Adjacency List Representation
Last Updated :
23 Jul, 2025
An adjacency list is a data structure used to represent a graph where each node in the graph stores a list of its neighboring vertices.
1. Adjacency List for Directed graph:
Consider an Directed and Unweighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<int>>& adj, int u, int v) {
adj[u].push_back(v);
}
void displayAdjList(const vector<vector<int>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (int j : adj[i]) {
cout << j << " ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<int>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class GfG {
// Function to add an edge between two vertices
static void addEdge(List<List<Integer>> adj, int u, int v) {
adj.get(u).add(v);
}
static void displayAdjList(List<List<Integer>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (int j : adj.get(i)) {
System.out.print(j + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v):
adj[u].append(v)
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{j} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0)
addEdge(adj, 1, 2)
addEdge(adj, 2, 0)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
class GfG
{
// Function to add an edge between two vertices
static void addEdge(List<List<int>> adj, int u, int v)
{
adj[u].Add(v);
}
static void displayAdjList(List<List<int>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (int j in adj[i])
{
Console.Write(j + " ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<int>> adj = new List<List<int>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<int>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v) {
adj[u].push(v);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += j + " ";
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0:
1: 0 2
2: 0
2. Adjacency List for Undirected graph:
Consider an Undirected and Unweighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<int>>& adj, int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void displayAdjList(vector<vector<int>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (int j : adj[i]) {
cout << j << " ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<int>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class GfG {
// Function to add an edge between two vertices
static void addEdge(List<List<Integer>> adj, int u, int v) {
adj.get(u).add(v);
adj.get(v).add(u);
}
static void displayAdjList(List<List<Integer>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (int j : adj.get(i)) {
System.out.print(j + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v):
adj[u].append(v)
adj[v].append(u)
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{j} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0)
addEdge(adj, 1, 2)
addEdge(adj, 2, 0)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
class GfG
{
// Function to add an edge between two vertices
static void addEdge(List<List<int>> adj, int u, int v)
{
adj[u].Add(v);
adj[v].Add(u);
}
static void displayAdjList(List<List<int>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (int j in adj[i])
{
Console.Write(j + " ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<int>> adj = new List<List<int>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<int>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v) {
adj[u].push(v);
adj[v].push(u);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += j + " ";
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0: 1 2
1: 0 2
2: 1 0
3. Adjacency List for Directed and Weighted graph:
Consider an Directed and Weighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<pair<int,int>>>& adj, int u, int v, int w) {
adj[u].push_back({v,w});
}
void displayAdjList(vector<vector<pair<int,int>>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (auto &j : adj[i]) {
cout << "{"<<j.first << ", "<<j.second<<"} ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<pair<int,int>>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.AbstractMap.SimpleEntry;
// Function to add an edge between two vertices
class GfG {
static void addEdge(List<List<SimpleEntry<Integer, Integer>>> adj, int u, int v, int w) {
adj.get(u).add(new SimpleEntry<>(v, w));
}
static void displayAdjList(List<List<SimpleEntry<Integer, Integer>>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (SimpleEntry<Integer, Integer> j : adj.get(i)) {
System.out.print("{" + j.getKey() + ", " + j.getValue() + "} ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<SimpleEntry<Integer, Integer>>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v, w):
adj[u].append((v, w))
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{{{j[0]}, {j[1]}}} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0, 4)
addEdge(adj, 1, 2, 3)
addEdge(adj, 2, 0, 1)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
// Function to add an edge between two vertices
class GfG
{
static void addEdge(List<List<KeyValuePair<int, int>>> adj, int u, int v, int w)
{
adj[u].Add(new KeyValuePair<int, int>(v, w));
}
static void displayAdjList(List<List<KeyValuePair<int, int>>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (var j in adj[i])
{
Console.Write("{" + j.Key + ", " + j.Value + "} ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<KeyValuePair<int, int>>> adj = new List<List<KeyValuePair<int, int>>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<KeyValuePair<int, int>>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v, w) {
adj[u].push([v, w]);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += `{${j[0]}, ${j[1]}} `;
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0:
1: {0, 4} {2, 3}
2: {0, 1}
4. Adjacency List for Undirected and Weighted graph:
Consider an Undirected and Weighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<pair<int,int>>>& adj, int u, int v, int w) {
adj[u].push_back({v,w});
adj[v].push_back({u,w});
}
// Function to display the adjacency list
void displayAdjList(vector<vector<pair<int,int>>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (auto &j : adj[i]) {
cout << "{"<<j.first << ", "<<j.second<<"} ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<pair<int,int>>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.AbstractMap.SimpleEntry;
// Function to add an edge between two vertices
class GfG {
static void addEdge(List<List<SimpleEntry<Integer, Integer>>> adj, int u, int v, int w) {
adj.get(u).add(new SimpleEntry<>(v, w));
adj.get(v).add(new SimpleEntry<>(u, w));
}
static void displayAdjList(List<List<SimpleEntry<Integer, Integer>>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (SimpleEntry<Integer, Integer> j : adj.get(i)) {
System.out.print("{" + j.getKey() + ", " + j.getValue() + "} ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<SimpleEntry<Integer, Integer>>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v, w):
adj[u].append((v, w))
adj[v].append((u, w))
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{{{j[0]}, {j[1]}}} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0, 4)
addEdge(adj, 1, 2, 3)
addEdge(adj, 2, 0, 1)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
// Function to add an edge between two vertices
class GfG
{
static void addEdge(List<List<KeyValuePair<int, int>>> adj, int u, int v, int w)
{
adj[u].Add(new KeyValuePair<int, int>(v, w));
adj[v].Add(new KeyValuePair<int, int>(u, w));
}
static void displayAdjList(List<List<KeyValuePair<int, int>>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (var j in adj[i])
{
Console.Write("{" + j.Key + ", " + j.Value + "} ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<KeyValuePair<int, int>>> adj = new List<List<KeyValuePair<int, int>>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<KeyValuePair<int, int>>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v, w) {
adj[u].push([v, w]);
adj[v].push([u, w]);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += `{${j[0]}, ${j[1]}} `;
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0: {1, 4} {2, 1}
1: {0, 4} {2, 3}
2: {1, 3} {0, 1}
Characteristics of the Adjacency List:
- An adjacency list representation uses a list of lists. We store all adjacent of every node together.
- The size of the list is determined by the number of vertices in the graph.
- All adjacent of a vertex are easily available. To find all adjacent, we need only O(n) time where is the number of adjacent vertices.
Applications of the Adjacency List:
Advantages of using an Adjacency list:
- An adjacency list is simple and easy to understand.
- Requires less space compared to adjacency matrix for sparse graphs.
- Easy to traverse through all edges of a graph.
- Adding an vertex is easier compared to adjacency matrix representation.
- Most of the graph algorithms are implemented faster with this representation. For example, BFS and DFS implementations take OIV x V) time, but with Adjacency List representation, we get these in linear time. Similarly Prim's and Dijskstra's algorithms are implemented faster with Adjacency List representation.
Disadvantages of using an Adjacency list:
- Checking if there is an edge between two vertices is costly as we have traverse the adjacency list.
- Not suitable for dense graphs.
What else can you read?
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem