This kind of program analysis is fully
tractable. That is, there is no concern that the annotation will
require some unbounded amount of time. Even so, programs
can have a very large number of rules. Some conditions such
as the WWWread condition in AgentSheets actually read and
parse web pages on remote servers. Testing this kind of
condition can take a long time that may only be bounded by
networking time outs. Generally, the analysis runs in a
separate thread to make use of multi core hardware and to
minimize the impact on runtime behavior.

• Be non intrusive: By conversation we do not mean an
intrusive form of feedback. The user should never have to
wait, and feedback should be subtle. Feedback should not be
like a blinking Christmas tree. We are experimenting with
subtle color annotations.

• Be context sensitive: For instance, in an agent-based
simulation the annotation should be about the behavior of the
agent currently selected in the world and its program.

Conversational Programming: Conversational programming is a
way to harness computing power to inspect program meaning

through a combination of partial program execution and semantic
program annotation. A programmer in our approach interactively
selects highly autonomous “agents” in a program world as
conversation topics and then changes the world to explore the
potential behaviors of a selected agent. In this way, the
programmer proactively knows how their code will affect
program execution in the various contexts that they explore.

Figure 3 shows the conversational programming architecture. To
make this kind of feedback possible the CPA will need to be able
to execute the program and to have access to the situation—a
combination of data as well as selection. The notion of
conversation emerges from an interaction taking place between
the programmer and the Conversational Programming Agent
(CPA) through the program. The programmer may edit the
program or edit the situation. The CPA, in turn, will execute the
program, or selective parts of the program, in the context of the
situation. The results of this execution will be represented through
annotations in the program.

Conversational programming communicates what would happen
if a program was executed. To achieve this, the CPA needs to be
restricted to running code without causing side effects. That is, the
CPA will run code that reads the program state, but is not allowed
to run code that would change the state. However, the programmer
does have an option to execute actions if needed. The CPA is
autonomous. It will run code even if the main program, i.e., the
game or simulation, is not currently running. The CPA runs in its
own thread, which, on multi-core machines, causes minimal
overhead.

A simple example is the execution of conditions, which return a
value of either true or false. The results of the execution are used
to annotate these conditions—red for conditions being false and
green for conditions being true. The large size of the semantic
feedback arrow pointing back at the programmer reflects the rich
nature of the conversational feedback that is provided. Even a
relatively small conversation starter, such as the programmer
applying a minor program edit, may create a large amount of
semantic feedback. For instance, just slightly moving the frog in a
Frogger like game (e.g., Figures 4-6) may result in many
annotation changes in the program.

The semantic support of conversational programming is not
achieved by the computer comprehending the meaning of the
program. Instead, semantic support is achieved by establishing a
tight loop from user input. This is done through program
annotation based on the state of the running program that is
directed back to the user in a way that makes the semantic
consequences of the program immediately visible.

The components of the conversational programming environment
architecture are listed below. Where necessary, AgentSheets [39,
41] is used as an illustration to make examples more concrete.
AgentSheets is an agent-based simulation and game-authoring
tool. The principles of conversational programming hold true for
any kind of object-oriented or agent-based computational system.
Agents are autonomous objects that can be implemented with any
object-oriented system featuring some kind threading mechanism.
The main components of the conversational programming
environment architecture are:

Figure 3. Conversational Programming. A Conversational Programming Agent (CPA) executes the program and provides rich, semantic
level feedback to the programmer relevant to objects of interest to the programmer.

• Situation = Data + Selection. The situation describes the
combination of data and selection. Many end user
programming environments include the notion of a situation
capturing a collection of objects and some selection.
Different environments use different terms such as stage,
worksheet, or world. Data, similar to the notion of data in a
spreadsheet, describes the collection of all agents in
worksheets. Most of the data manifests themselves visibly to
the user. Such data might include the position, size or shape
of an agent. Other data such as agent attributes might not
have a visible manifestation and would only become
accessible to the user through tools such as inspectors.
Selection designates a single agent to be the object of
semantic investigation. A user selects an agent by clicking on
it. The combination of selection and data is called the
situation specifying the topic of the conversation. For
instance, if the user selects the frog in a Frogger game then
the conversation will be focused on that selected frog as it
currently exists in the context of the game.

• Program. The program expresses the function of a project.
This function is a collection of all the behaviors expressed as
methods of agent classes. In AgentSheets, programs are
based on Visual AgenTalk [39, 41] and include notions of
methods, rules, conditions, triggers and actions. The CPA
will execute programming language building blocks in the
context of the current situation and annotate these blocks.
Additionally, the CPA annotates program fragments
containing these blocks. Consider a rule with conditions c1 &
c2 & … cn and some actions. If any of these conditions are
false then the CPA will annotate not only that condition but
also the entire rule because the CPA can conclude that the
rule would not fire.

• Conversational Programming Agent (CPA). The CPA
communicates with the programmer by annotating
programming language building blocks. It does this by
executing them in the context of the current situation. The
programmer communicates with the CPA by changing the
situation, i.e., editing data or changing selection, by changing
the program or by changing parameters of programming
language building blocks.

3. Conversational Programming in Action
Examples will help to illustrate the function of conversational
programming. Unfortunately, the intrinsically static nature of the
paper used to represent these examples poorly conveys the
intrinsically dynamic nature of conversational programming.

1.1 Latent Programs

Many end-user programming environments including Scratch
[43], Squeak/EToys [7], Alice [4], and AgentSheets include
programming palettes (libraries) of building blocks (see also in
Figure 2, the Conditions and Actions palette). The main purpose
of these palettes is to allow end users to browse building blocks,
explore them and employ them by dragging and dropping them
into operational programs. These palettes can be considered latent
programs in the sense that they do contain valid fragments of
programs that could be executed. For instance, building blocks
representing conditions could be tested to see if the conditions are
true or false. The CPA (Conversational Programming Agent) can
annotate latent programs. This annotation may help with the

process of browsing to find programming building blocks of
particular relevance for a specific situation.

In the first example a Frogger-like game is built with
AgentSheets. The programmer has created a number of agents—
including a frog, trucks, roads, and ground. The programmer has
created a situation representing the game world (background of
Figures 4-6) and has made the frog the current selection. Now the
programmer is starting to program the frog using the Visual
AgenTalk [36] visual programming language built into
AgentSheets. Figures 4, 5, and 6 show the reactive change in
annotation of the latent programming language building blocks
contained in the AgentSheets conditions palette as the
programmer explores a number of scenarios by dragging the frog
around in the worksheet. In the foreground is the Conditions
palette. The Conditions palette contains many more conditions, all
of which are annotated in the context of the selected agent (see
Figure 2). Parameters of these conditions are universal, that is,
they work for all agent classes. Directness [20] is achieved by
having the conditions updated the moment the programmer selects
a different agent instance in the world. A programmer noticing
that a certain condition has turned true in the palette may find this
information useful when employing this condition in the behavior
of the agent.

An earlier version of AgentSheets and other end-user
programming tools such as Scratch [43] and Alice 3D [4] include
a Test button which allows programmers to select an agent/object
and a programming language building block such as a condition to
be tested. This lets a programmer determine if a condition is true
or false. However, conversational programming substantially
improves on two important challenges to this approach. First, the
programmer does not need to ask for this kind of feedback. The
system reacts immediately to a change in situation. Second, the
programmer does not have to select a specific language building
block for evaluation. Instead, all the language blocks relevant to
the situation will be annotated automatically by the CPA.

Figure 4. Frog is about to cross the street. Stacked (immediately
above, ground) is true; See (left, truck) is false

At the very least this is an improvement in efficiency. A
programmer could sequentially select all the conditions in the
condition palette and repeat to test. However, this could take a
long time (e.g., AgentSheets includes about 30 different
conditions). The CPA, conceptually speaking, will annotate all the
building blocks in parallel. This approach is not only much faster
but it also increases the potential of serendipitous discovery. After
all, a programmer may not even be aware that a certain
programming language building block exists, or that it features
relevant semantics. Based on timing alone the ability to quickly
change the situation and to almost immediately perceive semantic
consequences can result in the perception of causality [25] in a
way that was not possible with previous mechanisms.

Figure 5. Frog is on street next to truck. Stacked (immediately
above, ground) is false; See (left, truck) is true

Figure 6. Frog is on street without a truck heading towards it.
Stacked (immediately above, ground) is false; See (left, truck) is
false

One may wonder what the value of this feedback to the user really
is. After all, if users understand the basic semantics of a particular
condition then they should be able to determine its truth-value.
However, it frequently turns out that users create similar, hard to
distinguish shapes. Another frequent problem is that users may
include really small or even invisible agent shapes and pile them
up in stacks intentionally or accidentally. No matter how a user
got to the point of believing that a certain condition should be true
or false, it is often incredibly difficult to find bugs because of
precisely these kinds of assumptions. The resulting blind spots are
extremely hard to overcome because they have been ruled out in
the search. Even at this low level of annotating individual
conditions, conversational programming can be surprisingly
useful because it helps to overcome this blind spot problem.
Moreover, catching these low level problems as early as possible
is important, because once such a condition is embedded in a large
program it is even more difficult to track down.

1.2 Rules: Order of Execution

The consequence of rule order is unexpectedly difficult to
understand for beginning, and sometimes even for experienced,
programmers.

Conversational programming annotates rules red, green or
white/neutral (Figure 7). Rules are tested top to bottom identically
as IF THEN ELSE IF… statements in most programming languages
such as Java. A red rule would be tested but cannot fire because
there is at least one false condition. With a list of n rules there
could be n red rules. A green rule would fire because all of its
conditions are true. There can only be 1 or 0 green rules.
White/neutral rules are not tested at all because they are preceded
by a firing rule. There can be n-1 white/neutral rules.

Figure 7. Red, Green, White/neutral rule annotation.

Conversational programming annotates conditions red, green or
black/neutral similarly to the annotation of rules (Figure 8).
Conditions are tested top to bottom, again just like in most
programming languages such as Java. All conditions need to be
true for a rule to be able to fire. A green condition is true. In a rule
with n conditions up to n conditions can be green and would have
be green for the rule to become green. A red condition is false.
Only 1 condition per rule can be red because no other condition
following that condition in the same rule would be tested. A
back/neutral condition would not be tested at all. Up to n-1
conditions can be black/neutral.

Figure 8. Red, Green, Black/neutral condition annotations.

How do these annotations look in the context of a complete game?
Lets assume the programmer is building a Frogger-like game
(Figure 9). In the first scenario (Figure 10, top) the question is
why does the frog get killed? The frog was selected and the rules
were annotated accordingly. A number of rules are tested,
including the drown rule (if the frog is stacked above water) and
the reach the goal rule (if the frog is stacked above the goal), but
all of them are false. Finally, the rule in which the frog is checking
for a truck to its left is true.

Figure 9. Simple Frogger-like game built in AgentSheets.

Programmers could execute the rule by double clicking it. If
executed the frog would play a honk sound, change its appearance
to be the bloody squished frog, wait for 0.5 seconds, erase itself,
and reset the simulation. All this is expected and confirms the
programmer’s expectation. The cursor control rules following the
collision rule are not tested. Had these rules preceded the collision
rule then the player of the game would have had a chance to
escape the approaching truck. In other words, the player could
have cheated. The cursor control rules should be after the collision
rule.

In our second scenario (Figure 11) there is a similar situation with
the frog and the truck but the frog does not get killed. Why?
Conversational programming suggests that the collision rule is not
actually being tested. Instead, the preceding goal rule is true. This
rule will make the game announce a win and switch to the second
level. Only when looking at the situation very carefully does one
see the goal flag nearly covered up by the frog. The difference
between this situation and the one before is hard to see visually,
but thanks to conversational programming it is clear what the frog
is actually doing.

It might seem that these scenarios are quite simple, but in our
experience these cases are not only extremely frequent but often
lead to lengthy and frustrating debugging sessions. The problem is
that the programmer, once convinced that a certain rule should
fire, is really hard to dissuade from this theory. Even with help the
false theory is often really hard to overcome. However,
conversational programming makes it clear which rule will fire
and often helps the programmer identify the difference between
the program they want and the one they have.

Figure 10. Why does the Frog get killed?

The scenario in Figure 12 is a bit more advanced. A middle school
student has programmed some path finding AI based on
collaborative diffusion [31]. A smiley face looking Mr. Sim agent
is trying to find a path to entertainment represented as a TV in a
room. In collaborative diffusion the TV would be at the peak of an
entertainment surface mountain which the Mr. Sim character is
supposed to hill climb. In Figure 12 Mr. Sim is supposed to move
down but does not. Rule number two is the one expected to be
running, but instead none of the rules fire. A closer look at all the
conditions in the second rule indicates that condition number two
is false (its label “is” is red). The programmer had selected the
wrong comparator type. It should have been “>=” but was “<”.
The programmer fixes the bug by selecting the right comparator,
the condition turns green, the following condition turns green as
well, and then the entire rule turns green. The program is fixed
and Mr. Sim is finally moving towards the TV.

Figure 11. Why does the Frog not get killed?

The next step of conversational programming is the dynamic
annotation of non-deterministic programs. Imagine a ladybug to
be programmed with a simple behavior of moving left or right
randomly with equal probability. Figure 13 shows the two rules of
the ladybug. The fifty percent chance condition, in the first rule,
introduces non-determinism. The programmer arranged nine
ladybugs as a single column into the world. Then the simulation
ran a couple of simulation cycles. The annotation of the behavior
has no static solution. For each single bug there are two possible
futures. It will either move to the left or move to the right. The
50% condition could be true—in which case it would be green,
the first rule would be green, and the second rule would be
neutral. Or the fifty percent condition could be false. In this case
the condition would be red; the first rule would be red, and the
second rule would be green because it does not have any
conditions. Notice the second rule does not need a fifty percent
condition. If it did have such a condition the lady bug would only
move to the left with a 0.5 x 0.5 = 25% chance, which would
introduce a significant drift of the ladybugs to the right.

Figure 12. The sim is not moving down.

AgentCubes employs a more sophisticated version of
conversational programming and includes animated annotations.
If a condition changes from true to false or false to true then this
change will be animated by flipping the condition in the code to
get the attention of the programmer. This addition enhances the
effect of “perception of causality” [25] as suggested by Michotte.

Figure 13. Programming ladybugs to move left or right randomly.
The red/green annotation dynamically indicates that sometimes
rule number one and sometimes rule number two will fire.

4. Related Work
Many early programming environments only included limited
feedback. A programmer would enter a complete program and
would not get syntactic feedback. Then, when trying to run or
compile the program the programmer would see that the program
does not work. In the best-case scenario, there might be some
error message from the compiler. The main problem with this
programming approach was recognized early. Researchers started
to create programming environment systems that would provide
some meaningful feedback. In 1967 the Dialog system [3]
employed input/output devices like switches and oscilloscopes to
provide almost instant feedback to the programmer after each
character input. This system was well ahead of its time and
operated in a way similar to the modern code auto-completion
found later in Integrated Development Environments.
Interestingly, the Dialog system was already conceptualized as a
“Conversational Programming system.” Over the years, the
conceptualization of the interaction between a programmer and a
programming environment as conversation has been revisited
often.

Most of the explorations of conversational programming had the
shared goal of making the programming process more reactive.

Early examples include mechanisms such as the code auto-
completion found in Lisp machines [45]. Later implementations
include tools such as IntelliSense of Visual Studio. Similar
environments include Eclipse, and Xcode. All these environments
are responsive to text input and help the programmer by either
popping up valid completion menus or a projecting constrained
set of characters and symbols on a virtual keyboard [3].

A very different approach to changing the nature of the
conversation between the programmer and the programming
environment, but with similar results, comes from the field of
visual programming [2, 47]. Instead of typing in text-based
instructions, many visual programming languages are using
mechanisms such as drag and drop to compose programs. Similar
to code auto-completion approaches, these kinds of visual
programming environment essentially prevent syntactic
programming mistakes such as missing semicolons. Systems such
as AgentSheets [39, 41] provide dynamic drag and drop feedback
to indicate compatibility/incompatibility of some programming
language building blocks. Other approaches experiment with
puzzle piece shaped programming building blocks to convey
compatibility. Some of these approaches go back to 1986 [8].
More recent systems aimed at end-users such a Scratch [43], Alice
[4] and Squeak/eToys [7] employ similar approaches.

The Lisp community has explored ideas of bottom up
programming for some time. In contrast to programming schools
advocating top down approaches that start with a complete plan
and work towards an implementation, the Lisp philosophy
encourages the programmer to start programming before a
complete plan has been devised. The request to run incomplete
programs [48] is an especially efficient means of exploring
programs. DiSessa [6] calls the degree to which one is able to run
a specific piece of code “pokeability”.

Live programming is an attempt to reduce the cause / effect gap of
programming by more tightly connecting a program with its
environment. A program, in general, is not all that useful unless it
is connected to some kind of environment. A sorting program is
used to sort a collection of numbers. Flogo [9] is a programming
language that annotates running programming representation in
various ways to indicate the state of the environment. For
instance, the value of variables is presented in the program
representation. Boolean expressions indicate if they are true or
false when they execute. Live programming with SuperGlue [22]
goes one step further by creating environment objects as the direct
result of specifying code. For instance, a programmer defining a
Pac-Man class and specifying its shape as yellow disk would
automatically get a yellow disk object on the screen representing
the pac-man object. The idea of instant feedback of semantic
information (information about the value of cell having been
tested) has also been applied to spreadsheets [44].

Various models have been defined to conceptualize interaction
between human and computers. Norman talks about the gulf of
evaluation as a metaphor to investigate challenges created by
computational representations that can be directly perceived and
interpreted by humans [26]. This is somewhat applicable to the
kinds of representations programming environment employ to
provide feedback to programmers in case of problems.
Sneiderman goes further with his notion of direct manipulation
[46] to address the entire loop of user input, system processing
and the generation of meaningful and timely feedback.

There are a number of ideas to simplify debugging. Ko’s Whyline
[17] is a powerful debugging system that allows programmers to
go back from program output symptoms to the code causing the
problem. This is very different from techniques such as putting
print statements into code or enabling breakpoints, because both
of these approaches require the programmer to have a good sense
of which code is causing the problem. Whyline, in contrast, allows
programmers to find that code by backwards navigation from
symptom to cause. One disadvantage of Whyline is that
programmers need to quit the application to be debugged after the
problem has occurred to use the separate Whyline tool to navigate
back. This could be a workflow concern, as it does not allow
programmers to fluently go back and forth between programming
and debugging tools. However, this concern could well be
overcome with future versions of the Whyline tool. The larger
conceptual difference between Whyline, as well as similar back
trace oriented debugging tools, and conversational programming
is the time of use. Whyline is aimed at debugging looking
backward in time from effect to cause. Conversational
programming is more aligned with the notion of prebugging
looking forward in time. Telles et all. [49] coined the notion of
prebugging. They define the goal of prebugging to “reduce the
odds of making mistakes, and when we do make mistakes, to have
the infrastructure in place to detect, identify and eliminated these
mistakes quickly and painlessly”. In this sense the Whyline work
and conversational programming could be considered highly
complementary, but conversational programming with its focus on
very simple but integrated debugging interfaces is aimed more at
end user programmers.

Hundshausen, with the Alvis system [12], suggest that cognitive
overload may be a limiting factor that should be considered when
designing programming feedback systems. Potentially, cognitive
overload may have to be considered a trade off for cause and
effect immediacy. However, taking into account Michotte’s [25]
perception of causality argument the answer may not be to slow
down reactions but instead to explore subtle kinds of feedback
that allow users to experience cause and effect through real time
visualizations.

A step in the direction of creating a more symmetrical
communication including elements of semantics is programming
by example [18]. For instance, the play-in/play-out approach
establishes a strong interaction between users, graphical user
interfaces and formal behavior specification [10]. Programming
by example systems making these representations explicit to the
user, such as the play-in/play-out approach, strongly overlap with
the notion of conversational programming. These approaches
hinge on user input including the selection and manipulation of
objects. In contrast to conversational programming, however,
most programming by example systems, including play-in/play-
out, will automatically create formal behavior representations for
the users. Conversational programming neither constructs nor
changes the formal behavior presentation. In fact, conversational
programming simply semantically annotates the programs created
by the users.

A recent renaissance of learning to program sites includes a
number of sites employing some form of responsive
programming. For instance Khan Academy has a computer
science section that teaches JavaScript through simple live
programming. However, in contrast to conversational
programming there is no means to select an object in a world or to

interactively edit an object to explore the object behavior in
different scenarios. An example JavaScript to create a snowman
includes a number of “ellipse” function calls to draw the various
ellipse shaped body parts of the snowman. The user can select
constants, such as the horizontal and vertical size of the ellipse,
and even use a slider to adjust the value of the constant
interactively. Essentially every change to the program will result
in re-evaluating it, including the drawing part. In other words, this
kind of feedback illustrates program semantics. It is not clear how
well this approach would scale, and deal the challenges such as
non-determinism.

5. Assessment
Conversational programming has been integrated into
AgentSheets 3 and AgentCubes. AgentSheets is an educational
programming environment used by students to learn about
computational thinking [50] by building games and computational
science simulations. The audience ranges from middle school
students building simple Frogger-like games to Computer Science
graduate students building Sims-like games that include
sophisticated Artificial Intelligence [30].

A formal evaluation of AgentCubes [15], which essentially is the
3D cousin of AgentSheets featuring identical programming,
confirmed high degrees of end-user programming accessibility
and support for general problem solving. However, at this point
only semi-formal studies have been conducted to assess the
specific contribution of conversational programming added to
AgentSheets and AgentCubes. The general project evaluation is
assessing motivational and programming skills levels but is not
correlating them to specific tool affordances including
conversational programming.

The main assessment question is not about usability, i.e., can it be
used, but will it be used. A formal experiment could shed some
light onto usability. For instance, one could try to compare the
debugging performance of subjects using conversational
programming with the debugging performance of a control group.
With previous versions of AgentSheets only featuring the “test”
button to test conditions and actions we already knew that most
users could use that button when instructed to do so but, on
average, they just did not use the button. Similarly, we feel that
using conversational programming is not hard. The interface is
minimal and requires, based on our experience with students and
teachers, only a brief introduction. The instruments to explore the
“will they use it” question have more to do with ethnography than
with usability. Ethnographic studies include instruments such as
classroom observation. Our early observations are still early but
positive simply based on the fact that users appear to keep
conversational programming turned on most of the time and that
we have seen students and teachers use it successfully.

There have been many teachers and students not using
conversational programming even in situations where they could
benefit from it. We are blaming our teacher professional
development approach which only minimally addresses
debugging and pushes the introduction of conversational
programming to the very end of the workshop. We believe this
should be completely turned around. The idea of conversational
programming and the introduction to rule-based programing in
AgentSheets could go hand in hand to cover topics like rule order
that are notoriously hard for teachers and students to understand.
Having debugging and conversational programming at the end of

the workshop also makes it sound as if it is one more topic to
cover which teachers will push on the backburner and, as a result,
only cover it when there is spare time.

We do have one study exploring the longer-term use of
conversational programming. University students participating in
a one-semester game design class using AgentSheets indicated
that they kept conversational programming turned on and found
that conversational programming was very useful. Each student
created nine complete games. The largest shared concern was that
conversational programming would only be activated if a behavior
editor was associated with the selected agent in the worksheet. For
instance, if a programmer is looking at the behavior editor of the
frog in a Frogger-like game but then interacts with the game by
clicking other agents then the frog behavior editor will no longer
annotate its code because the frog is no longer selected. A related
problem mentioned was that the conversational programming
feedback was only available for one agent at a time. AgentSheets
allows opening multiple behavior editors but only the behavior
editor associated with the currently selected agent will annotate its
code. A more sophisticated model would be necessary to deal with
multiple selections including ways to correlate selection and code.
The undergraduate students indicated that they kept
conversational programming turned on (90%, n=10) and found
that conversational programming was “very useful for debugging“
(80% strongly agree, n=10). Some even expressed the wish to add
conversational programming to languages such as C and Java.
While this is a good idea the transition of conversational
programming from the rule-based Visual AgenTalk to more
traditional languages such as C or Java is not trivial. For instance,
Visual AgenTalk conditions can be assumed to be without side
effect. This assumption does not generally hold in most
programming languages.

6. Conclusions
Conversational programming is an extension to the live
programming model supporting the application of live programing
ideas to non-deterministic agent-based computing applications.
Using the power of the computer conversational programming
forecasts the future of the agent by testing the conditions of the
selected agent. Conversational programming adds the notions of a
conversation topic and an interactive communication.
Programmers define the conversation topic by selecting an agent
instance in a world. The interactive aspect of the conversation is
based on programmers changing the world, for instance by
moving agents around, to test how agents will behave in different
scenarios. The version of conversational programming presented
here is an early example of a relatively simple implementation
built into the AgentSheets and AgentCubes end-user programming
systems. In spite of its simplicity we have seen a number of highly
encouraging use cases in which end users such as teachers and
students were able to debug difficult programs with the help of
conversational programming.

7. Acknowledgements
This material is based in part upon work supported by the
National Science Foundation under Grant Numbers No. 0833612
and DMI-0712571. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

8. References
1. Burckhardt, S., Fahndrich, M., Halleux, P. d., et al. It's

alive! continuous feedback in UI programming. In
Proceedings of the Proceedings of the 34th ACM
SIGPLAN conference on Programming language design
and implementation (Seattle, Washington, USA, 2013).
ACM, 95-104.

2. Burnett, M. Visual Programming. John Wiley & Sons Inc.,
New York, 1999.

3. Cameron, S. H., Ewing, D. and Liveright, M. DIALOG: a
conversational programming system with a graphical
orientation. Communications of the ACM, 10, 6 1967),
349-357.

4. Conway, M., Audia, S., Burnette, T., et al. Alice: Lessons
Learned from Building a 3D System For Novices. City,
2000.

5. Cook, R. Full Circle: In the beginning, everyone was a
programmer. Now, with powerfull user languages,
everyone is a programmer again. BYTE, 15, 8 1990), 211-
214.

6. diSessa, A. A. Twenty reasons why your should use Boxer
(instead of Logo). City, 1997.

7. Freudenberg, B., Ohshima, Y. and Wallace, S. Etoys for
One Laptop Per Child. IEEE Computer Society, City,
2009.

8. Glinert, E. P. Towards "Second Generation" Interactive,
Graphical Programming Environments. Computer Society
Press, City, 1986.

9. Hancock, C. M. Real-time programming and the big ideas
of computational literacy. Dissertation, Massachusetts
Institute of Technology, 2003.

10. Harel, D. and Marelly, R. Specifying and executing
behavioral requirements: the play-in/play-out approach.
Software and Systems Modeling, 2, 2 2004), 82-107.

11. Harrison, W. From the Editor: The Dangers of End-User
Programming. IEEE Software, 21, 4 (July 2004), 5-7.

12. Hundhausen, C. D., Farley, S. and Lee Brown, J. Can
Direct Manipulation Lower the Barriers to Programming
and Promote Positive Transfer to Textual Programming?
An Experimental Study. IEEE Computer Society,
Washington, DC, USA, City, 2006.

13. Ioannidou, A., Repenning, A. and Webb, D. Using
Scalable Game Design to Promote 3D Fluency: Assessing
the AgentCubes Incremental 3D End-User Development
Framework. In Proceedings of the 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC '08) (Herrsching am Ammersee, Germany, Sept.
15-19, 2008). IEEE Press, 47-54.

14. Ioannidou, A., Repenning, A. and Webb, D. AgentCubes:
Incremental 3D End-User Development. Journal of Visual
Language and Computing, 20, 4 2009), 236-251.

15. Ioannidou, A., Repenning, A. and Webb, D. C.
AgentCubes: Incremental 3D end-user development.
Journal of Visual Languages and Computing2009).

16. Jones, C. End-user programming. IEEE Computer, 28, 9
(September 1995), 68-70.

17. Ko, A. J. and Myers, B. A. Finding causes of program
output with the Java Whyline. In Proceedings of the
Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (Boston, MA, USA, 2009). ACM,
1569-1578.

18. Lieberman, H. Your Wish Is My Command: Programming
by Example. Morgan Kaufmann Publishers, San
Francisco, CA, 2001.

19. Lister, R. Computing Education Research: Programming,
syntax and cognitive load. ACM Inroads, 2, 2 2011).

20. Maloney, J. H. and Smith, R. B. Directness and liveness in
the morphic user interface construction environment. In
Proceedings of the Proceedings of the 8th annual ACM
symposium on User interface and software technology
(Pittsburgh, Pennsylvania, USA, 1995). ACM, 21-28.

21. Marshall, K. Was that CT? Assessing Computational
Thinking Patterns through Video-Based Prompts. In
Proceedings of the 2011 Annual Meeting of the American
Educational Research Association (AERA) (New Orleans,
LA, April 8-12, 2011)

22. McDirmid, S. Living it up with a live programming
language. ACM, City, 2007.

23. McDirmid, S. Usable Live Programming. In Proceedings
of the SPLASH Onward! (Indianapolis, Indiana, October
2013, 2013). ACM SIGPLAN,

24. Michotte, A. The perception of causality. Methuen,
Andover, MA, 1962.

25. Michotte, A. The Perception of Causality. Methuen & Co.
Ltd., London, 1963.

26. Norman, D. A. The Design of Everyday Things. MIT
Press, 1998.

27. Pea, R. LOGO Programming and Problem Solving. In
Proceedings of the Paper presented at symposium of the
Annual Meeting of the American Educational Research
Association (AERA), "Chameleon in the Classroom:
Developing Roles for Computers" (Montreal, Canada,
April 1983., 1983)

28. Repenning, A. Agentsheets: A Tool for Building Domain-
Oriented Dynamic, Visual Environments. Department of
Computer Science, University of Colorado at Boulder,
1993.

29. Repenning, A. Bending the Rules: Steps toward
Semantically Enriched Graphical Rewrite Rules. IEEE
Computer Society, City, 1995.

30. Repenning, A. Collaborative Diffusion: Programming
Antiobjects. City, 2006.

31. Repenning, A. Collaborative Diffusion: Programming
Antiobjects. In Proceedings of the OOPSLA 2006, ACM
SIGPLAN International Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Portland, Oregon, 2006). ACM Press, 574-585.

32. Repenning, A. Making Programming more
Conversational. In Proceedings of the 2011 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (Pittsburgh, PA, USA, September
18–22, 2011). IEEE Computer Society, Los Alamitos, CA,
191-194.

33. Repenning, A. Programming Goes Back to School.
Communications of the ACM, 55, 5 (May 2012), 38-40.

34. Repenning, A. Making Programming Accessible and
Exciting. IEEE Computer, 18, 13 2013), 78-81.

35. Repenning, A. and Ambach, J. Tactile Programming: A
Unified Manipulation Paradigm Supporting Program

Comprehension, Composition and Sharing. In Proceedings
of the 1996 IEEE Symposium of Visual Languages
(Boulder, CO, 1996). Computer Society, 102-109.

36. Repenning, A. and Ambach, J. Visual AgenTalk: Anatomy
of a Low Threshold, High Ceiling End User Programming
Environment. Technical Report CU-CS-802-96,
Department of Computer Science, University of Colorado,
1996.

37. Repenning, A. and Ioannidou, A. Behavior Processors:
Layers between End-Users and Java Virtual Machines. In
Proceedings of the Proceedings of the 1997 IEEE
Symposium of Visual Languages (Capri, Italy, 1997).
Computer Society, 402-409.

38. Repenning, A. and Ioannidou, A. AgentCubes: Raising the
Ceiling of End-User Development in Education through
Incremental 3D. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing
2006 (Brighton, United Kingdom, September 4-8, 2006).
IEEE Press,

39. Repenning, A. and Ioannidou, A. What Makes End-User
Development Tick? 13 Design Guidelines. Kluwer
Academic Publishers, 2006.

40. Repenning, A., Ioannidou, A. and Zola, J. AgentSheets:
End-User Programmable Simulation. Journal of Artificial
Societies and Social Simulation, 3, 3 2000).

41. Repenning, A., Ioannidou, A. and Zola, J. AgentSheets:
End-User Programmable Simulations. Journal of Artificial
Societies and Social Simulation,
http://www.soc.surrey.ac.uk/JASSS/3/3/forum/1.html, 3, 3
2000).

42. Repenning, A., Smith, C., Owen, B., et al. AgentCubes:
Enabling 3D Creativity by Addressing Cognitive and
Affective Programming Challenges. In Proceedings of the
World Conference on Educational Media and Technology,
EdMedia 2012 (Denver, Colorado, USA, June 26-29,
2012) 2762-2771.

43. Resnick, M., Maloney, J., Monroy-Hernández, A., et al.
Scratch: programming for all. Communincation of the
ACM, 52, 11 2009), 60-67.

44. Rothermel, K. J., Cook, C. R., Burnett, M. M., et al.
WYSIWYT testing in the spreadsheet paradigm: an
empirical evaluation. In Proceedings of the Proceedings of
the 22nd international conference on Software engineering
(Limerick, Ireland, 2000). ACM, 230-239.

45. Sandewall, E. Programming in an Interactive
Environment: the ``Lisp'' Experience. ACM Computing
Surveys, 10, 1 1978).

46. Shneiderman, B. Direct Manipulation. A Step Beyond
Programming Languages. IEEE Transactions on
Computers, 16, 8 1983), 57–69.

47. Shu, N. Visual Programming. Van Nostrand Reinhold
Company, New York, 1988.

48. Teitelman, W. History of Interlisp. City, 2008.
49. Telles, M. and Hsieh, Y. The Science of Debugging.

Coriolis Group Books, Scottsdale AZ, USA, Scottsdale,
2001.

50. Wing, J. M. Computational Thinking. Communications of
the ACM, 49, 3 2006), 33-35.

