I n IEEE International Conference on Robotics and Automation (1 CRA 05),
Barcel ona, April 2005.

Simultaneous Calibration of Action and Sensor
Models on a Mobile Robot

Daniel Stronger and Peter Stone
Department of Computer Sciences, The University of Texas at Austin
1 University Sation C0500, Austin, Texas 78712-1188
{stronger, pstone}@cs.utexas.edu
http://www.cs.utexas.edu/{stronger, pstone}

Abstract— This paper presents a technique for the Simulta- This process successfully learns action and sensor models

neous Calibration of Action and Sensor Models §CASM) on a that closely approximate measurements made manually with
mobile robot. While previous approaches to calibration make use 5 stopwatch and a tape measure.

of an independent source of feedbacksCAsM is unsupervised,
in that it does not receive any well-calibrated feedback about [I. EXPERIMENTAL SETUP

its location. Starting with only an inaccurate action model, it scAsMis implemented and tested on a commercially avail-
learns accurate relative action and sensor models. Furthermore able robot platform, namely the Sony Aibo ERS-TThe
scAsM is fully autonomous, in that it operates with no human S . S
supervision. sScCAsM is fully implemented and tested on a Sony results r_eported in this paper make use O_f walking and vision
Aibo ERS-7 robot. processing modules that we created earlier as part of arlarge
l. INTRODUCTION phroiect [1]. Tt:e V\ltc’;dk |st ddeftlne_d té)y.a numzersgp?r?énéters
Mobile robots rely on models of their actions and sensotrsa specify the attempted trajectories of the Aibo's :

: : . : : move forwards and backwards at different speeds, the robot
in order to interact with their environment. For example

they may select actions based on thaiticipated effects !hterpolates between parameters for an idle wglkhat steps

and deduce theiactual effects based on their subsequenI g?ﬁ% /g)fzsrfg(;r\?;ff Savglfvlt:;rtjhsa\t/v%i)ls ?hzttasgsegf[j;imze d
sensations. These sensor and action models are typic ! 9 P

y ;
calibrated manually, a fairly laborious and often brittteqess. 0 dvegzi?eg VQSI(;CTm/;%' dThhaeV:ctle(t)rznc]gg:zar}sZnaLe.Iabeled by
Furthermore, if the robot is placed in a novel environmerit by P 9 y:
and/or its sensors and actuators change over time, the pre- pi+——(pr—pi) ifr>0

; ;) o pPr = c im0 0 (€]
calibrated models can quickly become error-prone. Thus it i pPit o —(Pp—pi) ifr<
desirable for this calibration process to be automatedhab t
the robot can learn the effects of its actions and the meani%

of |ts. observations without humah Supervision. 1 turns out not to be linear at all, as the experimental resuilts
Th|s paper pr_esents a technique, Ca”S_'dAS_M* f_or & pear out. The robot’s actual velocity varies unpredictatih
mobile robot to 5|m_ultaneous_ly learn two calibration fuos. respect to the desired velociscAsw learns the function from
One maps the various readings of a visual sensor to relatiye ' por's action commands to their corresponding veitesit
distances from a fixed landmark, and the other maps a rang&pe ajno's visual sensor is based on its camera, which we
of action commands to the velocities of the corresponding, e nreviously trained to recognize objects in the robot's
movements.SCASM is completely autonomous, and it iSgpyironment. One of these objects is a colored cylindrical
unsupervised, in that the robot never receives any feedbggk, .o that the robot can use to help it localize while on
as to its actual chauon or velocitgcasms goal is for the a playing field. The height of the beacon in the robot's image
.robo.t to learn action an.d. sensor models that accuratel)cteflslane decreases with the robot's distance from the bealisn: t
its dlstanc'es and velocities. . , observed height (in pixels) is the visual sensor readingl use
SCASM involves the robot performing the following threeg, the experiments reported in this paper. The Aibo and the
tasks simultaneously. beacon are shown in Figure 1, along with a view of the beacon
» Walking forwards and backwards while its visual sensaaken through the Aibo’s camera. Detailed descriptionshef t
is faced at a fixed target, covering the entire range wofalking and vision modules used here are given in [1].
relevant distances and velocities. While the robot learns the action and sensor models, its
» Learning a function from action commands to actuddehavior must allow it to experience the full range of refeva
velocities, assuming the distance calibration for thealisuaction commands and observations. To achieve this goal, the
sensor is accurate. Aibo walks alternatingly forwards and backwards acrossea pr
» Learning a function from distance observation data et range of distances from the beacon. For the experiments
its distances from the target, assuming the robot has mported in this paper, the robot's goal is to learn about
accurate sense of its velocities. the action commands in the range300, 300]. Hence, the

Note that Equation (1) is based on the assumption that the
bo’s velocity is linear in its walking parameters. Howevié

1simultaneous Calibration of Action and Sensor Models 2http://www.aibo.com

robot chooses a random action command in the rafgHo] Because the robot is trying to learn two arbitrary contirgiou
while going forwards and frorf—300, 0] during the backwards functions, it must represent them with a function approxona
phase. It continues to execute each action for three secoRaddynomial regression is used for both functions. Thatas, f
before choosing a new one. It switches between walkitlge sensor model, the robot's goal is to learn coefficiapts
forwards and backwards when the beacon height in the imayeough s, such that the polynomiaE;’l:0 s;obs’ approxi-
gets too big or too small. These size thresholds are choseates the actua#(obs) as closely as possible, whedes the
manually so as to keep the robot in its field of operatiomlegree of the polynomial being fitted to the data. Similarly,
This behavior covers the full range of relevant distances$ athe robot will learn coefficients, throughay for the action
velocities, as desired. model, with the goal ofzfzo a;ct ~ A(c) over the range
of commands:. The sensor and action models are learned as
polynomials of degree three and four respectively, based on
the estimation (without detailed experimentation) thatsth
are roughly the polynomial degrees necessary to capture the
complexity of the functions being modeled.
SCAsM learns the action and sensor modetsn each other
in that it is not given any ground truth as to the robot’s
distance to the beacon or its speed. Therefore, it cannot lea
the two models in any particular units. For example, the @ens
model maps observations onto points on a linear axis, but it
makes no claims as to what physical distance from the beacon
corresponds to the number zero, or what length corresponds
, . to the model's units. Similarly, the action model is learried
Although the action commands being executed only atteMpiyicarily units, although here the number zero is coirsidh
to move forwards and backwards, random drift would caugg correspond to a speed of zero. However, the learned action
the A|b0_to slowly get _Oﬁ course. To counteract this e1:feCtand sensor models will be consistent with each other. That
the walking controller is set to constantly turn towards thgy since the robot knows how long a second is, whatever
beacon with an angular velocity proportional to the beagoryjigiance turns out to be the unit for the learned distanbes, t
horizontal a.mgular d|stanF:¢ from straight ahead. This lsamal distance per second is the unit for the learned velocitiese N
gular velocity has a negligible impact on the robot's follr ¢ this property is sufficient for it to perform domain-tén
or _bgckwards _veIOC|ty. _A video O_f the _A|b0 performing thetasks, such as predicting the amount of time a specific action
training behavior described here is available onfine. command will take to yield a certain visual sensor reading.
I1l. ACTION AND SENSOR MODELS IV. LEARNING THE SENSOR MODEL

As the robot moves towards and away from the beacon, weFirst we demonstrate that it is possible to learn a relative
denote its (actual) distance from the beacon at tirasz(¢t). Sensor model given any constant action. Note that while the
During this process, the robot has two sources of informatiéobot executes a constant action commandt is moving at
about its location along its axis of movement. For one, theconstant velocityA(c). Thus if this command is executed
robot receives a sequence of visual sensor observatioas, @antinuously starting at time, the robot's location at time
kth one denoted bybs, and occurring at time,. Each Will be given byz(t) = x(0) +t- A(c). Thus there is enough
value reported by the visual sensor corresponds to a spedffigrmation to learn the sensor model, even in the absence of
distance. We call this function treensor model, and denote it knowledge of the value ofi(c).
by S, so thatz(t,) = S(obsy) +wy, wherewy, is a zero-mean I particular, in this situation it suffices to learn a functi
random offset due to the inherent noise in the visual sens$@m obsy t0 t. If S(obsi) = tx, then sincet, = (w(ty) —

This function S is one of the two functions that the robot isz(0))/A(c), S(obsk) = (z(tk) — 2(0))/A(c). This expression
trying to learn. represents a shifted and scaled version of the robot’sitogat
At the same time, the robot continuously executes an actidRd sincescAsm is only trying to learn a sensor model up
command,C(t), that varies with time. Each action commando shifting and scaling)5 is a satisfactory sensor model. The
moves the robot at a specific velocity, and we denote th@bot learns the function by performing polynomial regiess
function from command to velocity byl. This function is ©n the pairs(obsy, tx).
the action model that the robot learns along with the sensor Given n data points(obsy, tx), SCASM computes the co-
modelS. The action model also provides information about thfficients of the best fiti-degree polynomialP(obs) = a +
robot's location:z(t) = (0) + [, A(C(s)) ds. scCASM works > i1 Biobs*, which m|n|m|zes_the total squared error between
by implicitly performing a continual comparison of theseotw F’(obsi) and the corresponding, over all k from 1 to n.
sources of information. The robot knows the valuesiiof,, 10 computea and 8 = (f1,---,64) ", we reformulate the

tx, andC(t), and its task is to learn the functionsand S. problem as a multivariable linear regression by represgnti
each of the powers ofbs with its own variableV; = obs’.

Shttp://www.cs.utexas.edu/"AustinVilla/?p=researthtstaneouscalibration The input data is then amx d matrix V' given byV; ; = obsz

Fig. 1. The Aibo and the beacon. The inset is a picture of tleede taken
through the Aibo’s camera.

and we denote the-dimensional output vector by where from the action model. The result of such a regression is show
y; = t;. To perform this regression, first we defilé andY in Figure 2b). Note that because the action model used here
to be versions ofl” and y where the variables are centereds inaccurate, the estimates taken while walking forwamts a
around zero. That is, their means are subtracted from thbackwards are not well aligned with each other. Nonethgless
values:M; ; = V; ; — V; andY; = y; — 5. Thena and 3 are the learned sensor model is still a qualitatively reasanahk,
given by [2], [3] in that as the beacon height increases, the rate of change of
B T MTY) and a= %z”:(y Ve @ the corresponding location decreases, as would be expected
i=1

Fortunately, it is not necessary to stdreandy explicitly
and compute these quantities from them each time. To savén this section, we assume that the robot has an accurate
space and time as arbitrarily many data points come in, taensor model and show how the robot can use it to learn an
robot incrementally maintains a number of sums that requidstion model. This learning uses the sensor model to give the

constant storage space in the number of data points. Fobot an estimate of its location from each observation. We

V. LEARNING THE ACTION MODEL

example,(M " M), ; evaluates to denote this estimate by, (¢;), and it is given bySd(obsk).
Z 1 Z _ Z , The robot’s goal is to learn the functioA(c) = Y% a;c’
VieiVig i — — Vi Vi 3 i=0
" Vs =3¢ b d) © that causes the values oft;) based onA to match those

k k
The robot maintains these sums (foriadnd;j from1to d) based onS as closely as possible. That is, the robot computes
incrementally, along with", Vi ;yx and", yx. They enable the coefficients:; that minimize the error defined by
it to computeM " M as aboveM 'Y, and thens and . ,
When this process is applied to the paftdsy, t;) with i te & ;
d = 3 while a constant action command is being executed, E = Z s (tk) = I<0)+/@ Z“ZC(S) ds
=0

the cubic learned is typically quite an accurate fit to theadat =t

as shown in Figure 2a) d tr 2
' zs(te) — | =(0) + ai/ C(s)ids || , @

k=1

where the robot knows the valuess, =, (tx), and the values
of C(s). This problem is an instance of a multivariable linear
regression, withd + 1 variablesV; throughV,,; defined as
V; = fot C(s)’~1ds and outputy, = w4(tx). The regression
N it b o al gy computes the weights; (and a value forz(0)) that minimize
Beacon Height (n pixels) T ot the error. Since”'(s) changes every three seconds, th_e value
) b) for z(t) suggested by an estimate fof0) and the weights
a a; varies in a piecewise linear manner with respect to time.

Fig. 2. a) After walking forwards via a constant action, #hase the observed ; ; ST
data points (+), mapped against time. The dashed curve is #idibeubic The regression being performed has the effect of finding the

to these points. The variation in beacon height at any giiree is due to Pi€Cewise linear curve that fits the ddta, z4(tx)) as closely
inherent noise in vision. b) The plotted points &bsy., zq(tx)) as the robot as possible (as shown in Figure 3), provided that the slope of

performs one full cycle of walking towards the beacon and rechway from ; ; ; ; :
it. The +'s are the observations while walking forwards and ts are while the line at any time is a constant quartic function ¢C(t)).

walking backwards. The polynomial is fitted to all the points.

It is also desirable for the robot to be able to learn a sensor
model while it performs a series of various actions, suchas i
the randomized behavior described in Section Il. This psce
relies on the robot having access to an accurate action model Xs(t)‘:
Although it does not have one initially, Section VI shows how
this ability can be incorporated into a process that camlear
both models from scratch.

Given an action model, the robot can use dead reck-
oning to compute its location as a function of time. As _
mentioned in Section Iil, the robots location(t) is given ¢ S I B0 PR 4 packing awayrir, The
by z(0) + fo A(C(s))ds, which we denote byz,(t). It learned action model is applied to the executed action comntarysld the
suffices to assume that0) = 0, since it is learning relative piecewise linear location estimate shown here.
distances. Thus the robot can accumulate an estimate(for - o |eamn an action model, the robot first learns a rough
by initializing = to be0 at time(and continually incrementing sensor model using the constant action method at the top of
it by A(C(#))At, where At is the amount of time betweengection |v. Then it uses that sensor model to execute the

increments. Then, by performing cubic regression on thespajygcess described in this section. The result of this psies
(obsy, z4(tx)), the robot effectively learns a sensor modelhown in Figure 3.

Time"”

(s) ¢

Walking Forwards Observationst

18

3

Observations: +
Learned Action Model:

Time (s)

VI. LEARNING BOTH SIMULTANEOUSLY assignment,, (tx) «— (1 — Nao(tr) + Azs(tg), where X is

We have so far demonstrated the ability for the robot ® constant that determines the strength with whiglt) is
learn the sensor model from the action model and vice vergalled towardse,(¢).
Making use of both of these capabilities, this section showsThe model estimateS,; and A, are continually updated in
how the robot can simultaneously learn both models, evancordance with the location estimategt) andx,(t), with
when it is given very little useful starting information. iEh each model being updated by the location estimate based on
learning is possible because, even though the action (9ensbe other model. These updates consist of the incremental
model learned from an inaccurate sensor (action) model wiijpdates that comprise the weighted polynomial regressions
be inaccurate, it will be an improvement. As each mod#hat give the best fit estimates §fand A, as described above.
grows more accurate, its ability to help the other moddlhe flow of information is depicted in Figure 5b). Note that
improve grows. As this bootstrapping process continuess, thecause the regressions can be computed incrementaly, the
two models converge to functions that accurately reflecttwhean be calculated every time the robot processes an image,
they are trying to model. corresponding to abowt0 Hertz. This process happens con-

Because both models grow in accuracy as time goes on, tharently with all of the robot’s other real-time computatj
regressions should give more weight to the more recent dataluding vision and motion processing, all on-board on a
points. Thus a weighted regression is used, where each datale 576 MHz processor.
point has a weight that decreases over time. Note that fdr bot z4(t) < 0
learning directions, there is one regression data poinedmh for each time steplo
visual sensor observation. Thus the weight of each data poin I ¢ < 2tstart then

24 (t) — za(t) + Ao (C(£)) At

starts at one and decreases by a constant factorl every

else
time a new observation is taken. Thus if there have been Ta(t) — za(t) + A (C()) At
observations so far, the weight of the data points corredipgn end if
to theith one isy™ . if an observatiowbs). is madethen
To compute the solution to the weighted regression, we 'f ¢ > Lstart then
define W as ann x n diagonal matrix withi;; = "¢ 2 (t) < Si(obsr)
nox n dlagonal matix Witilii = UPDATE A, with (t, 4(t))
and N as the sum of the weights_,” , v"~*. Then we can Ta(t) — (1 — Nza(t) + Azs(t)
use a weighted version of Equation (2) [3]: end if
Lo UPDATE S; with (t,z.(t))
B=MTWM)TIMTWY) and a=—3 1"y~ VB)i (5) end if
N i—1 end for
As before, these quantities are expressed in terms of sumg. 4. Algorithm for simultaneous action and sensor modeiniea. The
For example(MTWM)i’j is given by routine UPDATE incorporates one new data point into the Weid regression

for the model being updated.

1
n—k X L n—k X n—k X
g YT Vi Vi, _N(E AT Vii)(E YT Vi 5) (6)
k k k

Ao A
These sums can also be maintained incrementally, because ? i e 2 A
S A = (SR 9" o) + 2aga for any se- e .
guencez,. — P Xs Xa
Pseudocode for the entire algorithm is given in Figure 4. ><
At time ¢, the robot makes use of its best estimates thus far 9 S A
as to the action and sensor models, and .S;. Throughout °

the learning, the robot maintains two estimates of its loca- a) b)
tion, one baseq On_ Its Cu.rrent S_ensor mOd@Kzt)’ and the Fig. 5. a) The ramping up process. The arrows indicate one nmumlnf
other based primarily on its action model,(¢). After any learned based on another. Note that aside frég a model is not learned

observationobs, at time t, x,(t;) is given by S;(obsy). from until it has been learned for a sufficient amount of timeThg flow

. of information. The thick arrows represent incorporatingagéacpoint into the
At the same “me'xa(t) is maintained by continually in- weighted regression for a model. The thin arrows indicaté¢ ¢laeh model

crementing it by A,(C(t))At, where At is the amount of is used to construct the corresponding estimate of the ®imtation. The
time between increments an@(C(t)) is the robot’s current dashed arrow signifieS’s influence on the estimate,.

estimate of its velocity. Unfortunately, it is not suffictefor At the start of the training, there is no data to motivate
x4 (t)'s derivative to be an accurate estimate of the robot&ther the action model or the sensor model to get the legirnin
velocity. This constraint still allows for the possibilithat process started. For a period of time at the beginning,,
x4(t) is a constant displacement away fram(t). When this the robot uses a fixed, pre-set action modéj, instead of
approach was tried on the robot, it occasionally happendd. The function used for, is the identity function, so that
that the estimates diverged, both increasing continu@lly, Ao(c) = c. During this time, the sensor model is learned
which case neither model can be learned accurately. Tomrevieased onAg, but the action model is not being learned yet,
this problem,z,(t) is adjusted towards(t) every time an because the sensor model is based on too few data points.
observation is taken. The adjustment is implemented by tAder time ¢4, has passed, the sensor model can be used to

start learning an action model. However, until anotherqekri multiples of20 cm from 120 cm to 360 cm. At each distance,
of time lengtht,;,,» has passed, this new action model is ndhe robot looked at the beacon until it had collectéd beacon
based on enough data points to be used for learning. From tiheeght measurements. The average of these measurements was
2tsqr¢ INtO the learning on, the action and sensor models cased as a data point for the sensor model, and their standard
learn from each other. This process is depicted in Figure Sdgviation did not exceed.l pixels at any distance. The
Figure 6 depicts how(t) andz,(t) vary over time when measured sensor model is shown in Figure 7b).
S and A are being learned simultaneously. Note that both The learning process was execuiedtimes, with each trial
oscillate with the robot's walking towards and away from thiasting for two and a half minutes. Figure 7a) shows a typical
beacon. AsA and.S grow more accurate, their correspondindearned action model, compared to the measured action model
estimates of the location come into stronger agreement. data. Note that since the action model is not learned in any
specific units, in order to compare the learned model to the
) measured one, we must first determine the appropriate gcalin
factor. This evaluation is done by calculating the scalaxgidr
that minimizes the mean squared error. On average, the root
mean square error between the scaled learned action matiel an
the measured action model w28.6 + 12.4 mm/s. Compared
to the velocity range o800 mm/s, the error igd.9 percent. The
best fit possible by a fourth degree polynomial to the measure
o h w e W w w W w action model has an error 7.2 mm/s. By contrast, when the

Time (s) the initial action model Ay, is evaluated in the same manner,
Fig. 6. This figure shows how,(t), andzs(t) vary over time. In this tha error is43.0 mm/s.

example run, thet-’s are values ofc,(¢), and the curve depicts, (¢). Over . . .
time, each model learns how to keep its estimate of the locatase do the Figure 7b) shows a typical learned sensor model with the

other model’s estimate. measured sensor model. The learned mdsiehaps obser-

The algorithm described above makes use of a few constavésions to relative distancesi(obs), which are intended to
that did not require any extensive tuning. The discountofactmodel the actual distances from the beacon. These actual
for the regression weights, is 0.999. The strength of the pull distances are given by + 5S(obs), wherea and b are two
of z,, towardszy, A, is 1/30. These values were the first onegonstants that are not learned. Thus in order to evaluate a
that were tried fory and A. The starting phase timeé,,;,,;, is learned sensor model, we compute the values ahdb that
20 seconds. We tried0 seconds first but that was too short.minimize the mean squared error between- bS(obs) and

VIl. EXPERIMENTAL RESULTS the measured sensor model. This minimization is done with

After scAsM has run for a pre-set amount of time (two and linear regression on the point§(obs;), S, (obs;)), where
a half minutes), we consider its best estimates Aoand S theobs; are the sensor readings corresponding to the measured
to be the models that it has learned at that point. The succegsancesS,, (obs;). Our evaluation of a learned sensor model
of scasMm is evaluated by comparing the learned action angd the root mean square error between it and the measured
sensor models to those measured with a stopwatch and a tajeglel, once this process has been applied. This value was, on
measure. The measured action model is obtained by measuengrage70.4 + 13.9 mm. Compared to the distance range of
the velocity of each action command that is a multiple af400 mm, the error i2.9 percent. The best fit possible by a
20 from —300 to 300. We measure the velocity of an actioncubic to the measured sensor model has an d8& mm.
command by timing it across an appropriate distance fiveOver the course of a trial, both models get progressively
times. The standard deviation of the velocity measuremant imore accurate. The learning curves are depicted in Figure 8.
a given action command across the five timings never excee@asth models’ errors are shown, compared to the best possible
7 mm/s. The measured action model is shown in Figure 7agrror for the measured model and the degree of the polynomial

being learned. The data is averaged overlaltrials.

Although the action and sensor models are not learned to
any particular scale, since they are learned from each other
. they should be to the same scale. This property is tested by
comparing the scaling constants used to give the best fits

to the measured models, the scaling constant for the action
S| w———————————— model and for the sensor model. These two values should be
Action Command Bemg“e'gm equal to each other in absolute value. We evaluate the degree
a)) of equality by computing the average distance between the
Fig. 7. A learned action and sensor model absolute value of the ratio between the two scaling corstant

Similarly, the accuracy of the learned sensor model @nd1. The average distance (508 & 0.06. This result shows
gauged by comparing it to a measured sensor model. Tthat the two learned models are consistent with each other.
sensor model is measured by having the Aibo stand at meaThe amount of time taken bycasmto accurately learn its
sured distances from the beacon. The distances used weresaitt®on and sensor models is two and a half minutes. Note that

4000
3000
X(t) 2000
1000

0

1000

w0
Dist.
a0

for a fixed environmentscAswm only needs to be executedall previous work along these lines in the following sigrafit
once. Given that each time the robot is booted up, it takesy. SCASM learns models of its actions and sensors starting
about27 seconds to initialize, we considecAasMs one-time without an accurate model of either. Previous approaches to
execution time to be qualitatively quite short. Certairityis calibration rely either on accurate training data or on sens
within the bounds of what can be reasonably executed on-litieat are already well calibrated (as in [4]).
upon insertion into a new environment. IX. CONCLUSION AND FUTURE WORK
This paper presents a technique by which a mobile robot
can learn an action model and a sensor model from each
Leamed Action Model Error | other simultaneously. Starting with only a very simplistic
action model estimate, the robot learns highly accurate ap-
proximations to its true action and sensor models. The iegrn
process is completely autonomous and unsupervised, so that
| no human oversight or feedback is necessary. The technique
R — is successfully implemented on a Sony Aibo ERS-7, which
. S calibrates its action commands to the resultant velocdies
Time (s) its visual sensor readings to the corresponding distarales,
Fig. 8. This figure depicts the average error in the learnedeisods a 1N two and a half minutes of autonomous behavior.
function of time. The error for the action model is in mm/s, and tioe One direction for future work is to explore potential syn-
sensor model in mm. The horizontal lines are at the minimum pessitobr ergies betweerscasm and particle filtering methods that
to the measured models for a polynomial of the appropriate degre
integrate sensor and action models into a position estimate
The results described above start from a linear actig@_g_, [9]). The work presented here represents an excitamg
model that is somewhat similar to the measured action mogglyards the long-term challenge of enabling fully autonamo

(shown in Figure 7). To examine the reliance of our approagfjibration of complex, multi-modal sensor and action niede
on the starting action model, we performed two tests wiihl, mobile robots.

more impoverished starting points. First, we used a piesgewi ACKNOWLEDGMENTS

constant model equal to for positive action commands and we would like to thank Ben Kuipers for helpful discussions.
—1 for negative ones. This model conveys only the directiorhanks also to the members of the UT Austin Villa team for their
of the action but no information about its speed.1lhruns, efforts in developing the software used as a basis for the work
the robot was able to achieve an average erra5o8 = 24.5 reported in this paper. This research was supported in part by NSF
mm in its learned sensor model afd.3 = 9.2 mm/s in the CAREER award 11S-0237699, ONR YIP award N0O0014-04-1-0545,
action model after two and a half minutes. Even with a stgrtimnd DARPA grant HR0011-04-1-0035.

model of A(z) = 1, which imparts no information about the
action model, onl0 out of 15 trials the robot was able to _
achieve an average performancessf6 + 11.5 mm error in [P Stone. r*;n'?fnsé‘ea F;tggg'e”r‘,a{}'h':' S'TJXSS{inNi/ilﬁghgogf@am&'
the sensor model an?d7.3 + 6.2 in the action model after fourlegged team: Coming of age,” The University of Texas asthy
fiv_q minutes..The remaining trials diverged, pre;umablytdue ?Spggtrgfgt g(f;tgl;)érrl%tgz Sciences, Al Laboratory, Tech. RepAUT
initially Iegrnmg a pair of models that were so inaccurdtatt g] R.F. Gunst and R. L. MasorRegression Analysis and its Application.
no useful information could be recovered from them. Noté tha” new York: Marcel Dekker, Inc., 1980,

the errors achieved with these more impoverished models &leS. WeisbergApplied Linear Regression. New York: John Wiley & Sons,

Learned Sensor Model Error

REFERENCES

i ; i Inc., 1980.
comparable to those attained with the linear moﬁ@!é(:tlS.Q £4] N. Roy and S. Thrun, “Online self-calibration for mobilehots,” in
mm and29.6 L 12_-4 mm/S for the sensor and action m_0d9| Proceeding of the IEEE International Conference on Robotics and
respectively), indicating that these results are not paldily Automation, vol. 3. Detroit, MI: IEEE Computer Society Press, May
- ; ; 1999, pp. 2292-2297.
sensitive to the starting action model. [5] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, “Siftaneous
VIll. RELATED WORK localization and odometry calibration for mobile robot,” Fnoceedings

. . . of the 2003 International Confrerence on Intelligent Robots and Systems,
Some previous work has focused on mobile robots cali- | ¢ Vegas, NV, October 2003.

brating their odometry models automatically based on the# T. D. Larsen, M. Bak, N. Andersen, and O. Ravn, “Locatictimation
sensors. For example, Roy and Thrun [4] calibrate the odom- for an autonomously guided vehicle using an augmented Kalnten tiil

etry on a wheeled robot using an incremental maximum ﬁwogﬁ:;brfgg;he odometry,” IRUSION98 Spie Conference, Las Vegas,

likelihood method, while Martinelli et al. [5] and Larsen ef{7] A.T. Ihier, J. W. Fisher, R. L. Moses, and A. S. Willsky, &Nparametric
al. [6] use an augmented Kalman Filter to estimate odometry belief propagation for self-calibration in sensor netvegtin Proceedings
. . of the third international symposium on Information processing in sensor
errors. There has als_o been work on cahbratmg networks of networks, Berkeley, CA, April 2004.
sensors. However, this work (e.g., [7], [8]) typically f@@$ [8] R.Moses and R. Patterson, “Self-calibration of senstworks,” in SPIE
on networks with large numbers of sensors and calibrating Vol. 4743: Unattended Ground Sensor Technologies and Applications 1V,
thelr_ respective 'C_’Cat'P”S and orientations. We k”_OW of 3 C. KWok, D. Fox, and M. Meila, “Adaptive real-time partefilters for
previous work calibrating a sensor based on an action model. robot localization,” inProc. of the IEEE International Conference on
Furthermore, to the best of our knowledgeAsmdiffers from Robotics & Automation, 2003.

